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Hidden Markov Models

• n observed states Y1, . . . ,Yn, each taking ` possible values

• n hidden states X1, . . . ,Xn, each taking k possible values

• conditional independence

P(Xi |X1, . . . ,Xi−1) = P(Xi |Xi−1)

P(Yi |X1, . . . ,Xi ,Y1, . . . ,Yi−1) = P(Yi |Xi )

• special case: all transitions Xi−1 7→ Xi same k × k-stochastic
matrix P = (pij); all transitions Xi 7→ Yi same k × `-stochastic
matrix T = (tij)
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• a HMM described by the image of a polynomial map

Φ : Rk(k+1) → R`n

of degree n − 1 bi-homogeneous in the coordinates pij and tij

• plus added positivity and normalization conditions (stochastic
matrices and probability distributions)

• Example with k = ` = 2 and n = 3, Φ = (Φijk) : R8 → R8

Φijk = p00p00t0i t0j t0k + p00p01t0i t0j t1k + p01p10t0i t1j t0k + p01p11t0i t1j t1k

+ p10p00t1i t0j t0k + p10p01t1i t0j t1k + p11p10t1i t1j t0k + p11p11t1i t1j t1k
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• invariants of the HMM: polynomial functions on R`n that vanish
on the image of Φ

• ideal IΦ generated by invariants? small k , `, n Gröbner bases;
larger computationally hard

Questions

• Viterbi sequence: find the most likely hidden data given observed
data

• find all parameter values for a model that result in the same
observed distribution

• find what parameter-independent relations hold between the
observed probabilities Pi1,...,in = Φi1,...,in
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Phylogenetic Algebraic Geometry

• T a rooted binary tree with n leaves (hence 2n − 2 edges)

• At each vertex a binary random variable (e.g. one of the
syntactic parameters)

• Probability distribution at the root vertex π = (p, 1− p)

• Along each edge e transition matrix: stochastic matrix

Pe = (p
(e)
ij ) with

∑
i p

(e)
ij = 1

• these represent the probabilities that a mutation in the
parameter happens along that edge
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Model Parameters

• the random variables at the leaves of the tree are observed; the
random variables at the interior nodes are hidden (assuming no
direct knowledge of the “ancient languages” in the family)

• matrix entries of transition matrices Pe and probability π at root
vertex are model parameters

• number of parameters N = (2n − 2)k2 + k
(binary variable k = 2)
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Polynomial Map

• at the n leaves there are kn = 2n possible observations

• the probability of an observation at the leaves is a polynomial
function of the parameters

• can view this as a complex polynomial

Φ : CN → C2n

plus some (real) normalization conditions

• polytope ∆ ⊂ RN
+ ⊂ CN determined by the conditions

π1 + π2 = 1 and
∑

i p
(e)
ij = 1 with πi ≥ 0 and p

(e)
ij ≥ 0

• Φ should map ∆ to a cube In in C2n where [0, 1] ' I ⊂ C2 is
I = {(p1, p2) | p1 + p2 = 1, pi ≥ 0}
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Example

Φijk = π0a0ib00c0jd0k+π0a0ib01c1jd1k+π1a1ib10c0jd0k+π1a1ib11c1jd1k

there are 8 such polynomials: i , j , k ∈ {0, 1}
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• polynomial Φ is homogeneous in the parameters

• can view Φ as a map of projective spaces

• in the previous example

Φ : C4 × C4 × C4 × C4 × C2 → C8

Φ : P3(C)× P3(C)× P3(C)× P3(C)× P1(C)→ P7(C)

homogeneous with respect to each group of variables a, b, c , d , π

• the fibers of this morphism give all possible values of parameters
(before imposing real normalization conditions) that give a certain
probability at the leaves
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Algebraic varieties occurring in these models

• Toric varieties (including Segre varieties and Veronese varieties)

• Determinantal varieties: the tree structure imposes rank
constraints on matrices built starting from observed probabilities at
the leaves

