Parse trees: from formal to natural languages

Matilde Marcolli
CS101: Mathematical and Computational Linguistics

Winter 2015

CS101 Win2015: Linguistics Parse trees

Context-free grammars G = (W, V1, P, S)

@ Vy and V7 disjoint finite sets: non-terminal and terminal
symbols

e S € V) start symbol
@ P finite rewriting system on Vy U V71

P = production rules: A — a with A € Vy and a € (Vy U V7)*

Language produced by a grammar G:
[,g:{WE V;—|5L>p W}

language with alphabet VT

CS101 Win2015: Linguistics Parse trees

Parse Trees of a context free language

e a finite, rooted, oriented (away from the root), planar tree (with
a choice of a planar embedding)

e vertices decorated by elements of Vjy U V7 (terminal and
non-terminal symbols)

e if an “internal vertex” (not a leaf) is decorated by A and if all
the terminal vertices of oriented edges out of vertex A are labelled
by wi, ..., w, (with ordering specified by planar embedding) then

A—-w--w, €P

CS101 Win2015: Linguistics Parse trees

Example

e Grammar: G = {{S, A}, {a, b}, P, S} with productions P

S§—>aAS, S—a, A—SbA, A—SS, A— ba

e this is a possible parse tree for the string aabbaa in Lg

I\

A S

AN

b

VAN

CS101 Win2015: Linguistics Parse trees

Fact: for context-free G = (V, V1, P, S) have a chain of
derivations in G
A ww,

if and only if there is a parse tree for G with root decorated by A
and with n leaves decorated by wy, ..., w,

to see this: if have parse tree with input A and outputs wy, ..., w,,
show by induction on number of internal vertices that
ASw-w,ingG

e if only root and leaves (no other vertices) then A — wy -+~ w, is
a production rule in P

e otherwise, assume know for all trees with < k vertices (induction
hypothesis); if tree has k + 1 vertices, look at immediate successor
vertices from root: get a production in P (from A to the list of
successors) then for each successor that not leaf get a tree with

< k vertices

CS101 Win2015: Linguistics Parse trees

conversely if A S wi---w,inG
e then there is a chain of derivations in P,

A—>U17 c.. Ui = Uip1, ... U — W1 Wp

where the next derivation giving uj,1 is applied to some
non-terminal element in the string u;

e the first production rule A — w1, produces a string
Up = U11 ... U1k and gives a root labelled A with valence k; and
leaves labelled by uy;

e the second u; — uy consists of some production rules in P
applied to some of the non-terminal symbols uy; in the string uy:
append trees to the vertices labelled wu1; with leaves the resulting
strings in up

e continue with successive derivations until obtain a tree with root
A and with leaves (ordered by planar embedding) labelled by
Wi,...,Wp

CS101 Win2015: Linguistics Parse trees

Ambiguity of context-free languages (grammars)

e A context-free grammar G is ambiguous if there are words
w € Lg that admit different (non-equivalent) parse trees

e Trivial example: S+ A, S— B, A—a, B—a

e A language L is inherently ambiguous if every possible
context-free grammar G with £ = Lg is ambiguous

Example
L={a"b"c"d™|n>1,m>1}U{a"b"c™d"|n>1,m>1}

is inherently ambiguous because there are infinitely many strings of
the form a"b"c"d" that have different parse trees

CS101 Win2015: Linguistics Parse trees

Sketch of argument for Example:

Suppose 3 unambiguous context-free G for £ above: then can
always arrange that for all A€ Vy ~ {S} have A % x;Ax, with
both x1, xo not the empty word

e because of the form of words in £ must have x; and x»
consisting of only one type of symbol a, b, ¢, d (otherwise get a
string not in L)

e also symbol for x; different from symbol for x, (because of form
of words cannot increase occurrences of only one type of symbol
and still get words in £) and also length of x; and x» has to be
same (same reason)

CS101 Win2015: Linguistics Parse trees

e check only cases are x; made of a's and x» of b's or d's; x; made
of b's and x; of ¢'s; x; made of ¢'s and x, of d's (divide variables
other than S into Cip, Cog, Che, Ccd)

e subdivide G into two grammars

G1 = {{S}UGpUCcq, VT, P1, S} Go = {{S}UCqUCpe, VT, P2, S}
G1 generates all a"b"c™d™ with n % m and some a"b"c"d"; G,
generates all a"b™c™d" with n #% m and some a"b"c"d"

e then show (set theoretic argument) that both G; and G, must
generate all but finitely many of the a”b"c"d": all these have two
different parse trees

CS101 Win2015: Linguistics Parse trees

Parse trees and natural languages

Example How to generate the English sentence:
The book is believed to have been written by the Aztecs

e Two step process:

@ generate two separate sentences:
(1) The Aztecs have written the book;
(2) We believe it

@ combine them with appropriate transformations

e first sentence (S): noun phrase (NP) + verb phrase (VP)

