Neural Codes and Neural Rings: Topology and Algebraic Geometry

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017 Geometry of Neuroscience References for this lecture:

- Curto, Carina; Itskov, Vladimir; Veliz-Cuba, Alan; Youngs, Nora, *The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes*, Bull. Math. Biol. 75 (2013), no. 9, 1571–1611.
- Nora Youngs, *The Neural Ring: using Algebraic Geometry to analyze Neural Codes*, arXiv:1409.2544
- Yuri Manin, Neural codes and homotopy types: mathematical models of place field recognition, Mosc. Math. J. 15 (2015), no. 4, 741–748
- Carina Curto, Nora Youngs, *Neural ring homomorphisms and maps between neural codes*, arXiv:1511.00255
- Elizabeth Gross, Nida Kazi Obatake, Nora Youngs, *Neural ideals and stimulus space visualization*, arXiv:1607.00697
- Yuri Manin, *Error-correcting codes and neural networks*, preprint, 2016

同 とくほ とくほと

Basic setting

- set of neurons $[n] = \{1, \ldots, n\}$
- neural code $\mathcal{C} \subset \mathbb{F}_2^n$ with $\mathbb{F}_2 = \{0, 1\}$
- codewords (or "codes") C ∋ c = (c₁,..., c_n) describe activation state of neurons
- support supp $(c) = \{i \in [n] : c_i = 1\}$

$$\operatorname{supp}(\mathcal{C}) = \cup_{c \in \mathcal{C}} \operatorname{supp}(c) \subset 2^{[n]}$$

 $2^{[n]} = \text{set of all subsets of } [n]$

 neglect information about timing and rate of neural activity: focus on combinatorial neural code

伺 とう ヨン うちょう

Simplicial complex of the code

- $\Delta \subset 2^{[n]}$ simplicial complex if when $\sigma \in \Delta$ and $\tau \subset \sigma$ then also $\tau \in \Delta$
- neural code $\mathcal C$ simplicial if $\operatorname{supp}(\mathcal C)$ simplicial complex
- \bullet if not, define simplicial complex of the neural code ${\mathcal C}$ as

 $\Delta(\mathcal{C}) = \{ \sigma \subset [n] : \sigma \subseteq \operatorname{supp}(c), \text{ for some } c \in \mathcal{C} \}$

smallest simplicial complex containing $\operatorname{supp}(\mathcal{C})$

Receptive fields

- patterns of neuron activity
- maps $f_i : X \to \mathbb{R}_+$ from space X of stimuli: average firing rate of *i*-th neuron in [*n*] in response to stimulus $x \in X$
- open sets $U_i = \{x \in X : f(x) > 0\}$ (receptive fields) usually assume *convex*
- place field of a neuron i ∈ [n]: preferred convex region of the stimulus space where it has a high firing rate (orientiation-selective neurons: tuning curves, preference for particular angle, intervals on a circle)
- code words from receptive fields overlap

Convex Receptive Field Code

- stimulis space X; set of neurons [n] = {1,...,n}; receptive fields f_i : X → ℝ₊, with convex sets U_i = {f_i > 0}
- collection of (convex) open sets $\mathcal{U} = \{U_1, \ldots, U_n\}$
- receptive field code

$$\mathcal{C}(\mathcal{U}) = \{ c \in \mathbb{F}_2^n \, : \, \left(\cap_{i \in \mathrm{supp}(c)} U_i
ight) \smallsetminus \left(\cup_{j \notin \mathrm{supp}(c)} U_j
ight)
eq \emptyset \}$$

all binary codewords corresponding to stimuli in X

- with convention: intersection over \emptyset is X and union over \emptyset is \emptyset
- if ∪_{i∈[n]} U_i ⊊ X: there are points of stimulus space not covered by receptive field (word c = (0, 0, ..., 0) in C); if ∩_{i∈[n]} U_i ≠ Ø word c = (1, 1, ..., 1) ∈ C points where all neurons activated

伺 とう ヨン うちょう

Main Question

• if know the code C = C(U) without knowing X and U what can you learn about the geometry of X? (to what extent X is reconstructible from C(U))

• Step One: given a code $\mathcal{C} \subset \mathbb{F}_2^n$ with $m = \#\mathcal{C}$ (number of code words) there exists an $X \subseteq \mathbb{R}^d$ and a collection of (not necessarily convex) open sets $\mathcal{U} = \{U_1, \ldots, U_n\}$ with $U_i \subset X$ such that $\mathcal{C} = \mathcal{C}(\mathcal{U})$

