Parse trees: from formal to natural languages

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

Context-free grammars $G = (V_N, V_T, P, S)$

- ullet V_N and V_T disjoint finite sets: non-terminal and terminal symbols
- $S \in V_N$ start symbol
- P finite rewriting system on $V_N \cup V_T$

 $P = production rules: A \rightarrow \alpha \text{ with } A \in V_N \text{ and } \alpha \in (V_N \cup V_T)^*$

Language produced by a grammar G:

$$\mathcal{L}_{\mathcal{G}} = \{ w \in V_T^{\star} \mid S \xrightarrow{\bullet}_P w \}$$

language with alphabet V_T

Parse Trees of a context free language

- a finite, rooted, oriented (away from the root), planar tree (with a choice of a planar embedding)
- ullet vertices decorated by elements of $V_{N} \cup V_{T}$ (terminal and non-terminal symbols)
- if an "internal vertex" (not a leaf) is decorated by A and if all the terminal vertices of oriented edges out of vertex A are labelled by w_1, \ldots, w_n (with ordering specified by planar embedding) then

$$A \rightarrow w_1 \cdots w_n \in P$$

Example

• Grammar: $G = \{\{S, A\}, \{a, b\}, P, S\}$ with productions P

$$S o aAS$$
, $S o a$, $A o SbA$, $A o SS$, $A o ba$

ullet this is a possible parse tree for the string aabbaa in $\mathcal{L}_{\mathcal{G}}$

Fact: for context-free $G = (V_N, V_T, P, S)$ have a chain of derivations in G

$$A \stackrel{\bullet}{\rightarrow} w_1 \cdots w_n$$

if and only if there is a parse tree for \mathcal{G} with root decorated by A and with n leaves decorated by w_1, \ldots, w_n

to see this: if have parse tree with input A and outputs w_1, \ldots, w_n , show by induction on number of internal vertices that

- $A \stackrel{\bullet}{\to} w_1 \cdots w_n$ in \mathcal{G}
- ullet if only root and leaves (no other vertices) then $A o w_1 \cdots w_n$ is a production rule in P
- ullet otherwise, assume know for all trees with $\leq k$ vertices (induction hypothesis); if tree has k+1 vertices, look at immediate successor vertices from root: get a production in P (from A to the list of successors) then for each successor that not leaf get a tree with $\leq k$ vertices

conversely if $A \stackrel{\bullet}{\to} w_1 \cdots w_n$ in \mathcal{G}

• then there is a chain of derivations in P,

$$A \rightarrow u_1, \ldots u_i \rightarrow u_{i+1}, \ldots u_k \rightarrow w_1 \cdots w_n$$

where the next derivation giving u_{i+1} is applied to some non-terminal element in the string u_i

- the first production rule $A \to u_1$, produces a string $u_1 = u_{11} \dots u_{1k_1}$ and gives a root labelled A with valence k_1 and leaves labelled by u_{1j}
- ullet the second $u_1 oup u_2$ consists of some production rules in P applied to some of the non-terminal symbols u_{1j} in the string u_1 : append trees to the vertices labelled u_{1j} with leaves the resulting strings in u_2
- continue with successive derivations until obtain a tree with root A and with leaves (ordered by planar embedding) labelled by w_1, \ldots, w_n

Ambiguity of context-free languages (grammars)

- A context-free grammar \mathcal{G} is *ambiguous* if there are words $w \in \mathcal{L}_{\mathcal{G}}$ that admit different (non-equivalent) parse trees
- ullet Trivial example: S o A, S o B, A o a, B o a
- ullet A language $\mathcal L$ is inherently ambiguous if every possible context-free grammar $\mathcal G$ with $\mathcal L=\mathcal L_{\mathcal G}$ is ambiguous

Example

$$\mathcal{L} = \{a^n b^n c^m d^m \, | \, n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n \, | \, n \ge 1, m \ge 1\}$$

is inherently ambiguous because there are infinitely many strings of the form $a^nb^nc^nd^n$ that have different parse trees

Sketch of argument for Example:

