Geometry of Phylogenetic Inference

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

References

- N. Eriksson, K. Ranestad, B. Sturmfels, S. Sullivant, *Phylogenetic algebraic geometry*, in "Projective varieties with unexpected properties", pp. 237–255, Walter de Gruyter, 2005.
- L. Pacher, B. Sturmfels, *The Mathematics of Phylogenomics*, SIAM Rev. 49 (2007), no. 1, 3–31.
- L. Pacher, B. Sturmfels, Tropical geometry of statistical models, Proc. Natl. Acad. Sci. USA 101 (2004), no. 46, 16132–16137
- M. Drton, B. Sturmfels, S. Sullivant, Lectures on Algebraic Statistics, Birkhäuser, 2009.

Hidden Markov Models

- *n* observed states Y_1, \ldots, Y_n , each taking ℓ possible values
- n hidden states X_1, \ldots, X_n , each taking k possible values
- conditional independence

$$\mathbb{P}(X_i|X_1,\ldots,X_{i-1})=\mathbb{P}(X_i|X_{i-1})$$

$$\mathbb{P}(Y_i|X_1,\ldots,X_i,Y_1,\ldots,Y_{i-1})=\mathbb{P}(Y_i|X_i)$$

• special case: all transitions $X_{i-1} \mapsto X_i$ same $k \times k$ -stochastic matrix $P = (p_{ij})$; all transitions $X_i \mapsto Y_i$ same $k \times \ell$ -stochastic matrix $T = (t_{ij})$

• a HMM described by the image of a polynomial map

$$\Phi: \mathbb{R}^{k(k+1)} \to \mathbb{R}^{\ell^n}$$

of degree n-1 bi-homogeneous in the coordinates p_{ij} and t_{ij}

- plus added positivity and normalization conditions (stochastic matrices and probability distributions)
- Example with $k = \ell = 2$ and n = 3, $\Phi = (\Phi_{ijk}) : \mathbb{R}^8 \to \mathbb{R}^8$

$$\begin{array}{ll} \Phi_{ijk} = & p_{00}p_{00}t_{0i}t_{0j}t_{0k} + p_{00}p_{01}t_{0i}t_{0j}t_{1k} + p_{01}p_{10}t_{0i}t_{1j}t_{0k} + p_{01}p_{11}t_{0i}t_{1j}t_{1k} \\ & + & p_{10}p_{00}t_{1i}t_{0j}t_{0k} + p_{10}p_{01}t_{1i}t_{0j}t_{1k} + p_{11}p_{10}t_{1i}t_{1j}t_{0k} + p_{11}p_{11}t_{1i}t_{1j}t_{1k} \end{array}$$

- \bullet invariants of the HMM: polynomial functions on \mathbb{R}^{ℓ^n} that vanish on the image of Φ
- ullet ideal \mathcal{I}_Φ generated by invariants? small k,ℓ,n Gröbner bases; larger computationally hard

Questions

- Viterbi sequence: find the most likely hidden data given observed data
- find all parameter values for a model that result in the same observed distribution
- find what parameter-independent relations hold between the observed probabilities $\mathbb{P}_{i_1,...,i_n} = \Phi_{i_1,...,i_n}$

Phylogenetic Algebraic Geometry

- T a rooted binary tree with n leaves (hence 2n-2 edges)
- At each vertex a binary random variable (e.g. one of the syntactic parameters)
- ullet Probability distribution at the root vertex $\pi=(p,1-p)$
- Along each edge e transition matrix: stochastic matrix $P_e = (p_{ii}^{(e)})$ with $\sum_i p_{ii}^{(e)} = 1$
- these represent the probabilities that a mutation in the parameter happens along that edge

Model Parameters

- the random variables at the leaves of the tree are *observed*; the random variables at the interior nodes are *hidden* (assuming no direct knowledge of the "ancient languages" in the family)
- ullet matrix entries of transition matrices P_e and probability π at root vertex are model parameters
- number of parameters $N = (2n-2)k^2 + k$ (binary variable k = 2)

Polynomial Map

- at the *n* leaves there are $k^n = 2^n$ possible observations
- the probability of an observation at the leaves is a polynomial function of the parameters
- can view this as a complex polynomial

$$\Phi:\mathbb{C}^N\to\mathbb{C}^{2^n}$$

plus some (real) normalization conditions

- polytope $\Delta \subset \mathbb{R}_+^N \subset \mathbb{C}^N$ determined by the conditions $\pi_1 + \pi_2 = 1$ and $\sum_i p_{ii}^{(e)} = 1$ with $\pi_i \geq 0$ and $p_{ii}^{(e)} \geq 0$
- Φ should map Δ to a cube \mathcal{I}^n in \mathbb{C}^{2^n} where $[0,1]\simeq\mathcal{I}\subset\mathbb{C}^2$ is $\mathcal{I}=\{(p_1,p_2)\,|\,p_1+p_2=1,p_i\geq 0\}$

