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easily check that £’ satisfies all the conditions of the theorem on X,.. So, using
the induction hypothesis, we have that £’ is very amplec on X,+. But since Z on
X, is disjoint with all E;, Z corresponds with a zero-dimensional subscheme on
X (also disjoint with all %;). So we may conclude that £ separates any 2.

Now we assume my > 1 and we assume that the statement holds for m! < m,..
Consider the exact sequence

0——Ly(d—2;my —~1,...,myp = 1}——>L—->LQOg, 0.

Proceeding similarly as for the case m, = 1 one can easily see that £ separates all
VA
. O

Remark 5.2. Let Ay,..., A, be general points on P3, let ¥, be the blowing-up of
IP? along those r general points and let £3(d;my,...,m.) (my > my > - > M)
denote the complete linear system |dEy — mi By — -+ — Iy on Y. Since the
very ampleness is an open property, Theorem 5.1 implies that L3(d;my,...,m,)
isvery ample on Y, if m, >0, d>my+me+1{d>my+1ifr=1,4> 1if
r=0}and 4d > mi +- - +m, +3 if r > 9. Of course the third condition will now
no longer be a necessary condition.
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Phylogenetic algebraic geometry
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Abstract. Phylogenetic algebraic geometry is concerned with certain complex projec-
tive algebraic varieties derived from finite trees. Real positive points on these varieties
represent probabilistic models of evolution. For small trees, we recover classical geometric
objects, such as toric and determinantal varieties and their secant varieties, but larger
trees lead to new and larpely unexplored territory. This paper gives a self-contained
intreduction to this subject and offers numerous open problems for algebraic geometers.
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1. Introduction

Our title is meant as a reference to the existing branch of mathematical biology
which is known as phylogenetic combinatorics. By “phylogenetic algebraic geom-
etry” we mean the study of algebraic varieties which represent statistical models
of evolution. For general background reading on phylogenetics we recommend
the books by Felsenstein [11] and Semple-Steel [21]. They provide an excellent
introduction to evolutionary trees, from the perspectives of biology, computer sci-
ence, statistics and mathematics. They also offer numerous references to relevant
papers, in addition to the more recent ones listed below.

Phylogenetic algebraic geometry furnishes a rich source of interesting varieties,
including familiar ones such as toric varieties, secant varieties and determinantal
varieties. But these are very special cases, and one guickly encounters a cornucopia
of new varieties, The objective of this paper is to give an introduction to this
subject ares, aimed at students and researchers in algebrale geometry, and to
suggest some concrete research problems.

The basic object in a phylogenetic model is a tree T' which is rooted and has n
labeled leaves. Each node of the tree T' is a random variable with k possible siates
{usually % is taken to be 2, for the binary states {0,1}, or 4, for the nucleotides
{A,C,G,T}). At theroot, the distribution of the states is given by 7 = (1, ... TR )

*N. Eriksson was supported by a NDSEQG fellowship, K. Ranestad was supported by the
Norwesgian Research Council and MSRI, B. Sturmfels and S. Sullivant were partially supported
by the National Science Foundation (DMS-0200729).
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Omn each edge e of the free there is & k x k transition matrix M, whose entries are
indeterminates representing the probabilities of transition (away from the rook)
between the states. The random variables at the leaves are observed. The random
variables at the interior nodes are hidden. Let N be the total number of entries
of the matrices M, and the vector 7. These entries are called model parameters.
For instance, if 7" is a binary tree with n leaves, then 7' has 2n — 2 edges, and
hence N = (2n — 2)k? + k. In practice, there will be many constraints on these
parameters, usually expressible in terms of linear equations and inequalities, so the
set of statistically meaningful parameters is a polyhedron P in BY. Sometimes,
these constraints are given by non-linear polynomials, in which case PP would be a
semi-algebraic subset of RY. Specifying this subset P means choosing a model af
evolution. Several biologically meaningful choices of such models will be discussed
in Section 3.