- list code words $c_i = (c_{i,1}, \ldots, c_{i,n}) \in \mathcal{C}$, $i = 1, \ldots, m$
- for each code word c_i choose a point $x_{c_i} \in \mathbb{R}^d$ and an open neighborhood $\mathcal{N}_i \ni x_{c_i}$ such that $\mathcal{N}_i \cap \mathcal{N}_i = \emptyset$ for $i \neq j$
- take $\mathcal{U} = \{U_1, \dots, U_n\}$ and $X = \bigcup_{j=1}^m \mathcal{N}_j$ with

$$U_j = igcup_{c_k:j\in \mathrm{supp}(c_k)} \mathcal{N}_k$$

・ロン ・回と ・ヨン・

- if zero code word in ${\mathcal C}$ then ${\mathcal N}_0=X\smallsetminus\cup_j U_j$ is set of outside points not captured by code
- by construction $\mathcal{C} = \mathcal{C}(\mathcal{U})$

Caveat

• can always find a (X, U) given C so that C = C(U) but not always with U_i convex

• Example: $C = \mathbb{F}_2^3 \setminus \{(1, 1, 1), (0, 0, 1)\}$ cannot be realized by a $\mathcal{U} = \{U_1, U_2, U_3\}$ with U_i convex

• suppose possible: $U_i \subset \mathbb{R}^d$ convex and $\mathcal{C} = \mathcal{C}(\mathcal{U})$

- know that $U_1 \cap U_2
 eq \emptyset$ because $(1,1,0) \in \mathcal{C}$
- know that $(U_1 \cap U_3) \smallsetminus U_2
 eq \emptyset$ because $(1,0,1) \in \mathcal{C}$
- know that $(U_2 \cap U_3) \smallsetminus U_1
 eq \emptyset$ because $(0,1,1) \in \mathcal{C}$
- take points $p_1 \in (U_1 \cap U_3) \setminus U_2$ and $p_2 \in (U_2 \cap U_3) \setminus U_1$ both in U_3 convex, so segment $\ell = tp_1 + (1-t)p_2$, $t \in [0,1]$ in U_3
- if ℓ passes through $U_1 \cap U_2$ then $U_1 \cap U_2 \cap U_3 \neq \emptyset$ but $(1,1,1) \notin C$ (contradiction)
- or ℓ does not intersect U₁ ∩ U₂ but then ℓ intersects the complement of U₁ ∪ U₂ (see fig) this would imply (0,0,1) ∈ C (contradiction)

· < @ > < 문 > < 문 > · · 문

the two cases of the previous example

æ

Constraints on the Stimulus Space

• Codes C that can be realized as C = C(U) with U_i convex put strong constraints on the geometry of the stimulus space X

two types of constraints

- **(**) constraints from the simplicial complex $\Delta(\mathcal{C})$
- **2** other constraints from C not captured by $\Delta(C)$

Simplicial nerve of an open covering

- $\mathcal{U} = \{U_1, \ldots, U_n\}$ convex open sets in \mathbb{R}^d with d < n
- nerve $\mathcal{N}(\mathcal{U})$ simplicial complex: $\sigma = \{i_1, \ldots, i_k\} \in 2^{[n]}$ is in $\mathcal{N}(\mathcal{U})$ iff $U_{i_1} \cap \cdots \cap U_{i_k} \neq \emptyset$
- $\mathcal{N}(\mathcal{U}) = \Delta(\mathcal{C}(\mathcal{U}))$

伺下 イヨト イヨト

convex open sets U_i and simplicial nerve $\mathcal{N}(\mathcal{U})$

▲□ > ▲圖 > ▲ 圖 >

- < ≣ →

another example of convex open sets U_i and simplicial nerve $\mathcal{N}(\mathcal{U})$

The complex $\mathcal{N}(\mathcal{U})$ is also known as the Čech complex of the collection $\mathcal{U} = \{U_1, \dots, U_n\}$ of convex open sets

• Topological fact (Helly's theorem): convex $U_1, \ldots, U_k \subset \mathbb{R}^d$ with d < k: if intersection of every d + 1 of the U_i nonempty then also $\bigcap_{i=1}^k U_i \neq \emptyset$

Consequence: the nerve $\mathcal{N}(\mathcal{U})$ completely determined by its *d*-skeleton (largest *n*-complex with that given *d*-skeleton)

Nerve Theorem

• Allen Hatcher *Algebraic topology*, Cambridge University Press, 2002 (Corollary 4G.3)

• Homotopy types: The homotopy type of $X(\mathcal{U}) = \bigcup_{i=1}^{n} U_i$ is the same as the homotopy type of the nerve $\mathcal{N}(\mathcal{U})$

• Consequence: X(U) and $\mathcal{N}(U)$ have the same homology and homotopy groups (but not necessarily the same dimension)

