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The classical theory of pure motives (Grothendieck)
• Vk category of smooth projective varieties over a field k ;
morphisms of varieties

• (Pure) Motives over k : linearization and idempotent completion
(+ inverting the Lefschetz motive)

• Correspondences: Corr∼,F (X ,Y ): F -linear combinations of
algebraic cycles Z ⊂ X × Y of codimension = dim X

• composition of correspondences:

Corr(X ,Y )× Corr(Y ,Z )→ Corr(X ,Z )

(πX ,Z )∗(π
∗
X ,Y (α) • π∗Y ,Z (β))

intersection product in X × Y × Z
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• Equivalence relations on cycles: rational (or “algebraic"),
homological, numerical

- α ∼rat 0 if ∃ β correspondence in X × P1 with α = β(0)− β(∞)
(moving lemma; Chow groups; Chow motives)
- α ∼hom 0: vanishing under a chosen Weil cohomology functor H∗

- α ∼num 0: trivial intersection number with every other cycle

The category of motives has different properties depending on the
choice of the equivalence relation on correspondences
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Effective motives Category Moteff
∼,F (k):

• Objects: (X , p) smooth projective variety X and idempotent p2 = p
in Corr∼,F (X ,X)
• Morphisms:

HomMoteff
∼,F (k)((X , p), (Y , q)) = qCorr∼,F (X ,Y )p

• tensor structure (X , p)⊗ (Y , q) = (X × Y , p × q)
• notation h(X) or M(X) for the motive (X , id)

Tate motives
• L Lefschetz motive: h(P1) = 1⊕ L with 1 = h(Spec(k)).
• formal inverse L−1 = Tate motive; notation Q(1)
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Motives Category Mot∼(k)

• Objects: (X , p,m) := (X , p)⊗ L−m = (X , p)⊗Q(m)

• Morphisms:

HomMot∼(k)((X , p,m), (Y , q, n)) = qCorrm−n
∼,F (X ,Y )p

shifts the codimension of cycles (Tate twist)

• Chow motives; homological motives; numerical motives

Jannsen’s semi-simplicity result

Theorem (Jannsen 1991): TFAE

•Mot∼,F (k) is a semi-simple abelian category

• Corrdim X
∼,F (X ,X) is a finite-dimensional semi-simple F -algebra, for

each X

• The equivalence relation is numerical: ∼=∼num
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Weil cohomologies H∗ : V op
k → VecGrF

• Künneth formula: H∗(X × Y ) = H∗(X)⊗ H∗(Y )
• dim H2(P1) = 1; Tate twist: V (r) = V ⊗ H2(P1)⊗−r

• trace map (Poincaré duality) tr : H2d (X)(d)→ F
• cycle map γn : Z n(X)F → H2n(X)(n) (algebraic cycles to
cohomology classes)

Examples: deRham, Betti, `-adic étale

Grothendieck’s idea of motives: universal cohomology theory for
algebraic varieties lying behind all realizations via Weil cohomologies

Also recall: Grothendieck’s standard conjectures of type C and D

• (Künneth) C: The Künneth components of the diagonal ∆X are
algebraic

• (Hom=Num) D Homological and numerical equivalence coincide

(Also B: Lefschetz involution algebraic; I Hodge involution pos def
quadratic form on alg cycles with homological eq)
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Motivic Galois groups
More structure than abelian category: Tannakian category RepF (G)
fin dim lin reps of an affine group scheme G

• F -linear, abelian, tensor category (symmetric monoidal)
⊗ : C × C → C
• functorial isomorphisms:

αX ,Y ,Z : X ⊗ (Y ⊗ Z )
'→ (X ⊗ Y )⊗ Z

cX ,Y : X ⊗ Y '→ Y ⊗ X with cX ,Y ◦ cY ,X = 1X⊗Y

`X : X ⊗ 1 '→ X , rX : 1⊗ X '→ X

• Rigid: duality ∨ : C → C op with ε : X ⊗ X∨ → 1 and
η : 1→ X∨ ⊗ X

X ' X ⊗ 1
1X⊗η→ X ⊗ X∨ ⊗ X

ε⊗1X→ 1⊗ X ' X

composition is identity
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• categorical trace (Euler characteristic)
tr(f ) = ε ◦ cX∨⊗X ◦ (1X∨ ⊗ f ) ◦ η; dim X = tr(1X )

• Tannakian: as above (and with End(1) = F ) and fiber functor
ω : C → Vect(K )
K = extension of F ; ω exact faithful tensor functor; neutral Tannakian
if K = F
• equivalence C ' RepF (G), affine group scheme
G = Gal(C ) = Aut⊗(ω)

• Deligne’s characterization (char 0): Tannakian iff tr(1X )
non-negative for all X
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Tannakian categories and standard conjectures

In the case of Mot∼num (k), when Tannakian?