Fix a tree T with n leaves. At each leaf we can observe k possible states, so
there are k™ possible joint observations we can make at the leaves. The probability
$o of making a particular observation o is a polynomial in the model parameters.
Hence we get a polynomial map whose coordinates are the polynomials ¢pg. This
map is denoted

o BY R

'I'he map ¢ depends only on the tree T and the number k. What we are interested
in is the image ¢(£’} of this map. In real-world applications, the coordinates ¢,
represent probabilities, so they should be non-negative and sum to 1. In other
words, the rules of probability require that ¢{P) lie in the standard (k™ — 1)-
simplex in R*", In phylogenetic algebraic geometry we temporarily abandon this
requirement. We keep things simpler and closer to the familiar setting of complex
algebraic geometry, by replacing ¢ by its complexification ¢: €V — C*", and by
replacing P and ¢(P} by their Zariski closures in C and C*" respectively. As we
shall see, the polynomials ¢, are often homogeneous and ¢(P) is best regarded as
a subvariety of a projective space.

In Section 2 we give a basic example of an evolutionary model and put it
squarely in an algebraic geometric setting. This relation is then developed further
in Section 3, where we describe the main families of models and show how in
special cases they lead to familiar objects like Veronese and Segre varieties and
their secant varieties. Section 4 is concerned with the widely used Jukes-Cantor
model, which is a toric variety in a suitable coordinate system. In the last section
we formulate a number of general problems in phylogenetic algebraic geometry
that we find particularly important, and a list of more specific computationally
oriented problems that may shed light on the more general ones.
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2. Polynomial maps derived from a tree

In this section we explain the polynomial map ¢ associated to a trce 7' and an
integer £ > 1. To make things as concrete as possible, let k = 2 and T be the tree
on i = 3 leaves pictured below.

The probability distribution at the root is an unknown veetor (mg,m1). For
each of the four edges of the tree, we have a 2 x 2-transition mafrix:

b b
_ (@00 Gou M = [ 700 01
Ma = (aw an) b (bm bn)
__(coo cou M — doo dm) .
M. = (010 011) ¢ (dlo dy
Altogether, we have introduced N = 18 parameters, each of which represents a
probability. But we regard them as unknown complex numbers. The unknown g
represents the probability of observing letter 0 at the root, and the unknown bgy

represents the probability that the letter 0 gets changed to the letter 1 along the
edge b. All transitions arc assumed to be independent events, so the monomial

T * O~ By * Cyj * Ay

represents the probability of observing the letter » at the root, the letier v at the
interior node, the letter ¢ at the leaf 1, the letter j at the leaf 2, and the letter &
at the leaf 3. Now, the probabilities at the root and the interior node are hidden
random variables, while the probabilities at the three leaves are observed. This
leads us to consider the polynomial

bijk = moaoiboocojdax + Toaosboicrjdik + Trabiocoidor + m1a1:b11C1 A1k

This polynomial represents the probability of observing the letier 7 at th}a leaf 1,
the letter 7 at the leaf 2, and the letter & at the leaf 3. The eight polynomials ¢;jk

specify our map
$: C® - 8,

In applications, where the parameters are actual probabilities, one immediately
replaces C!8 by a subset P, for instance, the nine-dimensional cube in R'® defined
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by the constraints

M -+, = 1) G, 1 2 0:

aoo -+ ap1 = 1, ago, am = 0, aic + a1 =1, a1g, a1 = 0
boo + 801 = 1, bgo, bor > 0, big +b11 =1, b1, 011 > 0
coo + ¢or = 1, coo, cor = 0, cio e =1, ep,e1 20

doo +dn =1, dog,dyy > 0, dig +di1 =1, dyg,dnn > 0.

In phylogenetic algcbraic geometry, on the other hand, we allow ourselves the
luxury of ignoring inequalities and reality issues. We regard ¢ as & morphism of
complex varieties.

"The most natural thing to do, for an algebraic geomcter, is to work in a pro-
Jjective space, The polynomials @ik are homogeneous with respect to the different
letters a, b, ¢,d and 7. We can thus change our perspective and consider our map
as a projective morphism

¢ PP PR PP o PP x P — P
This morphism is surjective, and it is an instructive undertaking to examine its

fibers.

