
Parse trees: from formal to natural languages

Matilde Marcolli
CS101: Mathematical and Computational Linguistics

Winter 2015

CS101 Win2015: Linguistics Parse trees

Context-free grammars G = (VN ,VT ,P, S)

VN and VT disjoint finite sets: non-terminal and terminal
symbols

S ∈ VN start symbol

P finite rewriting system on VN ∪ VT

P = production rules: A→ α with A ∈ VN and α ∈ (VN ∪ VT)?

Language produced by a grammar G:

LG = {w ∈ V ?
T |S

•→P w}

language with alphabet VT

CS101 Win2015: Linguistics Parse trees

Parse Trees of a context free language

• a finite, rooted, oriented (away from the root), planar tree (with
a choice of a planar embedding)

• vertices decorated by elements of VN ∪ VT (terminal and
non-terminal symbols)

• if an “internal vertex” (not a leaf) is decorated by A and if all
the terminal vertices of oriented edges out of vertex A are labelled
by w1, . . . ,wn (with ordering specified by planar embedding) then

A→ w1 · · ·wn ∈ P

CS101 Win2015: Linguistics Parse trees

Example

• Grammar: G = {{S ,A}, {a, b},P, S} with productions P

S → aAS , S → a, A→ SbA, A→ SS , A→ ba

• this is a possible parse tree for the string aabbaa in LG

S

�� �� ��
a A

�� �� ��

S

��
S

��

b A

�� ��

a

a b a

CS101 Win2015: Linguistics Parse trees

Fact: for context-free G = (VN ,VT ,P,S) have a chain of
derivations in G

A
•→ w1 · · ·wn

if and only if there is a parse tree for G with root decorated by A
and with n leaves decorated by w1, . . . ,wn

to see this: if have parse tree with input A and outputs w1, . . . ,wn,
show by induction on number of internal vertices that
A
•→ w1 · · ·wn in G

• if only root and leaves (no other vertices) then A→ w1 · · ·wn is
a production rule in P

• otherwise, assume know for all trees with ≤ k vertices (induction
hypothesis); if tree has k + 1 vertices, look at immediate successor
vertices from root: get a production in P (from A to the list of
successors) then for each successor that not leaf get a tree with
≤ k vertices

CS101 Win2015: Linguistics Parse trees

conversely if A
•→ w1 · · ·wn in G

• then there is a chain of derivations in P,

A→ u1, . . . ui → ui+1, . . . uk → w1 · · ·wn

where the next derivation giving ui+1 is applied to some
non-terminal element in the string ui

• the first production rule A→ u1, produces a string
u1 = u11 . . . u1k1 and gives a root labelled A with valence k1 and
leaves labelled by u1j

• the second u1 → u2 consists of some production rules in P
applied to some of the non-terminal symbols u1j in the string u1:
append trees to the vertices labelled u1j with leaves the resulting
strings in u2

• continue with successive derivations until obtain a tree with root
A and with leaves (ordered by planar embedding) labelled by
w1, . . . ,wn

CS101 Win2015: Linguistics Parse trees

Ambiguity of context-free languages (grammars)

• A context-free grammar G is ambiguous if there are words
w ∈ LG that admit different (non-equivalent) parse trees

• Trivial example: S → A, S → B, A→ a, B → a

• A language L is inherently ambiguous if every possible
context-free grammar G with L = LG is ambiguous

Example

L = {anbncmdm | n ≥ 1,m ≥ 1} ∪ {anbmcmdn | n ≥ 1,m ≥ 1}

is inherently ambiguous because there are infinitely many strings of
the form anbncndn that have different parse trees

CS101 Win2015: Linguistics Parse trees

Sketch of argument for Example:

Suppose ∃ unambiguous context-free G for L above: then can
always arrange that for all A ∈ VN r {S} have A

•→ x1Ax2 with
both x1, x2 not the empty word

• because of the form of words in L must have x1 and x2
consisting of only one type of symbol a, b, c, d (otherwise get a
string not in L)