Example

 $\Phi_{ijk} = \pi_0 a_{0i} b_{00} c_{0j} d_{0k} + \pi_0 a_{0i} b_{01} c_{1j} d_{1k} + \pi_1 a_{1i} b_{10} c_{0j} d_{0k} + \pi_1 a_{1i} b_{11} c_{1j} d_{1k}$ there are 8 such polynomials: $i, j, k \in \{0, 1\}$

- polynomial Φ is homogeneous in the parameters
- can view Φ as a map of projective spaces
- in the previous example

$$\begin{split} \Phi: \mathbb{C}^4 \times \mathbb{C}^4 \times \mathbb{C}^4 \times \mathbb{C}^4 \times \mathbb{C}^2 &\to \mathbb{C}^8 \\ \Phi: \mathbb{P}^3(\mathbb{C}) \times \mathbb{P}^3(\mathbb{C}) \times \mathbb{P}^3(\mathbb{C}) \times \mathbb{P}^3(\mathbb{C}) \times \mathbb{P}^1(\mathbb{C}) &\to \mathbb{P}^7(\mathbb{C}) \end{split}$$

homogeneous with respect to each group of variables a,b,c,d,π

• the fibers of this morphism give all possible values of parameters (before imposing real normalization conditions) that give a certain probability at the leaves

Algebraic varieties occurring in these models

- Toric varieties (including Segre varieties and Veronese varieties)
- Determinantal varieties: the tree structure imposes rank constraints on matrices built starting from observed probabilities at the leaves
- Example: Segre embedding

$$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^{15}$$

$$p_{ijkl} = u_i v_j w_k x_l \quad i, j, k, l \in \{0, 1\}$$

 \bullet Prime ideal defining this variety: generated by 2 \times 2 minors of 4 \times 4-matrices

$$\begin{pmatrix} p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111} \end{pmatrix}, \begin{pmatrix} p_{0000} & p_{0001} & p_{0100} & p_{0101} \\ p_{0001} & p_{0001} & p_{0010} & p_{0110} & p_{0111} \\ p_{1000} & p_{1001} & p_{1011} & p_{1110} & p_{1111} \end{pmatrix}, \\ \begin{pmatrix} p_{0000} & p_{0010} & p_{0100} & p_{1001} & p_{1100} & p_{1111} \\ p_{0001} & p_{0011} & p_{0101} & p_{0111} \\ p_{1000} & p_{1010} & p_{1100} & p_{1110} \\ p_{1001} & p_{1011} & p_{1101} & p_{1111} \end{pmatrix}.$$

corresponding to

Secant variety of the Segre variety

• X nine-dimensional subvariety of \mathbb{P}^{15} given by al $2 \times 2 \times 2 \times 2$ -tensors of rank at most 2

$$p_{ijkl} = \pi_0 u_{0i} v_{0j} w_{0k} x_{0l} + \pi_1 u_{1i} v_{1j} w_{1k} w_{1l}$$

• Ideal generated by all 3 × 3-minors of previous matrices

$$X = X_{(12)(34)} \cap X_{(13)(24)} \cap X_{(14)(23)}$$

Determinantal variety

• each determinantal variety corresponds to a Markov model on one of the binary trees: $X_{(12)(34)}$ is defined by

$$p_{ijkl} = \pi_0(a_{00}u_{0i}v_{0j} + a_{01}u_{1i}v_{1j})(b_{00}w_{0k}x_{0l} + b_{01}w_{1k}x_{1l}) + \pi_1(a_{10}u_{0i}v_{0j} + a_{10}u_{1i}v_{1j})(b_{10}w_{0k}x_{0l} + b_{11}w_{1k}x_{1l})$$

this corresponds to vanishing of all 3×3 -minors in first matrix

• stratification of \mathbb{P}^{2^n-1} by phylogenetic models X

Special case: Jukes-Cantor model

 \bullet special case where all the edge matrices P_e have the form

$$P_e = \left(\begin{array}{cc} p_0 & p_1 \\ p_1 & p_0 \end{array}\right)$$

• it is known that in this case an explicit change of coordinates describes it as a toric variety.