Suppose \exists unambiguous context-free \mathcal{G} for \mathcal{L} above: then can always arrange that for all $A \in V_N \setminus \{S\}$ have $A \stackrel{\bullet}{\to} x_1 A x_2$ with both x_1, x_2 not the empty word

- because of the form of words in \mathcal{L} must have x_1 and x_2 consisting of only one type of symbol a,b,c,d (otherwise get a string not in \mathcal{L})
- also symbol for x_1 different from symbol for x_2 (because of form of words cannot increase occurrences of only one type of symbol and still get words in \mathcal{L}) and also length of x_1 and x_2 has to be same (same reason)

- check only cases are x_1 made of a's and x_2 of b's or d's; x_1 made of b's and x_2 of c's; x_1 made of c's and x_2 of d's (divide variables other than S into C_{ab} , C_{ad} , C_{bc} , C_{cd})
- ullet subdivide ${\cal G}$ into two grammars

$$\mathcal{G}_{1} = \{\{S\} \cup C_{ab} \cup C_{cd}, V_{T}, P_{1}, S\} \quad \mathcal{G}_{2} = \{\{S\} \cup C_{ad} \cup C_{bc}, V_{T}, P_{2}, S\}$$

 \mathcal{G}_1 generates all $a^nb^nc^md^m$ with $n \neq m$ and some $a^nb^nc^nd^n$; \mathcal{G}_2 generates all $a^nb^mc^md^n$ with $n \neq m$ and some $a^nb^nc^nd^n$

ullet then show (set theoretic argument) that both \mathcal{G}_1 and \mathcal{G}_2 must generate all but finitely many of the $a^nb^nc^nd^n$: all these have two different parse trees

Parse trees and natural languages

Example How to generate the English sentence:

The book is believed to have been written by the Aztecs

- Two step process:
 - generate two separate sentences:
 - (1) The Aztecs have written the book;
 - (2) We believe it
 - 2 combine them with appropriate transformations
- first sentence (S): noun phrase (NP) + verb phrase (VP)

• The NP part is: determiner (D) + noun (N); VP part has: auxiliary (V₁) + rest of phrase (VP₂)

• the VP_2 part consists of: verb (V) + noun phrase (NP)

• Similarly, the second sentence We believe it has a parse tree

- Operation 1: <u>Passive Transformation</u>
 The Aztecs have written the book ⇒ The book has been written by the Aztecs
- Operation 2: <u>Insertion</u> We believe IT \Rightarrow We believe the book has been written by the Aztecs
- Operation 3: <u>Passive Transformation</u>
 We believe the book has been written by the Aztecs ⇒ The book is believed by us to have been written by the Aztecs
- Operation 4: Agent Deletion

 The book is believed by us to have been written by the Aztecs ⇒

 The book is believed to have been written by the Aztecs

Main idea:

Generative process with sentence (S) as start symbol; non-terminal symbols given by syntactic identifiers (NP, VP, N, V, D, etc.); terminals given by words; production rules encode syntactic structure, together with transformations on parse trees

Early formulation of Generative Grammar

- Noam Chomsky, The logical structure of linguistic theory (1955), Plenum, 1975.
- 2 Noam Chomsky, Syntactic structures, Mouton, 1957.

Later developments focused more on transformations and less on production rules

A closer look at Transformational Grammar

- A set of trees (for example: parse trees of a context-free or context-sensitive grammar): Base trees
- finite, rooted, oriented, planar trees with decorated vertices: if one vertex v has only one outgoing edge e the label at t(e) different from the label at v = s(e)
- Base trees $\mathcal{B} = \{B, V, V_T\}$ with B a collection of trees as above, $V_T \subset V$ a finite set of terminal symbols used to label leaves of trees in B and internal vertices labelled by non-terminal symbols $V_N = V \setminus V_T$