NP/S\VP

CS101 Win2015: Linguistics Parse trees

e The NP part is: determiner (D) + noun (N);
VP part has: auxiliary (V1) + rest of phrase (VP3)

NP/S\V
D N V1/
|

AN AN
i |

CS101 Win2015: Linguistics Parse trees

VP,

e the VP, part consists of: verb (V) 4 noun phrase (NP)

%4 / VP2\ NP
wriiten D / \ NP
l |

the book

CS101 Win2015: Linguistics Parse trees

e Similarly, the second sentence We believe it has a parse tree

NP/S\VP
PN

We believe

CS101 Win2015: Linguistics Parse trees

e Operation 1: Passive Transformation
The Aztecs have written the book = The book has been written
by the Aztecs

e Operation 2: Insertion

We believe IT = We believe the book has been written by the
Aztecs

e Operation 3: Passive Transformation
We believe the book has been written by the Aztecs = The book
is believed by us to have been written by the Aztecs

e Operation 4: Agent Deletion
The book is believed by us to have been written by the Aztecs =
The book is believed to have been written by the Aztecs

CS101 Win2015: Linguistics Parse trees

Main idea:

Generative process with sentence (S) as start symbol; non-terminal
symbols given by syntactic identifiers (NP, VP, N, V, D, etc.);
terminals given by words; production rules encode syntactic
structure, together with transformations on parse trees

Early formulation of Generative Grammar

@ Noam Chomsky, The logical structure of linguistic theory
(1955), Plenum, 1975.

@ Noam Chomsky, Syntactic structures, Mouton, 1957.

Later developments focused more on transformations and less on
production rules

CS101 Win2015: Linguistics Parse trees

A closer look at Transformational Grammar

e A set of trees (for example: parse trees of a context-free or
context-sensitive grammar): Base trees

e finite, rooted, oriented, planar trees with decorated vertices: if
one vertex v has only one outgoing edge e the label at t(e)
different from the label at v = s(e)

e Base trees B = {B, V, V1} with B a collection of trees as above,
VT C V a finite set of terminal symbols used to label leaves of
trees in B and internal vertices labelled by non-terminal symbols
VW=V~ Vr

CS101 Win2015: Linguistics Parse trees

e Additional data A = {¥, X4, X, V"} with
@ Y finite set of abstract symbols with V+ C X and TN Vy =10
e X abstract symbol not in V UX (dummy variable)
@ asubset 24 C X

o V" set containing V U X U {X} and additional symbols Y (¥)
with Y e VUXU{X} and ke N

> 5 represents the set of symbols over which the language
generated by the grammar is defined

e R = finite set of transformation rules (T-rules) (D, C) with
respect to V", ¥ and X

CS101 Win2015: Linguistics Parse trees

T-rules

e symbols X, X(%) in V mark parts of the tree that cannot be
moved by the transformation T

e D = domain statement: string o - - - ay of symbols in V"

e C = structural change statement on D: string 31 - -- Bk of
symbols in {k}xeny UX

B; = j if symbol D; = a; of D is some X(") (unmoved by T)
otherwise 3; is either some i # j or some symbol in ¥

CS101 Win2015: Linguistics Parse trees

e Example: passivization in English

the cat ate the mouse — the mouse was eaten by the cat
NOTYNG s NO) T be E, VN

N1 = cat, T = tense, past; V = eat, N®@) = mouse

TV — T be E,V ate — was eaten

® Tpass rule (D, C) where
D=aia---ag = XOINO TYNR$X ()
C = B1fa- - s = 1264(be E, 5 by)378
$ = boundary marker

CS101 Win2015: Linguistics Parse trees

States

e additional structure of transformational grammar:

Q= {K,N,(S,So}

@ K = finite set of states, sp = start state

o N ={N(s),s € K} with N(s) partially ordered set over
R U {#} (with # stop symbol occurring as maximal element)

@ 0: K xR — K (next state function)

Keeps into account order of application of the T-rules
(order matters)

Records the “past history” of the use of the rules (can reconstruct
the path of rule applications)

Assume a rule T leaves a tree unchanged if it does not apply to it
(continue to next rule in the ordered list)

CS101 Win2015: Linguistics Parse trees

Language generated by a transformational grammar

e the set of base trees = deep structure

e all the tree produced by applying compositions of
transformations to base trees = surface structure

e (7,s) with 7 a tree and s € K

(1,5) F (7', 5")
if 3T =(D,C) T-rule with 7/ = T(7), T € N(s), s' =4(s, T),
there is no other 7”7 and T’ € N(s) with T" < T and 7" = T'(7)

e string w generated by T-grammar if w € £%, there are 7, 7/ and
s’ with 7 € B, (,5) H* (7/,s’) F Stop and w is the terminal
string of the tree 7/

CS101 Win2015: Linguistics Parse trees

Refences

@ Noam Chomsky, Selected Readings on Transformational
Theory, Dover 2012.