To underline the points made in the introduction, let us now cut down on the
number of model parameters and replace the domain of the morphism by a natural

subset P, For instance, let us define P by requiring that the four matrices are
identical,

My =My = M, = My %00 901}
d1p @11
Equivalently, P = P3, = x P*, where IPY0q 18 the diagonal of P x P3 x P x 3,

The restricted morphism ¢|p: ]Pf’mq x P! - P7 is given by the following eight
polynomials; )

gbo[)o == ?Toa.go + Toao o1 G‘%O + ‘TI']_CL%UO%D + 71'1()‘,?06,11

doo1 = Woagoam + To@ooQu1410211 + 7710'%0@00@01 +m G%gai
doio = moadyaor + Moooto1@ioai1 + 71adeaseaor + maiqal,
P11 = Woagoﬂ.gl + Wgaogama%l + 7’('1&%0&,(2)1 + 71“1&.100.?1

d100 = Woagoagl + ﬁoaglafo -+ wlallalgago + :rrlafoafl

b = Woago&gl + ’froﬂglamf&n + mia11a10t00001 + 71'1&100«?1
dri0 = W0330G§1 -+ Toafy @10611 -+ T1611G19G00G01 + 1101003,
i1 = Ti'[)Cbglao[) +7rga§1afl +7r1a11a10a(2}1 —}—ma'fl.

The image of ¢|p lies in the 5-dimensional projective subspace of P7 defined by
$oo01 = $o10 and @101 = ¢110. It is a hypersurface of degree eight in this P3. The
defining polynomial of this hypersurface has 70 terms. Studying the geometry of

this fourfold is & typical problem of phylogenetic algebraic geometry. For instance,
what ig its singular locus?
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The definition of the map ¢ for an arbitrary tree T with n leaves and an arbi-
trary number k of states is a straightforward generalization of the n = 3 example
given above. It is simply the calculation of the probabilities of independent events
along the tree. In general, each coordinate of the map ¢ is given by a homoge-
neous polynomial of degree equal to the number of edges of T' plus one. If the
root distribution is not a parameter, the degree of these polynomials is precisely
the number of edges.

One staple among the computational techniques for dealing with tree based
probabilistic models is the sum-product algorithm. The sum-product algorithm is
a clever application of the distributive law that allows for the fast calculation of
the polynomials ¢,. The basic idea is to factor the polynomials that represent ¢q
recursively along the tree. For instance, in our example above with homogeneous
rate matrix:

dooo = moaoo{acs(aly) + a1 (ay)) + miaie(aio{ady) + an(aly)).

This expression can be evaluated with 10 multiplications and 3 additions instead of
the initial expression which required 16 multiplications and 3 additions. In Section
3, we will show how these factorizations help in identifying polynomial relations
among the ¢g, i.e., polynomials vanishing on the image of the morphism ¢.

3. Some models and some familiar varieties

Most evolutionary models discussed in the literature have cither two or four states
for their random variables. The number n of leaves (or taze) can be arbitrary.
Computer scientists will often concentrate on asymptotic complexity questions for
n — oo, while for our purposes it would be quite reasonable to assume that n
is at most ten. There are no general restrictions on the underlying tree T', but
experience has shown that trivalent trees and trees in which every leaf is at the
same distance from the rootl are often simpler.

Suppose now that the number k of states, the number n of taxa and the tree
T are fixed. The choice of a model is then specified by fixing a subset P C CcV.
The set P comprises the allowed model parameters. Here is & list of commonly
studied models:

General Markov This is the model P = CV. All the transition matrices M, are
pairwise distinct, and there are no constraints on the k? entries of M,. The
algebraic geometry of this model was studied by Allman and Rhodes [1, 2].

Group Based The matrices M, are pairwise distinct, but they all have a special
structure which makes them simultaneously diagonalizable by the Fourier
transform of an abelian group. In particular, P is a linear subspace of CcV,
specified by requiring that some entries of M, coincide with some other
entries. Tor example, the Jukes-Cantor model for binary states (k = 2)
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stipulat G i ; % @
ipulates that all matrices M, have the form (al GQ)' The Jukes-Cantor

model for DNA {k = 4) is the topic of the next section. For more information
on group-based models see [10, 22, 24].

Stationary Base Composition The matrices M, are distinct but they all share
the common left eigenvector # = (mq,..., 7). This hypothesis expresses
for example when k = 4, the assumption that the distribution of the fou1:
nucleotides remains the same throughout some evolutionary process ‘An
algebraic study of this model appears in [3]. '

Revefs_ibl.e The matrices M, are distinet symmetric matrices with the common
(g%lelgenvector m=(1,1,...,1). Again, as before, P is a lincar subspace of

Commuting The matrices M, are distinct but they commute pairwise. We have
not yet seen this model in the biology literature, but algebraists love the

commuting variety [14, 19]. It provides a natural supermodel for the next
one.