• Note: the space $X(\mathcal{U})$ may not capture all of the stimulus space X if the U_i are not an open covering of X, that is, if $X \setminus X(\mathcal{U}) \neq \emptyset$

- 4 同 6 4 日 6 4 日 6

Homology groups

• very useful topological invariants, computationally tractable

• simplicial complex $\mathcal{N} \subset 2^{[n]}$; groups of k-chains $C_k = C_k(\mathcal{N})$ abelian group spanned by k-dimensional simplices of \mathcal{N}

• boundary maps on simplicial complexes $\partial_k : C_k \to C_{k-1}$

$$\partial_{k-1} \circ \partial_k = 0$$

usually stated as $\partial^2=0$

- cycles $Z_k = \text{Ker}(\partial_k) \subset C_k$ and boundaries $B_{k+1} = \text{Range}(\partial_{k+1}) \subset C_k$
- because $\partial^2 = 0$ inclusion $B_{k+1} \subset Z_k$
- homology groups: quotient groups

$$H_k(\mathcal{N},\mathbb{Z}) = rac{\operatorname{Ker}(\partial_k)}{\operatorname{Range}(\partial_{k+1})} = Z_k/B_{k+1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Boundary maps

Chain complexes and Homology

 $H_p(X,\mathbb{Z}) = \operatorname{Ker}(\partial_p: C_p \to C_{p-1}) / \operatorname{Im}(\partial_{p+1}: C_{p+1} \to C_p)$

< □ > < @ > < 注 > < 注 > ... 注

What else does C tells us about X?

Figure 3: Four arrangements of three convex receptive fields, $\mathcal{U} = \{U_1, U_2, U_3\}$, each having $\Delta(\mathcal{C}(\mathcal{U})) = 2^{[3]}$. Square boxes denote the stimulus space X in cases where $U_1 \cup U_2 \cup U_3 \subseteq X$. (A) $\mathcal{C}(\mathcal{U}) = 2^{[3]}$, including the all-zeros codeword 000. (B) $\mathcal{C}(\mathcal{U}) = \{111, 101, 001, 001\}$, $X = U_3$. (C) $\mathcal{C}(\mathcal{U}) = \{111, 011, 001, 000\}$. (D) $\mathcal{C}(\mathcal{U}) =$ $\{111, 101, 011, 110, 100, 010\}$, and $X = U_1 \cup U_2$. The minimal embedding dimension for the codes in panels A and D is d = 2, while for panels B and C it is d = 1.

all have same $\Delta(\mathcal{C})=2^{[3]}$ because (1,1,1) code word for all cases

Embedding dimension

• minimal embedding dimension d: minimal dimension for which code C can be realized as C(U) with open sets $U_i \subset \mathbb{R}^d$

• topological dimension: minimum d such that any open covering has a refinement such that no point is in more than d + 1 open sets of the covering

 \bullet in previous examples $\Delta(\mathcal{C})=2^{[3]}$ same but different embedding dimension

Main information carried by the code C = C(U): nontrivial inclusions

• some inclusion relations between intersections and unions always trivially satisfied: example $U_1 \cap U_2 \subset U_2 \cup U_3$ because $U_1 \cap U_2 \subset U_2$

• other inclusion relations are *specific* of the structure of the collection \mathcal{U} of open sets and not always automatically satisfied: this is the *information* encoded in $\mathcal{C}(\mathcal{U})$

• all relations of the form

$$\bigcap_{i\in\sigma}U_i\subseteq\bigcup_{j\in\tau}U_j$$

for $\sigma \cap \tau = \emptyset$, including all empty intersections relations

$$\bigcap_{i\in\sigma}U_i=\emptyset$$

向下 イヨト イヨト

Problem: how to algorithmically extract this information from C without having to construct U?

- key method: Algebraic Geometry (ideals and varieties)
- Rings and ideals: *R* commutative ring with unit, $I \subset R$ ideal (additive subgroup; for $a \in I$ and for all $b \in R$ product $ab \in I$)

$$ullet$$
 set S generators of ${\it I}=\langle S \rangle$

$$I = \{r_1a_1 + \cdots + r_na_n : r_i \in R, a_i \in S, n \in \mathbb{N}\}$$

- prime ideal: $\wp \subsetneq R$ and if $ab \in \wp$ then $a \in \wp$ or $b \in \wp$
- maximal ideal: $\mathfrak{m} \subsetneq R$ and if I ideal $\mathfrak{m} \subset I \subset R$ then either $\mathfrak{m} = I$ or I = R (geometrically maximal ideals correspond to points)
- radical ideal: $r^n \in I$ implies $r \in I$ for all n
- primary decomposition: $I = \wp_1 \cap \cdots \cap \wp_n$ with \wp_i prime ideals