@ Seymour Ginsburg, Barbara Partee, A mathematical model of
Transformational Grammars, Information and Control 15
(1969) 297-334

@ P.S.Peters, R.W.Ritchie, On the generative power of
transformational grammars, Information Sci. 6 (1973), 49-83.

@ Barbara Partee, Alice ter Meulen, Robert Wall, Mathematical
Methods in Linguistics, Kluwer, 1990.

CS101 Win2015: Linguistics Parse trees

Tree Adjoining Grammars (Joshi, Levy, Takahashi)

Mathematical model for structural composition of parse trees:
instead of production rules that rewrite strings as in the formal
languages grammars, use a system of trees with tree rewriting rules

e a (finite) set of Elementary Trees

e Substitution rule: graft a terminal leaf of a tree T to the root of
another tree (as in previous example: replace the it terminal vertex
of the second tree with the root of the first tree, parsing the
sentence The book has been written by the Aztecs)

e Adjoining rule: at an internal vertex of the tree labelled by X
attach a tree with root labelled by X and with one of the leaves
also labelled by X with anything outgoing from original tree at X
then attached to the X-labelled leaf of the inserted tree.

CS101 Win2015: Linguistics Parse trees

Note: no additional transformations used (unlike example above
with “passive transformation”, “agent deletion” etc.) other than
substitution and adjoining

Fundamental assumptions of TAG:

e all syntactic dependencies are encoded (locally) in the
elementary trees

e non-local dependencies must be reducible to local ones (after
contracting a certain number of adjoined trees)

TAG derivation: a combination of elementary trees via a sequence
of substitutions and adjoining

Derivation structure: a tree whose vertices are labelled by
elementary trees and daughter vertices of a given node T are the
elementary trees that are substituted or adjoined into the tree T
(requires “independence” of the operations performed)

CS101 Win2015: Linguistics Parse trees

Generative power of TAG:

e All context-free languages can be generated by a TAG
e L ={a"b"c"| n € N} not generated by a context-free grammar,
but can be generated by a TAG

PN

repeatedly adjoin copies of this elementary tree into itself at the S
vertex with the first b daughter

CS101 Win2015: Linguistics Parse trees

a’b?c? from first adjoining, etc.

But... simple examples of context-sensitive languages that cannot
be generated by TAG's: (Vijay—Shanker)

L= {a"b"c"d"e" | n € N}

CS101 Win2015: Linguistics Parse trees

Representing natural languages?

e Question: How good are context-free grammars at representing
natural languages?

- Not always good, but often good (better than earlier criticism
indicated)

- Some explicit examples not context-free (cross-serial subordinate
clause in Swiss-German)

@ G.K. Pullum, G. Gazdar Natural languages and context-free
languages, Linguistics and Philosophy, Vol.4 (1982) N.4,
471-504

@ S. Shieber, Evidence against the context-freeness of natural
language, Linguistics and Philosophy, Vol.8 (1985) N.3,
333-343

CS101 Win2015: Linguistics Parse trees

Are natural languages context-free?

e Try to show they are not by finding cross-serial dependencies of
arbitrarily large size

e Example: the language £ = {xx® | x € {a, b}*} has cross serial
dependencies of arbitrary length (the i-th and (n + i)-th term have
to be the same (x® = reversal of x)

o if cross serial dependencies of arbitrary length not context-free

CS101 Win2015: Linguistics Parse trees

e Example (Chomsky): English has arbitrarily long cross-serial
dependencies because can combine dependencies such as if ... then
and either ... or with subject-verb dependence and make arbitrarily
long sequences

e Problem with this kind of argument: can have a non-context-free
language embedded inside a context-free one

L={xxR|xe{a by} cL ={ab

context-free (regular)

e Better example from Swiss German cross-serial order in
dependent clauses

wa" b xc"d™y
Jan sait das mer (d’chind)” (em Hans)™ es huus haend wele (laa)"
(hafte)™ aastriiche

non-context-free language (intersection of SG with a regular
language, so SG also non-context-free)

CS101 Win2015: Linguistics Parse trees

Question: How good are TAG's at modeling natural languages?

e They give a class of languages that includes the context-free
ones but is larger (seems to take care of the kind of wa"b™xc"d™y
type of problem)

e A lot of examples of explicit linguistic analysis using TAG in the
book:

@ A. Abeillé, O. Rambow (Eds.), Tree Adjoining Grammars,
CSLI Publications, 2000.

CS101 Win2015: Linguistics Parse trees

Some References:

© J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison—Wesley, 1979

@ Robert Frank, Phrase structure composition and syntactic
dependences, MIT Press, 2002
© A.K. Joshi, L. Levy, M. Takahashi, The tree adjunct

grammars, Journal of the Computer and System Sciences, 10
(1975) 136-163

CS101 Win2015: Linguistics Parse trees