• also symbol for x1 different from symbol for x2 (because of form
of words cannot increase occurrences of only one type of symbol
and still get words in L) and also length of x1 and x2 has to be
same (same reason)

CS101 Win2015: Linguistics Parse trees

• check only cases are x1 made of a’s and x2 of b’s or d ’s; x1 made
of b’s and x2 of c ’s; x1 made of c ’s and x2 of d ’s (divide variables
other than S into Cab, Cad , Cbc , Ccd)

• subdivide G into two grammars

G1 = {{S}∪Cab∪Ccd ,VT ,P1, S} G2 = {{S}∪Cad∪Cbc ,VT ,P2,S}

G1 generates all anbncmdm with n 6= m and some anbncndn; G2
generates all anbmcmdn with n 6= m and some anbncndn

• then show (set theoretic argument) that both G1 and G2 must
generate all but finitely many of the anbncndn: all these have two
different parse trees

CS101 Win2015: Linguistics Parse trees

Parse trees and natural languages

Example How to generate the English sentence:
The book is believed to have been written by the Aztecs

• Two step process:

1 generate two separate sentences:
(1) The Aztecs have written the book;
(2) We believe it

2 combine them with appropriate transformations

• first sentence (S): noun phrase (NP) + verb phrase (VP)

S

~~
NP VP

CS101 Win2015: Linguistics Parse trees

• The NP part is: determiner (D) + noun (N);
VP part has: auxiliary (V1) + rest of phrase (VP2)

S

uu))
NP

}} $$

VP

|| ""
D

��

N

��

V1

��

VP2

the Aztecs have

CS101 Win2015: Linguistics Parse trees

• the VP2 part consists of: verb (V) + noun phrase (NP)

VP2

zz ""
V

��

NP

|| ##
written D

��

NP

��
the book

CS101 Win2015: Linguistics Parse trees

• Similarly, the second sentence We believe it has a parse tree

S

zz $$
NP

��

VP

zz !!
N

��

V

��

N

��
We believe it

CS101 Win2015: Linguistics Parse trees

• Operation 1: Passive Transformation
The Aztecs have written the book ⇒ The book has been written
by the Aztecs

• Operation 2: Insertion
We believe IT ⇒ We believe the book has been written by the
Aztecs

• Operation 3: Passive Transformation
We believe the book has been written by the Aztecs ⇒ The book
is believed by us to have been written by the Aztecs

• Operation 4: Agent Deletion
The book is believed by us to have been written by the Aztecs ⇒
The book is believed to have been written by the Aztecs

CS101 Win2015: Linguistics Parse trees

Main idea:

Generative process with sentence (S) as start symbol; non-terminal
symbols given by syntactic identifiers (NP, VP, N, V, D, etc.);
terminals given by words; production rules encode syntactic
structure, together with transformations on parse trees

Early formulation of Generative Grammar

1 Noam Chomsky, The logical structure of linguistic theory
(1955), Plenum, 1975.

2 Noam Chomsky, Syntactic structures, Mouton, 1957.

Later developments focused more on transformations and less on
production rules

CS101 Win2015: Linguistics Parse trees

A closer look at Transformational Grammar

• A set of trees (for example: parse trees of a context-free or
context-sensitive grammar): Base trees

• finite, rooted, oriented, planar trees with decorated vertices: if
one vertex v has only one outgoing edge e the label at t(e)
different from the label at v = s(e)

• Base trees B = {B,V ,VT} with B a collection of trees as above,
VT ⊂ V a finite set of terminal symbols used to label leaves of
trees in B and internal vertices labelled by non-terminal symbols
VN = V r VT

CS101 Win2015: Linguistics Parse trees

• Additional data ∆ = {Σ,ΣA,X ,V
′′} with

Σ finite set of abstract symbols with VT ⊆ Σ and Σ ∩ VN = ∅
X abstract symbol not in V ∪ Σ (dummy variable)

a subset ΣA ⊆ Σ

V ′′ set containing V ∪ Σ ∪ {X} and additional symbols Y (k)

with Y ∈ V ∪ Σ ∪ {X} and k ∈ N

ΣA represents the set of symbols over which the language
generated by the grammar is defined