- ullet Additional data $\Delta = \{\Sigma, \Sigma_{\mathcal{A}}, X, V''\}$ with
 - Σ finite set of abstract symbols with $V_T \subseteq \Sigma$ and $\Sigma \cap V_N = \emptyset$
 - X abstract symbol not in $V \cup \Sigma$ (dummy variable)
 - a subset $\Sigma_A \subseteq \Sigma$
 - V'' set containing $V \cup \Sigma \cup \{X\}$ and additional symbols $Y^{(k)}$ with $Y \in V \cup \Sigma \cup \{X\}$ and $k \in \mathbb{N}$

 Σ_A represents the set of symbols over which the language generated by the grammar is defined

• $\mathcal{R} =$ finite set of transformation rules (T-rules) (D,C) with respect to V'', Σ and X

T-rules

- ullet symbols $X,X^{(k)}$ in V'' mark parts of the tree that cannot be moved by the transformation T
- D = domain statement: string $\alpha_1 \cdots \alpha_k$ of symbols in V''
- C =structural change statement on D: string $\beta_1 \cdots \beta_k$ of symbols in $\{k\}_{k \in \mathbb{N}} \cup \Sigma$
- $\beta_j = j$ if symbol $D_j = \alpha_j$ of D is some $X^{(r)}$ (unmoved by T) otherwise β_j is either some $i \neq j$ or some symbol in Σ

- Example: passivization in English the cat ate the mouse \mapsto the mouse was eaten by the cat $N^{(1)}TVN^{(2)} \mapsto N^{(2)}$ T be $E_n VN^{(1)}$ $N^{(1)} = \text{cat}$, T = tense, past; V = eat, $N^{(2)} = \text{mouse}$ $TV \mapsto T$ be E_nV ate \mapsto was eaten
- T_{pass} rule (D, C) where $D = \alpha_1 \alpha_2 \cdots \alpha_8 = X^{(1)} \$ N^{(1)} TVN^{(2)} \$ X^{(2)}$ $C = \beta_1 \beta_2 \cdots \beta_8 = 1264 \text{(be } E_n \text{ 5 by)} 378$ \$ = boundary marker

States

• additional structure of transformational grammar:

$$\Omega = \{K, \mathcal{N}, \delta, s_0\}$$

- K = finite set of states, $s_0 = \text{start state}$
- $\mathcal{N} = \{N(s), s \in K\}$ with N(s) partially ordered set over $\mathcal{R} \cup \{\#\}$ (with # stop symbol occurring as maximal element)
- $\delta: K \times \mathcal{R} \to K$ (next state function)

Keeps into account order of application of the T-rules (order matters)

Records the "past history" of the use of the rules (can reconstruct the path of rule applications)

Assume a rule T leaves a tree unchanged if it does not apply to it (continue to next rule in the ordered list)

Language generated by a transformational grammar

- the set of base trees = *deep structure*
- all the tree produced by applying compositions of transformations to base trees = *surface structure*
- (τ, s) with τ a tree and $s \in K$

$$(\tau,s)\vdash(\tau',s')$$

if $\exists \ T = (D, C)$ T-rule with $\tau' = T(\tau)$, $T \in N(s)$, $s' = \delta(s, T)$, there is no other τ'' and $T' \in N(s)$ with T' < T and $\tau'' = T'(\tau)$

• string w generated by T-grammar if $w \in \Sigma_A^*$, there are τ , τ' and s' with $\tau \in \mathcal{B}$, $(\tau, s_0) \vdash^* (\tau', s') \vdash \mathsf{Stop}$ and w is the terminal string of the tree τ'

Refences

- Noam Chomsky, Selected Readings on Transformational Theory, Dover 2012.
- Seymour Ginsburg, Barbara Partee, A mathematical model of Transformational Grammars, Information and Control 15 (1969) 297–334
- P.S.Peters, R.W.Ritchie, On the generative power of transformational grammars, Information Sci. 6 (1973), 49–83.
- Barbara Partee, Alice ter Meulen, Robert Wall, Mathematical Methods in Linguistics, Kluwer, 1990.