• problem: tr(1X ) = χ(X) Euler characteristic can be negative

•Mot†∼num
(k) category Mot∼num (k) with modified commutativity

constraint cX ,Y by the Koszul sign rule
(corrects for signs in the Euler characteristic)

• (Jannsen) if standard conjecture C (Künneth) holds then
Mot†∼num

(k) is Tannakian

• If conjecture D also holds then H∗ fiber functor
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Motives and Noncommutative motives

• Motives (pure): smooth projective algebraic varieties X
cohomology theories HdR , HBetti , Hetale, . . .
universal cohomology theory: motives⇒ realizations

• NC Motives (pure): smooth proper dg-categories A
homological invariants: K -theory, Hochschild and cyclic cohomology
universal homological invariant: NC motives
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dg-categories

A category whose morphism sets A (x , y) are complexes of
k -modules (k = base ring or field) with composition satisfying
Leibniz rule

d(f ◦ g) = df ◦ g + (−1)deg(f )f ◦ dg

dgcat = category of (small) dg-categories with dg-functors

(preserving dg-structure)
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From varieties to dg-categories

X ⇒ Ddg
perf (X)

dg-category of perfect complexes

H0 gives derived category Dperf (X) of perfect complexes of
OX -modules
(loc quasi-isom to finite complexes of loc free sheaves of fin rank)

saturated dg-categories (Kontsevich)
• smooth dgcat: perfect as a bimodule over itself
• proper dgcat: if the complexes A (x , y) are perfect
• saturated = smooth + proper

smooth projective variety X ⇒ smooth proper dgcat Ddg
perf (X)

(but also smooth proper dgcat not from smooth proj varieties)
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derived Morita equivalences

• A op same objects and morphisms A op(x , y) = A (y , x); right dg
A -module: dg-functor A op → Cdg(k) (dg-cat of complexes of
k -modules); C (A ) cat of A -modules; D(A ) (derived cat of A )
localization of C (A ) w/ resp to quasi-isom

• functor F : A → B is derived Morita equivalence iff induced
functor D(B)→ D(A ) (restriction of scalars) is an equivalence of
triangulated categories

• cohomological invariants (K -theory, Hochschild and cyclic
cohomologies) are derived Morita invariant: send derived Morita
equivalences to isomorphisms
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symmetric monoidal category Hmo

• homotopy category: dg-categories up to derived Morita
equivalences

• ⊗ extends from k -algebras to dg-categories

• can be derived with respect to derived Morita equivalences (gives
symmetric monoidal structure on Hmo)

• saturated dg-categories = dualizable objects in Hmo
(Cisinski–Tabuada)
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Further refinement: Hmo0

• all cohomological invariants listed are “additive invariants":

E : dgcat→ A, E(A )⊕ E(B) = E(|M|)

where A additive category and |M| dg-category
Obj(|M|) = Obj(A ) ∪ Obj(B) morphisms A (x , y), B(x , y),
X(x , y) with X a A –B bimodule

• Hmo0: objects dg-categories, morphisms K0rep(A ,B) with
rep(A ,B) ⊂ D(A op ⊗L B) full triang subcat of A –B bimodules X
with X(a,−) ∈ Dperf (B); composition = (derived) tensor product of
bimodules

• (Tabuada) UA : dgcat→ Hmo0, id on objects, sends dg-functor to
class in Grothendieck group of associated bimodule
(UA characterized by a universal property)

• all additive invariants factor through Hmo0
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noncommutative Chow motives (Kontsevich) NChowF (k)

• Hmo0;F = the F -linearization of additive category Hmo0

• Hmo\0;F = idempotent completion of Hmo0;F

• NChowF (k) = idempotent complete full subcategory gen by
saturated dg-categories

NChowF (k):

Objects: (A , e) smooth proper dg-categories (and idempotents)

Morphisms K0(A op ⊗L
k B)F (correspondences)

Composition: induced by derived tensor product of bimodules
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relation to commutative Chow motives (Tabuada):

ChowQ(k)/−⊗Q(1) ↪→ NChowQ(k)

commutative motives embed as noncommutative motives after
moding out by the Tate motives

orbit category ChowQ(k)/−⊗Q(1)

(C ,⊗, 1) additive, F − linear , rigid symmetric monoidal;
O ∈ Obj(C ) ⊗-invertible object:
orbit category C /−⊗O same objects and morphisms