• R = finite set of transformation rules (T-rules) (D,C) with
respect to V ′′, Σ and X

CS101 Win2015: Linguistics Parse trees

T-rules

• symbols X ,X (k) in V ′′ mark parts of the tree that cannot be
moved by the transformation T

• D = domain statement: string α1 · · ·αk of symbols in V ′′

• C = structural change statement on D: string β1 · · ·βk of
symbols in {k}k∈N ∪ Σ

βj = j if symbol Dj = αj of D is some X (r) (unmoved by T)
otherwise βj is either some i 6= j or some symbol in Σ

CS101 Win2015: Linguistics Parse trees

• Example: passivization in English
the cat ate the mouse 7→ the mouse was eaten by the cat
N(1)TVN(2) 7→ N(2) T be En VN(1)

N(1) = cat, T = tense, past; V = eat, N(2) = mouse
TV 7→ T be EnV ate 7→ was eaten

• Tpass rule (D,C) where
D = α1α2 · · ·α8 = X (1)$N(1)TVN(2)$X (2)

C = β1β2 · · ·β8 = 1264(be En 5 by)378
$ = boundary marker

CS101 Win2015: Linguistics Parse trees

States

• additional structure of transformational grammar:
Ω = {K ,N , δ, s0}

K = finite set of states, s0 = start state

N = {N(s), s ∈ K} with N(s) partially ordered set over
R∪ {#} (with # stop symbol occurring as maximal element)

δ : K ×R → K (next state function)

Keeps into account order of application of the T -rules
(order matters)

Records the “past history” of the use of the rules (can reconstruct
the path of rule applications)

Assume a rule T leaves a tree unchanged if it does not apply to it
(continue to next rule in the ordered list)

CS101 Win2015: Linguistics Parse trees

Language generated by a transformational grammar

• the set of base trees = deep structure

• all the tree produced by applying compositions of
transformations to base trees = surface structure

• (τ, s) with τ a tree and s ∈ K

(τ, s) ` (τ ′, s ′)

if ∃ T = (D,C) T-rule with τ ′ = T (τ), T ∈ N(s), s ′ = δ(s,T),
there is no other τ ′′ and T ′ ∈ N(s) with T ′ < T and τ ′′ = T ′(τ)

• string w generated by T -grammar if w ∈ Σ∗A, there are τ , τ ′ and
s ′ with τ ∈ B, (τ, s0) `∗ (τ ′, s ′) ` Stop and w is the terminal
string of the tree τ ′

CS101 Win2015: Linguistics Parse trees

Refences

Noam Chomsky, Selected Readings on Transformational
Theory, Dover 2012.

Seymour Ginsburg, Barbara Partee, A mathematical model of
Transformational Grammars, Information and Control 15
(1969) 297–334

P.S.Peters, R.W.Ritchie, On the generative power of
transformational grammars, Information Sci. 6 (1973), 49–83.

Barbara Partee, Alice ter Meulen, Robert Wall, Mathematical
Methods in Linguistics, Kluwer, 1990.

CS101 Win2015: Linguistics Parse trees

Tree Adjoining Grammars (Joshi, Levy, Takahashi)

Mathematical model for structural composition of parse trees:
instead of production rules that rewrite strings as in the formal
languages grammars, use a system of trees with tree rewriting rules

• a (finite) set of Elementary Trees

• Substitution rule: graft a terminal leaf of a tree T to the root of
another tree (as in previous example: replace the it terminal vertex
of the second tree with the root of the first tree, parsing the
sentence The book has been written by the Aztecs)

• Adjoining rule: at an internal vertex of the tree labelled by X
attach a tree with root labelled by X and with one of the leaves
also labelled by X with anything outgoing from original tree at X
then attached to the X -labelled leaf of the inserted tree.