Substitution The M, matrices have the form exp(te Q) where @ is a fixed matrix
Lquivalently, all matrices M, are powers of a fived matrix A = exp(@) with.
constant entries, but where the exponent ¢, is a real parameter. This is the
most widely used model in biology (see {11]) but for us it has the disadvantage

tba.t it 1s not an algebraic variety, unless the rate matriz Q has commensurate
eigenvalues. ‘

Homoggneous The matrices M, are all equal, or they all belong to a small
finite collection. In this model, the number of free parameters is small and

lindependent of the tree, so the parametric inference algorithm of [18] runs
in polynomial time.

No Hidden |Novj'les When all nodes are observed random variables then the pa-
rameterization becomes monomial, and the model is a toric variety. For the

hor[gj)geneous model, the combinatorial structure of this variety was studied
in [8].

Mixture models Suppose we are given m trees Th, ..., Ty (not necessarily dis-
tinct) on the same set of taxa. Each tree T; has its own map ¢; : CN — C»°
The mizture model is given by the sum of these maps, that is, ¢ = ¢ +-- +
¢m. For example, the case Ty =Ty = - =T, and k = 4 may be used to

model the fact that different regions of the genome evolve at different rates
Sec [12, 13], '

Root distribution For any of the above models, the root distribution 7 can be

take.n to be uniform, 7 = (1,1,...,1), or as a vector with k independent
entries.
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Among these models are many varieties which are familiar in algebraic geom-

etry.

Segre Varieties These appear as a special case of the model with no hidden
nodes.

Veronese Varieties These appear as a special case of the homogeneous model
with no hidden nodes. The models in [8] are natural projections of Veronese

varieties.

Toric Varieties The previous two classes of varieties are toric. All group-based
models are scen to be toric after a clever linear change of coordinates. The
toric varieties of some Jukes-Cantor models will be discussed in the next
section. Grobner bases of binomials for arbitrary group-based models are

given in [24].

Secant Varieties and Joins Joins appear when taking the mixture models of &
collection of models. The secant varieties of a model amounts to taking the
mixture of & model with itself. A special casc of the general Markov model
includes the secant varieties to the Segre varieties [1]. The secant varieties
0 Veronese varieties [5] appear as special cases of the homogeneous meadels
with hidden nodes.

Determinantal Varieties Many of the evolutionary models are naturally emni-
bedded in determinantal varieties, because the tree structure imposes rank
constraints on matrices derived from the probabilities observed at the leaves.
Getting a better understanding of these constraints is important for both
theory and practice [9].

The remainder of this section is the discussion of one example which aims
to demonstrate that phylogenctic trees arise quite naturally when studying these
classical objects of algebraic geometry. Consider the Segre embedding of Pl x P! x
P! % P! in P15, This four-dimensional complex manifold is given by the familiar

monomial parameterization
Dijke = i vy Wk T, k€ {01}

Tts prime ideal is generated by the 2 x 2-minors of the following three 4 x 4-matrices:

Poooo  Poool  Poolo  Pooll Poooo  Poool  Poroo  Poiol
Poiog  Poior  Poilo  Poin Poolo  Pooil  Poiio Peinl
ploco Plool Pioto  Plotl || Proso Poor  Piioo Piion |
Prioo Prior Priio Priil Ploo  Piotl Piiio Pl

poooo Poolo Poloo  Polid
Pooor  Poorl  Poior Polll
Pooo  Pio1o Prioo Piiie
Pigol  Proil Piion Pl
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These three matrices reflect the following three bracketings of the parameteriza-
tion:

Pigrt = (i - vg)  (we - 20)) = (g - wn) - (v 22)) = ((wi - 22) - (07 - we)).

And, of course, these three bracketings correspond to the three binary trees below.

Let X denote the first secant variety of the Segre variety P x P x P! x PL. Thus
X is the nine-dimensional irreducible subvariety of P1® consisting of all 2x 2 x 2 x 2-
tensors which have tensor rank at most 2. The secant variety X has the parametric
representation

Dijkt = 0 * Uos - Vng - Wok * Top + W1+ Ulg* V15 - Wik - L1i-

This shows that the secant variety X equals the general Markov model for the tree
below.