HomC /−⊗O
(X ,Y ) = ⊕j∈ZHomC (X ,Y ⊗ O⊗j)
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Numerical noncommutative motives
M.M., G.Tabuada, Noncommutative motives, numerical equivalence,
and semi-simplicity, arXiv:1105.2950, American J. Math. (to appear)

(A , e) and (B, e′) objects in NChowF (k) and correspondences

X = e ◦ [
∑

i

aiXi ] ◦ e′, Y = e′ ◦ [
∑

j

bjYj ] ◦ e

Xi and Yj bimodules

⇒ intersection number:

〈X ,Y 〉 =
∑

ij

[HH(A ; Xi ⊗L
B Yj)] ∈ K0(k)F

with [HH(A ; Xi ⊗L
B Yj)] class in K0(k)F of Hochschild homology

complex of A with coefficients in the A –A bimodule Xi ⊗L
B Yj
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numerically trivial: X if 〈X ,Y 〉 = 0 for all Y

• ⊗-ideal N in the category NChowF (k)

•N largest ⊗-ideal strictly contained in NChowF (k)

numerical motives: NNumF (k)

NNumF (k) = NChowF (k)/N

Thm: abelian semisimple (M.M., G.Tabuada, arXiv:1105.2950)

• NNumF (k) is abelian semisimple

analog of Jannsen’s result for commutative numerical pure motives
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What about Tannakian structures and motivic Galois groups?

For commutative motives this involves standard conjectures (C =
Künneth and D = homological and numerical equivalence)

Questions:

is NNumF (k) (neutral) super-Tannakian?

is there a good analog of the standard conjecture C (Künneth)?

does this make the category Tannakian?

is there a good analog of standard conjecture D (numerical =
homological)?

does this neutralize the Tannakian category?

relation between motivic Galois groups for commutative and
noncommutative motives?

Matilde Marcolli joint work with Gonçalo Tabuada Noncommutative motives and their applications



Tannakian categories (C ,⊗, 1)

F -linear, abelian, rigid symmetric monoidal with End(1) = F

• Tannakian: ∃ K -valued fiber functor, K field ext of F : exact faithful
⊗-functor ω : C → Vect(K ); neutral if K = F

ω⇒ equivalence C ' RepF (Gal(C )) affine group scheme (Galois
group) Gal(C ) = Aut⊗(ω)

• intrinsic characterization (Deligne): F char zero, C Tannakian iff
Tr(idX ) non-negative integer for each object X
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super-Tannakian categories (C ,⊗, 1)

F -linear, abelian, rigid symmetric monoidal with End(1) = F

sVect(K ) super-vector spaces Z/2Z-graded

• super-Tannakian: ∃ K -valued super fiber functor, K field ext of F :
exact faithful ⊗-functor ω : C → sVect(K ); neutral if K = F

ω⇒ equivalence C ' RepF (sGal(C ), ε) super-reps of affine
super-group-scheme (super-Galois group)
sGal(C ) = Aut⊗(ω) ε = parity automorphism

• intrinsic characterization (Deligne) F char zero, C super-Tannakian
iff Shur finite (if F alg closed then neutral super-Tannakian iff Schur
finite)

• Schur finite: symm grp Sn, idempotent cλ ∈ Q[Sn] for partition λ of
n (irreps of Sn), Schur functors Sλ : C → C , Sλ(X) = cλ(X⊗n)
C = Schur finite iff all objects X annihilated by some Schur functor
Sλ(X) = 0
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Main results

M.M., G.Tabuada, Noncommutative numerical motives, Tannakian
structures, and motivic Galois groups, arXiv:1110.2438

assume either: (i) K0(k) = Z, F is k -algebra; (ii) k and F both field
extensions of a field K

• Thm 1: NNumF (k) is super-Tannakian; if F alg closed also neutral

• Thm 2: standard conjecture CNC(A ): the Künneth projectors

π±A : HP∗(A ) � HP±∗ (A ) ↪→ HP∗(A )

are algebraic: π±A = HP∗(π
±
A ) with π±A correspondences. If k field

ext of F char 0, sign conjecture implies

C+(Z )⇒ CNC(Ddg
perf (Z ))

i.e. on commutative motives more likely to hold than sign conjecture
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• Thm 3: k and F char 0, one extension of other: if CNC holds then
change of symmetry isomorphism in tensor structure gives category
NNum†F (k) Tannakian

• Thm 4: standard conjecture DNC(A ):