General Idea of Phylogenetic Algebraic Geometry

- generators of the ideal defining the complex variety = phylogenetic invariants
- which phylogenetic invariants suffice to distinguish between different Markov models?
- parameter inference from tropicalization of the algebraic variety

Tropical Semiring

• min-plus (or tropical) semiring $\mathbb{T}=\mathbb{R}\cup\{\infty\}$, with operations \oplus and \odot given by

$$x \oplus y = \min\{x, y\},\$$

with ∞ the identity element for \oplus and with

$$x \odot y = x + y$$
,

with 0 the identity element for \odot

- \bullet operations \oplus and \odot satisfy associativity and commutativity and distributivity of the product \odot over the sum \oplus
- addition is no longer invertible and is idemponent

$$x \oplus x = \min\{x, x\} = x$$

Tropical polynomials

• function $\phi: \mathbb{R}^n \to \mathbb{R}$ of the form

$$\phi(x_{1},...,x_{n}) = \bigoplus_{j=1}^{m} a_{j} \odot x_{1}^{k_{j1}} \odot \cdots \odot x_{n}^{k_{jn}}$$

$$= \min \{ a_{1} + k_{11}x_{1} + \cdots + k_{1n}x_{n}, a_{2} + k_{21}x_{1} + \cdots + k_{2n}x_{n}, \dots a_{m} + k_{m1}x_{1} + \cdots + k_{mn}x_{n} \}.$$

- tropicalization: algebraic varieties become piecewise linear spaces
- can recover information about a variety from its tropicalization

• in the previous HMM example with n=3 and $k=\ell=2$ the tropicalization of the polynomials Φ_{ijk}

$$\Phi_{ijk} = \begin{array}{ll} \rho_{00}\rho_{00}t_{0i}t_{0j}t_{0k} + \rho_{00}\rho_{01}t_{0i}t_{0j}t_{1k} + \rho_{01}\rho_{10}t_{0i}t_{1j}t_{0k} + \rho_{01}\rho_{11}t_{0i}t_{1j}t_{1k} \\ + & \rho_{10}\rho_{00}t_{1i}t_{0j}t_{0k} + \rho_{10}\rho_{01}t_{1i}t_{0j}t_{1k} + \rho_{11}\rho_{10}t_{1i}t_{1j}t_{0k} + \rho_{11}\rho_{11}t_{1i}t_{1j}t_{1k} \\ \text{is given by}$$

$$\tau_{ijk} = \min\{u_{h_1h_2} + u_{h_2h_3} + v_{h_1i} + v_{h_2j} + v_{h_3k} \mid (h_1, h_2, h_3) \in \{0, 1\}^3\}$$

where $u_{ab} = -\log(p_{ab})$ and $v_{ab} = -\log(t_{ab})$

• Viterbi sequence: (h_1, h_2, h_3) realizing mimimum, given observed (i, j, k) is the Viterbi sequence of hidden data

Newton polytope

- ullet polynomial $f=\sum_{\omega\in\mathbb{Z}^n}a_\omega x^\omega$ with $x^\omega=x_1^{\omega_1}\cdots x_n^{\omega_n}$
- Newton polytope

$$\mathcal{N}(f) = \mathsf{Convex}\;\mathsf{Hull}\{\omega \in \mathbb{Z}^n \,|\, a_\omega \neq 0\} \subset \mathbb{R}^n$$

- $\mathcal{N}(f+g) = \mathcal{N}(f) \cup \mathcal{N}(g)$ and $\mathcal{N}(f \cdot g) = \mathcal{N}(f) + \mathcal{N}(g)$ (Minkowski sum of polytopes $\mathcal{P} + \mathcal{Q} = \{x + y \, | \, x \in \mathcal{P}, y \in \mathcal{Q}\}$
- normal fan $\mathcal{C}(\mathcal{N}(f))$: normal cones of all faces $\mathcal{C}_F(\mathcal{N}(f))$

$$\mathcal{C}_F(\mathcal{N}(f)) = \{ w \in \mathbb{R}^n \, | \, F = F_w(\mathcal{N}(f)) \}$$

$$F_w(\mathcal{N}(f)) = \{ x \in \mathcal{N}(f) \mid (x - y) \cdot w \le 0 \ \forall y \in \mathcal{N}(f) \}$$

- the set of parameters $U=(u_{ab}),\ V=(v_{ab})$ in tropicalization τ_{ijk} of Φ_{ijk} that determine the Viterbi sequence (h_1,h_2,h_3) is the normal cone to a vertex of the Newton polygon $\mathcal{N}(\Phi_{ijk})$
- given observed data (i, j, k) and hidden data (h_1, h_2, h_3) the normal cones of $\mathcal{N}(\Phi_{ijk})$ give all parameter values for which (h_1, h_2, h_3) is the most likely explanation for the observed (i, j, k)
- domains of linearity of the piecewise linear tropical τ_{ijk} are the cones in the normal fan $\mathcal{C}_F(\mathcal{N}(\Phi_{ijk}))$; each maximal cone corresponds to one set of hidden data (h_1,h_2,h_3) maximizing probability

$$\tau_{ijk} = -\log \mathbb{P}((X_1, X_2, X_3) = (h_1, h_2, h_3) | (Y_1, Y_2, Y_3) = (i, j, k))$$

• each vertex of the Newton polygon $\mathcal{N}(\Phi_{ijk})$ determines an inference function: $(i,j,k) \mapsto (h_1,h_2,h_3)$ that realize min τ_{ijk}