The prime ideal of X is generated by all the 3 x 3-minors of the three matrices
above. We write X(12)(34) for the variety defined by the 3 x 3-minors of the
leftmost matrix, X(13)(24y for the variety of the 3 x 3-minors of the middle matrix,
and X(14y(23) for the variety of the 3 x 3-minors of the rightmost matrix. Then we
have, scheme-theoretically,

X = Xaoyaa N Xasgyea N Xoaes). (3.1)

These three varieties are the general Markov models for the three binary trees
depicted above. For instance, the determinantal variety X, (12)(34) €quals the general
Mearkov model for the hinary tree below.
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Indeed, the standard parameterization ¢ of this model equals

Pijet = %o + (QppUoitoy + @oru1iviy) - (booWokor + borwiksi)
41 - (aa0tiosto; + G11t15v15) - (browokor - b11wikT ).
This representation shows that the leftmost 4 x 4 matrix has rank at most 2, and,
conversely, every 4 x 4 matrix of rank < 2 can be written like this. We conclude
that the general Markov model appears naturally when studying secant varieties
of Segre varieties.
It is instructive to redo the above calculations under the assumption u = v =
w = x. Then the ambient P!° gets replaced by the four-dimensional space P* with
coordinates

Po = Pooao
P1 = Pooo1 = Pooro = Po100 = P1o00
P2 = Poo1l = Po1o1 = Po11o0 = P1o01 = P1oio = P1100
P3 = Po111 = P1o11 = P11o1 = P1110

P4 = P1111-

Under these substitutions, all three 4 x 4-matrices reduce to the same 3 x 3-matrix

Po 1 D2
P11 P2 D3
P2 D3 P4

The ideal of 2 x 2-minors now defines the rational normal curve of degree four. This
special Veronese variety is the small diagonal of the Segre variety P! x P! xP' xP* C
P!, The secant variety of the rational normal curve is the cubic hypersurface
in ** defined by the determinant of the 3 x 3 matrix. Hence, unlike (3.1}, the
homogeneous model satisfies

X = Xoyae) = Xaayea) = X(14)(23)- (3.2)

Studying the stratifications of P2 -1 induced by phylogenetic models, such as
(3.1) and (3.2}, will be one of the open problems to be presented in Section 5.
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First, however, let us look at some widely used models which give rise to a nice
family of toric varicties.

4. The Jukes-Cantor model

The Jukes-Cantor model appears frequently in the computational biology litera-
ture and represents a family of toric varieties which have the unusual property
that they are not toric varietics in their natural coordinate system. Furthermore,
while at first glance they sit naturally inside of P*"~?, the lincar span of these
models involve many fewer coordinates. In this section, we will present examples
of these phenomena, as well as illustrate some open problems about the underlying
varieties,

Example 4.1. Let T be the tree with 3 leaves below.

We consider the Jukes-Cantor DNA model of evolution, where each random
variable has 4 states (the nucleotide bases A,C,G,T) and the root distribution
is uniform, ie., w = (1/4,1/4,1/4,1/4). The transition matrices for the Jukes-
Cantor DNA model have the form

g ar 1 a
a1 ag 41 a1
4y a1 ap ay
a; a1 1 g

The transition matrices My, M,, and My are expressed in the same form as M,
with “a” replaced by b, ¢, and d respectively. Trom these matrices and the rooted
tree T, we get the map

¢ P x P x Pt x Pl — O3

where the coordinates of P% are the possible DNA bages at the leaves. For exam-
ple,
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1
PAAA = Z(GObDCDdO + 3a1b1eady + 3a1bocrdy + 3apgbieirdy + Gﬂ.lblcldl).

That is, pasa is the probability of observing the triple AAA at the leaves of the
tree. Since this paramcterization is symmetric under renaming the bases, there
are many linear relations.