K0(A )F/ ∼hom= K0(A )F/ ∼num

homological defined by periodic cyclic homology: kernel of

K0(A )F = HomNChowF (k)(k ,A )
HP∗−→ HomsVect(K )(HP∗(k),HP∗(A ))

when k field ext of F char 0: D(Z )⇒ DNC(Ddg
perf (Z ))

i.e. for commutative motives more likely to hold than D conjecture
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• Thm 5: F ext of k char 0: if CNC and DNC hold then NNum†F (k) is a
neutral Tannakian category with periodic cyclic homology as fiber
functor

• Thm 6: k char 0: if C, D and CNC , DNC hold then

sGal(NNumk (k) � Ker(t : sGal(Numk (k)) � Gm)

Gal(NNum†k (k) � Ker(t : Gal(Num†k (k)) � Gm)

where t induced by inclusion of Tate motives in the category of
(commutative) numerical motives

(using periodic cyclic homology and de Rham cohomology)
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What is kernel? Ker = “truly noncommutative motives"

Gal(NNum†k (k)) � Ker(t : Num†k (k)→ Gm)

sGal(NNumk (k)) � Ker(t : sGal(Numk (k)) � Gm)

what do they look line? examples? general properties?

Are there truly noncommutative motives? Still an open question!

... but the theory of NC motives can be used as a new tool to study
ordinary motives
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Using NC motives to study commutative motives

Example: full exceptional collections and motivic decompositions

Examples of motivic decompositions:

• Projective spaces: h(Pn) = 1⊕ L⊕ · · · ⊕ Ln

• Quadrics (k alg closed char 0):

h(Qq)Q '
{

1⊕ L⊕ · · · ⊕ L⊗n d odd
1⊕ L⊕ · · · ⊕ L⊗n ⊕ L⊗(d/2) d even .

• Fano 3-folds:

h(X)Q ' 1⊕ h1(X)⊕L⊕b⊕ (h1(J)⊗L)⊕ (L⊗2)⊕b⊕ h5(X)⊕L⊗3 ,

h1(X) and h5(X) Picard and Albanese motives, b = b2(X) = b4(X)
J abelian variety
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Full exceptional collections in the derived category Db(X)

A collection of objects {E1, . . . ,En} in a F -linear triangulated
category C is exceptional if RHom(Ei ,Ei) = F for all i and
RHom(Ei ,Ej) = 0 for all i > j ; it is full if C is minimal triangulated
subcategory containing it.

Examples of full exceptional collections:

• Projective spaces (Beilinson): (O(−n), . . . ,O(0))

• Quadrics (Kapranov):

(Σ(−d),O(−d + 1), . . . ,O(−1),O) if d is odd

(Σ+(−d),Σ−(−d),O(−d + 1), . . . ,O(−1),O) if d is even ,

Σ± (and Σ) spinor bundles
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• Toric varieties (Kawamata)

• Homogeneous space (Kuznetsov-Polishchuk)
Conjecture (KP): k alg cl char 0, parabolic subgroup P ⊂ G of
semisimple alg group then Db(G/P) has full exceptional collection

• Fano 3-folds with vanishing odd cohomology (Ciolli)

• Moduli spaces of rational curves M 0,n (Manin–Smirnov)

Note: all these cases also have motivic decompositions

Deeper reason: exceptional collections and motivic decompositions
are related through the relation between commutative and NC
motives
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Thm 7: Full exceptional collections and motivic decompositions
if Db(X) has a full exceptional collection, then h(X)Q has a motivic
decomposition

h(X)Q ' L`1 ⊕ · · · ⊕ L`m

for some `1, . . . , `m ≥ 0

(Note: works also for Deligne–Mumford stacks)

• Db
dg(X) unique dg enhancement: 〈Ej〉dg ' Db

dg(k)
• Look at corresponding elements in NChowQ(k) under universal
localizing invariant U : dgcat(k)→ NChowQ(k)

⊕m
j=1U (Db

dg(k))
'→ U (Db

dg(X))

from inclusions of dg categories 〈Ej〉dg ↪→ Db
dg(X)
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using (Tabuada “Higher K-theory via universal invariants"): given split
short exact sequence of pre-triangulated dg categories

0 // B ιB
// A //

yy
C

ιC
yy

// 0

mapped by universal localizing invariant U (−) to a distinguished
split triangle so U (B)⊕U (C )

∼→ U (A )
Applied to

A := 〈Ei , · · · ,Em〉dg, B := 〈Ei〉dg, C := 〈Ei+1, . . . ,Em〉dg

gives

U (Db
dg(k))⊕U (〈Ei+1, . . . ,Em〉dg)

∼→ U (〈Ei , . . . ,Em〉dg)

recursively get result using Db
dg(X) = 〈E1, . . . ,Em〉dg
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A consequence: Hodge–Tate cohomology
Thm 8: If a smooth complex projective variety V has a full
exceptional collection then it is Hodge–Tate (Hodge numbers
hp,q(V ) = 0 for p 6= q)

Reason: motivic decomposition

Dubrovin conjecture: V smooth projective complex
(i) Quantum cohomology of V is (generically) semi-simple if and only
if V is Hodge-Tate and Db(V ) has a full exceptional collection.