Tree Adjoining Grammars (Joshi, Levy, Takahashi)

Mathematical model for structural composition of parse trees: instead of production rules that rewrite strings as in the formal languages grammars, use a system of trees with tree rewriting rules

- a (finite) set of *Elementary Trees*
- <u>Substitution rule</u>: graft a terminal leaf of a tree *T* to the root of another tree (as in previous example: replace the *it* terminal vertex of the second tree with the root of the first tree, parsing the sentence *The book has been written by the Aztecs*)
- Adjoining rule: at an internal vertex of the tree labelled by X attach a tree with root labelled by X and with one of the leaves also labelled by X with anything outgoing from original tree at X then attached to the X-labelled leaf of the inserted tree.

Note: no additional transformations used (unlike example above with "passive transformation", "agent deletion" etc.) other than substitution and adjoining

Fundamental assumptions of TAG:

- all syntactic dependencies are encoded (locally) in the elementary trees
- non-local dependencies must be reducible to local ones (after contracting a certain number of adjoined trees)

TAG derivation: a combination of elementary trees via a sequence of substitutions and adjoining

Derivation structure: a tree whose vertices are labelled by elementary trees and daughter vertices of a given node \mathcal{T} are the elementary trees that are substituted or adjoined into the tree \mathcal{T} (requires "independence" of the operations performed)

Generative power of TAG:

- All context-free languages can be generated by a TAG
- $\mathcal{L}=\{a^nb^nc^n\,|\,n\in\mathbb{N}\}$ not generated by a context-free grammar, but can be generated by a TAG

repeatedly adjoin copies of this elementary tree into itself at the S vertex with the first b daughter

 $a^2b^2c^2$ from first adjoining, etc.

But... simple examples of context-sensitive languages that cannot be generated by TAG's: (Vijay–Shanker)

$$\mathcal{L} = \{a^n b^n c^n d^n e^n \mid n \in \mathbb{N}\}$$

Representing natural languages?

- Question: How good are context-free grammars at representing natural languages?
- Not always good, but often good (better than earlier criticism indicated)
- Some explicit examples not context-free (cross-serial subordinate clause in Swiss-German)
 - G.K. Pullum, G. Gazdar Natural languages and context-free languages, Linguistics and Philosophy, Vol.4 (1982) N.4, 471–504
 - 2 S. Shieber, Evidence against the context-freeness of natural language, Linguistics and Philosophy, Vol.8 (1985) N.3, 333–343

Are natural languages context-free?

• Try to show they are not by finding cross-serial dependencies of arbitrarily large size

- Example: the language $\mathcal{L} = \{xx^R \mid x \in \{a,b\}^*\}$ has cross serial dependencies of arbitrary length (the *i*-th and (n+i)-th term have to be the same $(x^R = \text{reversal of } x)$
- if cross serial dependencies of arbitrary length not context-free

- Example (Chomsky): English has arbitrarily long cross-serial dependencies because can combine dependencies such as *if* ... *then* and *either* ... *or* with subject-verb dependence and make arbitrarily long sequences
- Problem with this kind of argument: can have a non-context-free language embedded inside a context-free one

$$\mathcal{L} = \{xx^R \,|\, x \in \{a,b\}^*\} \subset \mathcal{L}' = \{a,b\}^*$$

context-free (regular)

• Better example from Swiss German cross-serial order in dependent clauses

$$wa^nb^mxc^nd^my$$

Jan säit das mer (d'chind)ⁿ (em Hans)^m es huus haend wele (laa)ⁿ (häfte)^m aastrüche non-context-free language (intersection of SG with a regular language, so SG also non-context-free)

Question: How good are TAG's at modeling natural languages?

- They give a class of languages that includes the context-free ones but is larger (seems to take care of the kind of $wa^nb^mxc^nd^my$ type of problem)
- A lot of examples of explicit linguistic analysis using TAG in the book:
 - A. Abeillé, O. Rambow (Eds.), Tree Adjoining Grammars, CSLI Publications, 2000.

Some References:

- J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979
- 2 Robert Frank, Phrase structure composition and syntactic dependences, MIT Press, 2002
- A.K. Joshi, L. Levy, M. Takahashi, The tree adjunct grammars, Journal of the Computer and System Sciences, 10 (1975) 136–163