• Example: Segre embedding

P1 × P1 × P1 × P1 ↪→ P15

pijkl = uivjwkxl i , j , k, l ∈ {0, 1}
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• Prime ideal defining this variety: generated by 2× 2 minors of
4× 4-matrices

corresponding to
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Secant variety of the Segre variety
• X nine-dimensional subvariety of P15 given by al
2× 2× 2× 2-tensors of rank at most 2

pijkl = π0u0iv0jw0kx0l + π1u1iv1jw1kw1l

• Ideal generated by all 3× 3-minors of previous matrices

X = X(12)(34) ∩ X(13)(24) ∩ X(14)(23)
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Determinantal variety
• each determinantal variety corresponds to a Markov model on
one of the binary trees: X(12)(34) is defined by

pijkl = π0(a00u0iv0j + a01u1iv1j)(b00w0kx0l + b01w1kx1l)
+ π1(a10u0iv0j + a10u1iv1j)(b10w0kx0l + b11w1kx1l)

this corresponds to vanishing of all 3× 3-minors in first matrix

• stratification of P2n−1 by phylogenetic models X
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Special case: Jukes-Cantor model

• special case where all the edge matrices Pe have the form

Pe =

(
p0 p1

p1 p0

)
• it is known that in this case an explicit change of coordinates
describes it as a toric variety.

General Idea of Phylogenetic Algebraic Geometry

• generators of the ideal defining the complex variety =
phylogenetic invariants

• which phylogenetic invariants suffice to distinguish between
different Markov models?

• parameter inference from tropicalization of the algebraic variety
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Tropical Semiring

• min-plus (or tropical) semiring T = R ∪ {∞}, with operations ⊕
and � given by

x ⊕ y = min{x , y},

with ∞ the identity element for ⊕ and with

x � y = x + y ,

with 0 the identity element for �
• operations ⊕ and � satisfy associativity and commutativity and
distributivity of the product � over the sum ⊕
• addition is no longer invertible and is idemponent
x ⊕ x = min{x , x} = x
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Tropical polynomials

• function φ : Rn → R of the form

φ(x1, . . . , xn) = ⊕m
j=1aj � x

kj1
1 � · · · � x

kjn
n

= min{ a1 + k11x1 + · · ·+ k1nxn,
a2 + k21x1 + · · ·+ k2nxn,
· · ·
am + km1x1 + · · ·+ kmnxn }.

• tropicalization: algebraic varieties become piecewise linear spaces

• can recover information about a variety from its tropicalization
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• in the previous HMM example with n = 3 and k = ` = 2 the
tropicalization of the polynomials Φijk

Φijk = p00p00t0i t0j t0k + p00p01t0i t0j t1k + p01p10t0i t1j t0k + p01p11t0i t1j t1k

+ p10p00t1i t0j t0k + p10p01t1i t0j t1k + p11p10t1i t1j t0k + p11p11t1i t1j t1k

is given by

τijk = min{uh1h2 + uh2h3 + vh1i + vh2j + vh3k | (h1, h2, h3) ∈ {0, 1}3}

where uab = − log(pab) and vab = − log(tab)

• Viterbi sequence: (h1, h2, h3) realizing mimimum, given observed
(i , j , k) is the Viterbi sequence of hidden data
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Newton polytope

• polynomial f =
∑

ω∈Zn aωx
ω with xω = xω1

1 · · · xωn
n

• Newton polytope

N (f ) = Convex Hull{ω ∈ Zn | aω 6= 0} ⊂ Rn

• N (f + g) = N (f ) ∪N (g) and N (f · g) = N (f ) +N (g)
(Minkowski sum of polytopes P +Q = {x + y | x ∈ P, y ∈ Q}
• normal fan C(N (f )): normal cones of all faces CF (N (f ))

CF (N (f )) = {w ∈ Rn |F = Fw (N (f ))}

Fw (N (f )) = {x ∈ N (f ) | (x − y) · w ≤ 0 ∀y ∈ N (f )}
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• the set of parameters U = (uab), V = (vab) in tropicalization τijk
of Φijk that determine the Viterbi sequence (h1, h2, h3) is the
normal cone to a vertex of the Newton polygon N (Φijk)

• given observed data (i , j , k) and hidden data (h1, h2, h3) the
normal cones of N (Φijk) give all parameter values for which
(h1, h2, h3) is the most likely explanation for the observed (i , j , k)

• domains of linearity of the piecewise linear tropical τijk are the
cones in the normal fan CF (N (Φijk)); each maximal cone
corresponds to one set of hidden data (h1, h2, h3) maximizing
probability

τijk = − logP((X1,X2,X3) = (h1, h2, h3) | (Y1,Y2,Y3) = (i , j , k))

• each vertex of the Newton polygon N (Φijk) determines an
inference function: (i , j , k) 7→ (h1, h2, h3) that realize min τijk
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