(ii) Stokes matrix of structure connection of quantum cohomology =
Gram matrix of exceptional collection

χ : K0(V )× K0(V )→ Z,
∑
n∈Z

(−1)n dim Extn(F1,F2)

First observation: Hodge-Tate hypothesis not necessary

NC-motivic approach to the Dubrovin conjecture? currently work in
progress...
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Jacobians of noncommutative motives

• Jacobians of curves J(C): geometric model for cohomology
H1(C), one of the origins of the theory of motives (Weil)

• Smooth projective X : Picard and Albanese varieties Pic0(X) and
Alb(X) geometric models for H1(X) and H2d−1(X)

• Griffiths intermediate Jacobians (F = Hodge filtration)

Ji(X) :=
H2i+1(X ,C)

F i+1H2i+1(X ,C) + H2i+1(X ,Z)

not algebraic but Ja
i (X) ⊆ Ji(X) algebraic: image of Abel-Jacobi

AJi : CH i+1(X)0
Z → Ji(X)

with CH i+1(X)0
Z group of alg.-trivial cycles codim i + 1

(see recent work of Charles Vial)
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• Know how to go from commutative to noncommutative motives via

Chow(k)Q/−⊗Q(1) ↪→ NChow(k)Q

• Question: can one go the other way? Assign functorially a
“commutative part" to a noncommutative motive?

• Idea: a theory of Jacobians for NC motives

NChow(k)Q → Ab(k)Q, N 7→ J(N)

Q-linear additive Jacobian functor to category Ab(k)Q of abelian
varieties up to isogeny

Matilde Marcolli joint work with Gonçalo Tabuada Noncommutative motives and their applications



• Periodic cyclic homology

HP± : NChow(k)Q → sVect(k)

• Piece of HP generated by curves

HP−curves(N) :=
∑
C,Γ

Im(HP−(perf(C))
HP−(Γ)−→ HP−(N))

C = smooth projective curve; Γ : perf(C)→ N a morphism
(correspondence) in NChow(k)Q
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Results (MM, G. Tabuada, arXiv:1212.1118)
Thm 9:
• k char zero, have Q-additive linear functor

NChow(k)Q → Ab(k)Q, N 7→ J(N)

• ∀N ∈ NChow(k)Q there is CN smooth proj curve and
ΓN : perf(CN)→ N with

H1
dR(J(N)) = ImHP−(ΓN)

so H1
dR(J(N)) ⊆ HP−curves(N)

• if conjecture DNC holds for perf(C)⊗ N, for smooth proj curves C,

H1
dR(J(N)) = HP−curves(N)
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• for smooth projective X let

NH2i+1
dR (X) :=

∑
C,γi

Im(H1
dR(C)

HdR(γi )→ H2i+1
dR (X))

with γi : M(C)→ M(X)(i) morphism in Chow(k)Q

• Intersection bilinear pairing restricted to these (0 ≤ i ≤ d − 1)

〈−,−〉 : NH2d−2i−1
dR (X)× NH2i+1

dR (X)→ k

• Thm 10: if k = k̄ ⊆ C and X smooth projective and if pairings
above are nondegenerate then

J(perf(X)) =
d−1∏
i=0

Ja
i (X)

and H1
dR(J(perf(X)))⊗k C = ⊕d−1

i=0 NH2i+1
dR (X)⊗k C
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Sketch of argument on NC Jacobians: construction of J(N)
• Categories of NC motives: NChow(k)Q, NHomo(k)Q, NNum(k)Q

• NNum(k)Q is abelian semi-simple: N = S1⊕ · · · ⊕ Sn unique finite
decomposition into simple objects

• classical motives: Homo(k)Q ⊃ {π1M(C)}\ = Ab(k)Q and same
in Num(k)Q ⊃ {π1M(C)}\ = Ab(k)Q

• functor mapping Ab(k)Q to NNum(k)Q with image Ab(k)Q

Ab(k)Q → Num(k)Q → Num(k)Q/−⊗Q(1) → NNum(k)Q

• Ab(k)Q ' Ab(k)Q equivalence of categories

•S = simple objects of NNum(k)Q belonging to Ab(k)Q

• truncation functor NNum(k)Q → Ab(k)Q, with N 7→ τ(N) only
simple objects in S of decomposition of N