PAAA = Pooc = PeaG = PTTT 4 terms

PAAC = PAAG = PAAT =+ = PTTG 12 terms
PACA = DAGA — DATA =+ =Prar 12 terms
POAA = PGAA = PTAA = = PETT 12 terms

PAGCG = PACT = PAGT = "' = Poar 24 terms

We are left with 5 distinct coordinates. From the practical standpoint, one is
often interested in the accumulated coordinates, which are given paramectrically
as follows:

P13 = paaa +poec +pace +prrr = eotoda + deicidy
P12 = paac +Ppasc + - +prre = 3egcodr + eicido + Bercidy
P13 = PAcA +Paca + - +prer = 3eocide +3e1cods + Bercidy
P23 = PoAA + Peaa + -+ parr = 3eicodo + 3egerds + Bercrdy
Pais = PAaca +PacT + o+ poar = Bercidy + Beicody + begcrdy + bercidy

where eg = aghg-+3a1b1 and e; = agby +a1bg+2a;1by. Interpreting these coordinates
in terms of the probabilistic model: p1g3 is the probability of seeing the same base
at all three leaves, p;; is the probability of seeing the same base at leaves ¢ and j
and a different base at leaf k, and pg;, is the probability of seeing distinct bases
at the three leaves.

Note that the image of ¢ is a three-dimensional projective variety. This is
a consequence of the uniform root distribution in this model. The fiber over a
generic point is isomorphic to P* and stems from the fact that it is not possible
to individually determine the matrices M, and M. Only the product M, M can
be determined. It is easily computed that the vanishing ideal of this model is
generated by one cubic with 19 terms.

Remarkably, there exists a linear change of coordinates so that this polynomial
becomes a binomial. Thus the corresponding variety is a toric variety in the new
coordinates. This change of coordinates is given by the Fourier transform, see [24]
for details. In these coordinates the parameterization factors:
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goooo = P123 + P1z + P13 + pas + Pais = (2o + 3a1)(bo + 3b1) (o + 3e1){dp + 3dy)

1 1 1
Goo11 =P12s — 5P12 < P18 + pag — 3 Pdis = {ag 4 3a1)(bo + 3b1)(co — c1)(do — dy)

1 i 1
q1101 = P123 — P12+ P1s — P — SPdis = (@0 — ay)(by — b1){(co + 3e1)(do — dy)

3 3 3
1 1 1
41110 = P123 + P12 — 3P13 = 3P23 — 3Pdis = (ao — ar)(bo - b1)(co — e1)(do + 3dy)
1 1 1 1
it = Pizg 3Pz © gP1s — gPas F SPdis = (ag — a1)(bo — b1 ){co — ¢1)(de — dy)

In the Fourier cocrdinates, the cubic with nineteen terms becomes the binomial

2
Goo1149111041100 — 000091111 -

These Tourier coordinates are indexed by the subforests of the tree, where we
define a subforest of a tree to be any subgraph of the tree (necessarily a forest}, all
of whose leaves are leaves of the original tree. For instance, the coordinate Gouno
corresponds to the empty subtree, the coordinate ¢1191 corresponds to the tree
from leaf 1 to leaf 3 and not including the cdge to leaf 2, and the coordinate G111
corresponds to the full tree on three leaves. In general there are Fh, | Fourier
coordinates for a tree with n leaves, where F), is the m-th Fibonacei number.

Example 4.2. Now we consider an example of the Jukes-Cantor DNA model with
uniform root distribution on the following tree T with 4 leaves.

‘The variety of this mode! naturally lives in a 441 = 255 dimensional projective
space. However, after noting the symmetry of the parameterization, as in the
previous example, there are only 15 coordinates in this model which are distinct.
After applying the Fourier transform, the parameterization factors into a product,
and hence, the variety is naturally described as a toric variety in P4, However,
there are in fact 2 extra linear relations which are not simply expressed as a simple
equality of probabilities so that our variety sits most naturally inside a P12, Note
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that 13 = Iy.4_1, a Fibonacci number, as previously mentioned. We will present
the parameterization in these 13 Fourier coordinates.

Associated to each of the six edges in the tree is a mafrix with two parameters
(ap and a1, by and by, etc.) as in the previous example. The Fourier transform is
a linear change of coordinates not only on the ambient space of the variety, but
also on the parameter space. The new parametric coordinales are given by

ug=ag+3a, U, =ag—a1, vy =>bg+3b, vi=0by—by,...

and so on down the alphabet. To each subforest of the 4 taxa tree T, there is a
coordinate ¢;jximn, where the index ijklmn is the indicator vector of the edges
which appear in the subforest.

The parameterization is given by the following rule:

Gijklmn = Wi Vg - We * Tf - Ym * Zn.