CS101 Win2015: Linguistics Parse trees

Note: no additional transformations used (unlike example above
with “passive transformation”, “agent deletion” etc.) other than
substitution and adjoining

Fundamental assumptions of TAG:

• all syntactic dependencies are encoded (locally) in the
elementary trees

• non-local dependencies must be reducible to local ones (after
contracting a certain number of adjoined trees)

TAG derivation: a combination of elementary trees via a sequence
of substitutions and adjoining

Derivation structure: a tree whose vertices are labelled by
elementary trees and daughter vertices of a given node T are the
elementary trees that are substituted or adjoined into the tree T
(requires “independence” of the operations performed)

CS101 Win2015: Linguistics Parse trees

Generative power of TAG:

• All context-free languages can be generated by a TAG
• L = {anbncn | n ∈ N} not generated by a context-free grammar,
but can be generated by a TAG

S

�� ��
a S

�� ����
b S c

repeatedly adjoin copies of this elementary tree into itself at the S
vertex with the first b daughter

CS101 Win2015: Linguistics Parse trees

a2b2c2 from first adjoining, etc.

S

�� ��
a S

�� ��
a S

�� �� ��
b S

�� �� ��

c

b S c

But... simple examples of context-sensitive languages that cannot
be generated by TAG’s: (Vijay–Shanker)

L = {anbncndnen | n ∈ N}

CS101 Win2015: Linguistics Parse trees

Representing natural languages?

• Question: How good are context-free grammars at representing
natural languages?

- Not always good, but often good (better than earlier criticism
indicated)
- Some explicit examples not context-free (cross-serial subordinate
clause in Swiss-German)

1 G.K. Pullum, G. Gazdar Natural languages and context-free
languages, Linguistics and Philosophy, Vol.4 (1982) N.4,
471–504

2 S. Shieber, Evidence against the context-freeness of natural
language, Linguistics and Philosophy, Vol.8 (1985) N.3,
333–343

CS101 Win2015: Linguistics Parse trees

Are natural languages context-free?

• Try to show they are not by finding cross-serial dependencies of
arbitrarily large size

• Example: the language L = {xxR | x ∈ {a, b}∗} has cross serial
dependencies of arbitrary length (the i-th and (n + i)-th term have
to be the same (xR = reversal of x)

• if cross serial dependencies of arbitrary length not context-free

CS101 Win2015: Linguistics Parse trees

• Example (Chomsky): English has arbitrarily long cross-serial
dependencies because can combine dependencies such as if ... then
and either ... or with subject-verb dependence and make arbitrarily
long sequences

• Problem with this kind of argument: can have a non-context-free
language embedded inside a context-free one

L = {xxR | x ∈ {a, b}∗} ⊂ L′ = {a, b}∗

context-free (regular)

• Better example from Swiss German cross-serial order in
dependent clauses

wanbmxcndmy

Jan säit das mer (d’chind)n (em Hans)m es huus haend wele (laa)n

(häfte)m aastrüche
non-context-free language (intersection of SG with a regular
language, so SG also non-context-free)

CS101 Win2015: Linguistics Parse trees

Question: How good are TAG’s at modeling natural languages?

• They give a class of languages that includes the context-free
ones but is larger (seems to take care of the kind of wanbmxcndmy
type of problem)

• A lot of examples of explicit linguistic analysis using TAG in the
book:

A. Abeillé, O. Rambow (Eds.), Tree Adjoining Grammars,
CSLI Publications, 2000.

CS101 Win2015: Linguistics Parse trees

Some References:

1 J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison–Wesley, 1979

2 Robert Frank, Phrase structure composition and syntactic
dependences, MIT Press, 2002

3 A.K. Joshi, L. Levy, M. Takahashi, The tree adjunct
grammars, Journal of the Computer and System Sciences, 10
(1975) 136–163

CS101 Win2015: Linguistics Parse trees