Matilde Marcolli joint work with Gonçalo Tabuada Noncommutative motives and their applications



properties of functor N 7→ J(N)
• because Ab(k)Q ' Ab(k)Q every object in Ab(k)Q is a direct
factor of some π1perf(C)

• so get CN for any N ∈ NNum(k)Q through τ(N) ∈ Ab(k)Q

• and correspondence ΓN giving τ(N) as direct factor of π1perf(CN)
and this as direct factor of perf(CN)

• H1
dR(CN) = HP−(perf(CN)) = HP−(π1perf(CN))

HP−(ΓN )−→ HP−(N)

• HP−(π1perf(CN))
HP−(Γ̄N )→ HP−(τ(N)) surjective and

HP−(τ(N))→ HP−(N) from τ(N) ↪→ N injective⇒
HP−(τ(N)) = Im(HP−(Γ̄N)) and H1

dR(J(N)) = Im(HP−(Γ̄N))

• If DNC(perf(C)⊗ N) holds then as Q-vector spaces

HomNHomo(k)Q(perf(C),N) = HomNNum(k)Q(perf(C),N)

applying HP−: morphism HP−(Γ) factors through HP−(τ(N)) for all
C, Γ, so obtain HP−(τ(N)) = HP−curves(N)
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pairings
• for X smooth projective HP−(perf(X)) = ⊕d−1

i=0 NH2i+1
dR (X)

• isomorphisms NH2i+1
dR (X)⊗k C ' NH2i+1

Betti (X)⊗Q C
• pairings of NH2i+1

dR (X) nondegenerate iff pairings of NH2i+1
Betti (X)

nondegenerate

• Idempotents Π2i+1 in Homo(k)Q with

Π2i+1M(X) ' π1M(Jalg
i (X))(−i)

image in NNum(k)Q

• τ(perf(X)) ' ⊕d−1
i=0 π

1perf(Jalg
i (X)) using surjection

τ(perf(X)) � ⊕d−1
i=0 π

1perf(Ja
i (X)) and faithful

HP− ⊗k C : Ab(k)Q → sVect(C) to also get
dim(HP±(τ(perf(X)))⊗k C) ≤ dim(HP±(⊕d−1

i=0 π
1perf(Ja

i (X)))⊗k C)

using
HP±(τ(perf(X)))⊗k C ⊆ HP−

curves(perf(X))⊗k C ' ⊕d−1
i=0 NH2i+1

B (X)⊗Q C
and HP±(⊕d−1

i=0 π
1perf(Ja

i (X)))⊗k C ' ⊕d−1
i=0 H1

B(M(Ja
i (X))(−i))⊗Q C '

⊕d−1
i=0 NH2i+1

B (X)⊗Q C
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More details on the category of NC motives:
Thm 1: Schur finiteness HH : NChowF (k)→ Dc(F)
F -linear symmetric monoidal functor (Hochschild homology)

(NChowF (k)/Ker(HH))\ → Dc(F)

faithful F -linear symmetric monoidal

Dc(A ) = full triang subcat of compact objects in D(A )⇒ Dc(F)
identified with fin-dim Z-graded F -vector spaces: Shur finite

general fact: L : C1 → C2 F -linear symmetric monoidal functor:
X ∈ C1 Schur finite⇒ L(X) ∈ C2 Schur finite; L faithful then also
converse: L(X) ∈ C2 Schur finite⇒ X ∈ C1 Schur finite

conclusion: (NChowF (k)/Ker(HH))\ is Schur finite

also Ker(HH) ⊂ N with F -linear symmetric monoidal functor
(NChowF (k)/Ker(HH))\ → (NChowF (k)/N )\ = NNumF (k)

⇒ NNumF (k) Schur finite⇒ super-Tannakian
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Thm 2: periodic cyclic homology
mixed complex (M, b,B) with b2 = B2 = Bb + bB = 0,
deg(b) = 1 = − deg(B): periodized

· · ·
∏

n even

Mn
b+B→

∏
n odd

Mn
b+B→

∏
n even

Mn · · ·

periodic cyclic homology (the derived cat of Z/2Z-graded complexes

HP : dgcat→ DZ/2Z(k)

induces F -linear symmetric monoidal functor

HP∗ : NChowF (k)→ sVect(F)

or to sVect(k) if k field ext of F
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Note the issue here:

• mixed complex functor symmetric monoidal but 2-periodization not
(infinite product don’t commute with ⊗)

• lax symmetric monoidal with DZ/2Z(k) ' SVect(k) (not fin dim)

• HP : dgcat→ SVect(k) additive invariant: through Hmo0(k)