The ideal of phylogenetic invariants in the Fourier coordinates is generated by
polynomials of degrees two and three. The degree two invariants are given by the
2 x 2 determinants of the following matrices:

Mo — doooooo  dooooll
0 — ’
qi1p000 110011

d101110 101101 4101111
M1 = [ go11110  goriror  gor1111 | - (4.1)
11110 gl giiiiit

The dimensions of these matrices are also Fibonacci numbers, The rows of these
matrices are indexed by the different edge configurations to the lett of the root and
the columns are indexed by the edge configurations to the right of the root. There
are also cubic invariants which do not have nice determinantal representations.
They come in two types:

quo005kd1111m 11110 — F11005591011im 011 1no,
T k0000 Tm11119nol 111 — G5k0011Qtm1101Gnel 110.

The only condition on 3, k,1,m,n, ¢ is that each index is actually the indicator
function of a subforest of the tree. The variety of the Jukes-Cantor model on a 4
taxa tree has dimension 5, so its secant variety is a proper subvariety in P12, In
applications, the secant varieties of the model are called mizture models. Ior this
model, the secant variety has the expected dimension 11, and so is a hypersurface.
Since the matrix M, has rank 1 on the original model, it must have rank 2 on the
secant variety: thus, the desired hypersurface is the 3 x 3 determinant of A,

Example 4.3 (Determinantal closure). Now consider the Jukes-Cantor DNA mo-
del with uniform root distribution on a binary tree with 5 leaves, ag pictured:
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As in Example 4.1, the Fourier coordinates (modulo linear relations) are given
by the sublorests of T, of which there are 34. In the Fourier coordinates, this
ideal ig generated by binomials of degree 2 and 3, of the types we have seen in the
previous example. While the cubic invariants have a relatively simple description,
the guadratic invariants are all represented as the 2 x 2 determinants of matrices
naturally associated to the tree. In particular, toolg from numerical linear algebra
can be used to determine if these invariants arc satisfied. Since the degree 2
invariants are all determinantal, it geems natural to ask what algebraic set these
determinantal relations cut out: that is, what is the determinantal closure of
the variety of the Jukes-Cantor DNA model on a five taxa tree? The ideal of
this determinantal closure is generated by the 2 x 2-minors of the four following
matrices:

((hmm.l.].l d11000011  G11001110  G11001101 qlloooooo)
doooo1111 Go0000011 goo001110 Go0001101 00000000

11111000 diiiipiol 11110110 Gii111911 Gri1ipiil §11111101 §111111100 11111111

410111000  §10110101 410110110 10111011 d10110111 §10111101 glo111110  Glolli11l
do1111000  go1110101  §01110110 Q01111011 01110111 Jol1111101 Jor11l11o  goli11111

11111000 11000000 701111000 710011000 GC0000000
d11111011 fiiogooll  Go1111011 710111011 00000011

Fooo0131E 10110111 §o1110111 g11001111  §11110111  G1oi11iiil  Qoriiiiil  @i1111111

Joooo1101  G1o110101  doi110101  €11001101  §11110101 410111101 Q01111101 (11111101
qo0001110  G10110110  §01110110 411001110 11110116 Gip111110  Goi111110  ¢1illlllo

Surprisingly, this ideal is actually a prime ideal, and so the algebraic set is a toric
variety. It has dimension 10 and degree 501, whereas this Jukes-Cantor model has
only dimension 7. How does the Jukes-Cantor model sit inside its determinantal
closure?

5. Problems

The main problem in phylogenetic algebraic geometry is to understand the complex
variety, L.e., the complex Zariski closure

Xe= d)(P)a
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of a phylogenetic model. This problem has many different reformulations, depend-
ing on the point of view of the person posing the problem. One preblem posged
by computational biclogists [6, 16] is to determine the “phylogenetic invariants”
of the model.

Problem 5.1 (Phylogenetic invariants). Find generators of the ideal defining Xc.

Problem 5.2. Which eguations or phylogenetic tnvariants are needed to distin-
guish between different models?

These problems are of particular interest for applications in phylogenetics, where
one wishes to find which tree gives the evolutionary history of a set of taxa. Some
more geometric problems are:

Problem 5.3. What are the basic geometric tnvariants of ¢ and Xc¢ for the var-
ious models?

o What is the dimension of Xc?