• NChowF (k) = (Hmo0(k)sp)]F (sp = gen by smooth proper dgcats)

• periodic cyclic hom finite dimensional for smooth proper dgcats + a
result of Emmanouil
⇒ lax symmetric monoidal HP∗ : Hmo0(k)sp → sVect(k) is
symmetric monoidal

Matilde Marcolli joint work with Gonçalo Tabuada Noncommutative motives and their applications



standard conjecture CNC (Künneth type)

• CNC(A ): Künneth projections

π±A : HP∗(A ) � HP±∗ (A ) ↪→ HP∗(A )

are algebraic: π±A = HP∗(π
±
A ) image of correspondences

• then from Keller + Hochschild-Konstant-Rosenberg have
HP∗(D

dg
perf (Z )) = HP∗(D

dg
perf (Z )) = HP∗(Z ) = ⊕n even/oddHn

dR(Z )

• hence C+(Z )⇒ CNC(Ddg
perf (Z )) with π±

Ddg
perf (Z)

image of π±Z under

Chow(k)→ Chow(k)/−⊗Q(1) ↪→ NChow(k)

classical: (using deRham as Weil cohomology) C(Z ) for Z
correspondence, the Künneth projections πn

Z : H∗dR(Z ) � Hn
dR(Z )

are algebraic, πn
Z = H∗dR(πn

Z ), with πn
Z correspondences

sign conjecture: C+(Z ): Künneth projectors π+
Z =

∑dim Z
n=0 π2n

Z are
algebraic, π+

Z = H∗dR(π+
Z ) (hence π−Z also)
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Thm 3: Tannakian category first steps

• have F -linear symmetric monoidal and also full and essentially
surjective functor: NChowF (k)/Ker(HP∗)→ NChowF (k)/N

• assuming CNC(A ): have π±(A ,e) = e ◦ π±A ◦ e; if X trivial in

NChowF (k)/N intersection numbers 〈X n, π±(A ,e)〉 vanishes
(N is ⊗-ideal)

• intersection number is categorical trace of X n ◦ π±(A ,e)
(M.M., G.Tabuada, 1105.2950)

⇒ Tr(HP∗(X n ◦ π±(A ,e)) = Tr(HP±∗ (X)n) = 0

trace all n-compositions vanish⇒ nilpotent HP±∗ (X)

• conclude: nilpotent ideal as kernel of

EndNChowF (k)/Ker(HP∗)(A , e) � EndNChowF (k)/N (A , e)

• then functor (NChowF (k)/Ker(HP∗))\ → NNumF (k) full
conservative essentially surjective: (quotient by N full and ess surj;
idempotents can be lifted along surj F -linear homom with nilpotent
ker)Matilde Marcolli joint work with Gonçalo Tabuada Noncommutative motives and their applications



Tannakian category: modification of tensor structure

• H : C → sVect(K ) symmetric monoidal F -linear (K ext of F )
faithful, Künneth projectors π±N = H(π±N ) for π±N ∈ EndC (N) for all
N ∈ C then modify symmetry isomorphism

c†N1,N2
= cN1,N2 ◦ (eN1 ⊗ eN2) with eN = 2π+

N − idN

• get F -linear symmetric monoidal functor

C †
H→ sVect(K )→ Vect(K )

• if P : C → D , F -linear symmetric monoidal (essentially) surjective,
then P : C † → D† (use image of eN to modify D compatibly)

• apply to functors HP∗ : (NChowF (k)/Ker(HP∗))\ → sVect(K ) and
(NChowF (k)/Ker(HP∗))\ → NNumF (k)

⇒ obtain NNum†F (k) satisfying Deligne’s intrinsic characterization for
Tannakian: with Ñ lift to (NChowF (k)/Ker(HP∗))\,† have

rk(N) = rk(HP∗(Ñ)) = dim(HP+
∗ (Ñ)) + dim(HP−∗ (Ñ)) ≥ 0
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Thm 4: Noncommutative homological motives

HP∗ : NChowF (k)→ sVect(K )

K0(A )F = HomNChowF (k)(k ,A )
HP∗→ HomsVect(K )(HP∗(k),HP∗(A ))

kernel gives homological equivalence K0(A )F mod ∼hom

• DNC(A ) standard conjecture:

K0(A )F/ ∼hom= K0(A )F/ ∼num

• on ChowF (k)/−⊗Q(1) induces homological equivalence with sHdR

(de Rham even/odd)⇒ Z ∗
hom(Z )F � K0(Ddg

perf (Z ))F/ ∼hom

• classical cycles Z ∗
hom(Z )F ' Z ∗

num(Z )F ; for numerical
Z ∗

num(Z )F
∼→ K0(Ddg

perf (Z ))F/ ∼num; then get

D(Z )⇒ DNC(Ddg
perf (Z ))
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Thm 5: assume CNC and DNC then

HP∗ : NNum†F (k)→ Vect(F)

exact faithful ⊗-functor: fiber functor⇒ neutral Tannakian category
NNum†F (k)

Thm 6: Motivic Galois groups
• Galois group of neutral Tannakian category Gal(NNum†F (k)) want
to compare with commutative case Gal(Num†F (k))

• super-Galois group of super-Tannakian category sGal(NNumF (k))
compare with commutative motives case sGal(NumF (k))

• related question: what are truly noncommutative motives?
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Tate triples (Deligne–Milne)

• For A = Z or Z/2Z and B = Gm or µ2, Tannakian cat C with
A-grading: A-grading on objects with (X ⊗ Y )a = ⊕a=b+cX b ⊗ Y c ;
homom w : B → Aut⊗(idC ) (weight); central hom B → Aut⊗(ω)

• Tate triple (C ,w ,T ): Z-graded Tannakian C with weight w ,
invertible object T (Tate object) weight −2

• Tate triple⇒ central homom w : Gm → Gal(C ) and homom
t : Gal(C )→ Gm with t ◦ w = −2.

• H = Ker(t : Gal(C )→ Gm) defines Tannakian category
' Rep(H). It is the “quotient Tannakian category" (Milne) of inclusion
of subcategory gen by Tate object into C
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Galois group and orbit category

• T = (C ,w ,T ) Tate triple, S ⊂ C gen by T , pseudo-ab envelope
(C /−⊗T )\ of orbit cat C /−⊗T is neutral Tannakian with

Gal((C /−⊗T )\) ' Ker(t : Gal(C ) � Gm)

• Quotient Tannakian categories with resp to a fiber functor (Milne):
ω0 : S → Vect(F) then C /ω0 pseudo-ab envelope of C ′ with same
objects as C and morphisms HomC ′(X ,Y ) = ω0(HomC (X ,Y )H)
with X H largest subobject where H acts trivially

• fiber functor ω0 : X 7→ colimnHomC (⊕n
r=−n1(r),X) ∈ Vect(F)

⇒ get C ′ = C /−⊗T
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super-Tannakian case: super Tate triples

• Need a super-Tannakian version of Tate triples

• super Tate triple: S T = (C , ω, π±,T †) with C = neutral
super-Tannakian; ω : C → sVect(F) super-fiber functor; idempotent
endos: ω(π±X ) = π±X Künneth proj.; neutral Tate triple
T † = (C †,w ,T ) with C † modified symmetry constraint from C
using π±

• assuming C and D: a super Tate triple for (comm) num motives

(Numk (k), sH∗dR, π
±
X , (Num†k (k),w ,Q(1)))
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super-Tannakian case: orbit category

•S T = (C , ω, π±,T †) super Tate triple; S ⊂ C full neutral
super-Tannakian subcat gen by T

• Assume: π−T (T ) = 0; for K = Ker(t : Gal(C †)→ Gm) of Tate
triple T †, if ε : µ2 → H induced Z/2Z grading from t ◦w = −2; then
(H, ε) super-affine group scheme is Ker of sGal(C )→ sGal(S ) and
RepF (H, ε) = Rep†F (H).

• Conclusion: pseudoabelian envelope of C /−⊗T is neutral
super-Tannakian and seq of exact ⊗-functors S ⊂ C → (C /−⊗T )\

gives
sGal((C /−⊗T )\)

∼→ Ker(t : sGal(C )→ Gm)

• have also (C †/−⊗T )\ ' (C /−⊗T )\,† ' Rep†F (H, ε) ' RepF (H)
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Then for Galois groups:

• then surjective Gal(NNum†k (k)) � Gal((Num†k (k)/−⊗Q(1))\) from
embedding of subcategory and
Gal((Num†k (k)/−⊗Q(1))\) = Ker(t : Num†k (k)→ Gm)

• for super-Tannakian: surjective (from subcategory)
sGal(NNumk (k)) � sGal((Numk (k)/−⊗Q(1))\) and
sGal((Numk (k)/−⊗Q(1))\) ' Ker(t : sGal(Numk (k)) � Gm)

•What is kernel? Ker = “truly noncommutative motives"

Gal(NNum†k (k)) � Ker(t : Num†k (k)→ Gm)

sGal(NNumk (k)) � Ker(t : sGal(Numk (k)) � Gm)

what do they look line? examples? general properties?
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