If ¢ is generically finite, what is the generic degree?

What is the degree of Xc ¥
o What is the base locus or indeterminacy locus of ¥

o What is the singular locus of X¢?

Problem 5.4. For a fized type of model with k states, and number n of leaves
{or taza), consider the set of rooted trees with n leaves and the corresponding
arrangement A of varieties in C* . Describe the stratification of A, where two
points in A are in the some strata if they are contained in the intersection of the
same models. Is the stratification of A the same as the stratification of the space
of phiylogenetic trees (cf. [4])?

The tropicalization of a variety is the “logarithmic limit set” of the points on the
complex variety. Tropical geometry is the geometry of the min-plus semi-ring. It
was shown in [18] that the tropical geometry of statistical models plays a crucial
role in parametric inference.

Problem 5.5. Determine the combinatorial structure of the tropicolizations of the
vartous models of evolution. In particular, work out parametric inference for the
substitution model.

Problem 5.6. How does the tropicalization of a mizture model relate to the trop-
ical mizture of the tropicalization of the model: that is, compare the tropicalization
of secant varieties and joins to the secant wvoricties and joins of tropicalizations,
see [7).
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In practice, it can be difficult to find a full set of generators of the ideal of X¢.
Therefore, we suggest certain subsets of the ideal that may be enough to distinguish
between different models (as Problem 5.2 asks), We think of these subsets as types
of closure operation, for example, X¢ is the Zariski closure {over C) of Xg. We
suggest the following closures as possibly easier to find and use:

Linear closure, the linear span of X¢. For work on this problem, see [22].

Quadratic closure defined by the quadratic generators of the ideal. This is
closely related to the conditional independence closure from algebraic statis-
tics, which is defined by determinantal quadratic generators, 1Le., quadrics of
rank 4.

Determinantal closure defined by the determinantal polynomials in the ideal.
For example, there is a large set of determinantal relations that hold for any
of the models defined above. In practice, having large sets of determinantal
generators of the ideal is convenient, as determinantal conditions can be
effectively evaluated using numerical linear algebra, see {9},

Local closures defined by invariants that each depend only on subtrees of 7'
Often these give all the invariants for o model, e.g., [24].

Orbit closures applicable if the parameter space has a dense orbit under some
group and ¢ is equivariant. Possible related objects are quiver varieties and
hyperdeterminants, see [25].

Note that part of the difficulty of studying these closure operations is coming up
with a good definition for them.

Problem 5.7. Study the stratifications induced by the union of the set of “clo-
sures” of these varieties for o given model with fived numbers of leaves {or taza).

From these rather general problems we turn to more specific, computationally-
oriented problems. Many of them are special cases of the general problems above
and are concrete starting points for attempting to resolve these more general prob-
lems. They also serve as an introduction to the complexity that can arise.

Problem 5.8. Consider o tree T with n leaves and consider the subvariely of
(CH®™ consisting of all 2 X 2 x +++ x 2-tables P such that all fattenings of P
along edges that splits T have rank at most r. Is this variety irreducible? Do the
determinants define o reduced scheme? Whal is the dimension of this variety?

Problem 5.9. Consider the general Morkov model on a non-binary tree T with
6 leaves. Is the wariety X¢ equal to the intersection of all models from binary
trees on 6 leqves which are refinements of T'? If the answer is yes, does the same
statement hold scheme-theoretically?

Problem 5.10. Given two trees T and T' on the same number of taza, what are
the irreducible components of the intersections of their corresponding varieties?
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Problem 5.11. For gll trees with at most eight leaues, compute a basis for the
space of linear invariants of the homogeneous Markov model, with and without
hidden nodes. What about guadratic invariants?

Problem 5.12. What is the dimension of the Zariski closure of the substitution
model?

Problem 5.13. Classify all phylogenetic models that are smooth.

Problem 5.14. Compute the phylogenetic complexity of the group Zo X o (see
[24, Conjecture 28]).

Problem 5.15. Study the secant varieties of the Jukes-Cantor binary model for
all trees with al most six leaves. Do any of them fail to have the expected dimen-
sion? When do determinantal conditions suffice to describe these models?

Problem 5.16. Let T' be the balanced binary tree on four leaves. Compule lhe
Newton polytope (as defined in [18]) of the homogeneous model for DNA sequences.
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