(1) マン・ション・

Affine Algebraic Varieties

• polynomial ring $R = K[x_1, ..., x_n]$ over a field K; $I \subset R$ ideal \Rightarrow variety V(I)

$$V(I) = \{ v \in K^n : f(v) = 0, \forall f \in I \}$$

- ideals $I \subseteq J \Rightarrow$ varieties $V(J) \subseteq V(I)$
- spectrum of a ring R: set of prime ideals

 $\operatorname{Spec}(R) = \{ \wp \subset R : \wp \text{ prime ideal } \}$

• modeling *n* neurons with binary states on/off, so $K = \mathbb{F}_2 = \{0, 1\}$ and $v = (v_1, \dots, v_n) \in \mathbb{F}_2^n$ a possible state of the set of neurons

(本間) (本語) (本語) (語)

Neural Ring

- given a binary code $\mathcal{C} \subset \mathbb{F}_2^n$ (neural code)
- ideal *I* = *I*_C ⊂ 𝔽₂[*x*₁,...,*x_n*] of polynomials vanishing on codewords

$$I_{\mathcal{C}} = \{f \in \mathbb{F}_2[x_1, \ldots, x_n] : f(c) = 0, \forall c \in \mathcal{C}\}$$

• quotient ring (neural ring)

$$R_{\mathcal{C}} = \mathbb{F}_2[x_1, \ldots, x_n]/I_{\mathcal{C}}$$

伺下 イヨト イヨト

• Note: working over \mathbb{F}_2 so $2 \equiv 0$, so in $R_{\mathcal{C}}$ all elements idempotent $y^2 = y$ (cross terms vanish): Boolean ring isomorphic to $\mathbb{F}_2^{\#\mathcal{C}}$, but useful to keep the explicit coordinate functions x_i that measure the activity of the *i*-th neuron

Neural Ring Spectrum

• maximal ideals in polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n]$ correspond to points $v \in \mathbb{F}_2^n$, namely

$$\mathfrak{m}_{\mathbf{v}} = \langle x_1 - v_1, \ldots, x_n - v_n \rangle$$

- in a Boolean ring prime ideal spectrum and maximal ideal spectrum coincide
- for the neural ring $R_{\mathcal{C}}$ spectrum

$$\operatorname{Spec}(\mathsf{R}_{\mathcal{C}}) = \{ ar{\mathfrak{m}}_{\mathsf{v}} \, : \, \mathsf{v} \in \mathcal{C} \subset \mathbb{F}_2^n \}$$

where $\bar{\mathfrak{m}}_{v}$ image in quotient ring of maximal ideal \mathfrak{m}_{v} in $\mathbb{F}_{2}[x_{1}, \ldots, x_{n}]$

 \bullet so spectrum of the neural ring recovers the code words of ${\mathcal C}$

ヨット イヨット イヨッ

Neural ideal

- in general difficult to provide explicit generators for the ideal I_C (problem for practical computational purposes)
- another closely related (more tractable) ideal: neural ideal $J_{\mathcal{C}}$
- given $v \in \mathbb{F}_2^n$ (a possible state of a system of *n* neurons) take function

$$\rho_{\mathbf{v}} = \prod_{i=1}^{n} (1 - v_i - x_i) = \prod_{i \in \operatorname{supp}(\mathbf{v})} x_i \prod_{j \notin \operatorname{supp}(\mathbf{v})} (1 - x_j)$$

- $\rho_{\mathbf{v}} \in \mathbb{F}_2[x_1, \ldots, x_n]$
- binary code $\mathcal{C} \subset \mathbb{F}_2^n \Rightarrow$ ideal $J_{\mathcal{C}}$

$$J_{\mathcal{C}} = \langle \rho_{\mathbf{v}} : \mathbf{v} \notin \mathcal{C} \rangle$$

・ 同 ト ・ ヨ ト ・ ヨ ト

when $\mathcal{C} = \mathbb{F}_2^n$ have $J_{\mathcal{C}} = 0$ trivial ideal

• ideal of Boolean relations $\mathcal{B} = \mathcal{B}_n$

$$\mathcal{B} = \langle x_i(1-x_i) : i \in [n] \rangle$$

 \bullet relation between ideals $\textit{I}_{\mathcal{C}}$ and $\textit{J}_{\mathcal{C}}$

$$I_{\mathcal{C}} = J_{\mathcal{C}} + \mathcal{B} = \langle \rho_{v}, x_{i}(1 - x_{i}) : v \notin \mathcal{C}, i \in [n] \rangle$$

・ロン ・四 と ・ ヨ と ・ モ と

æ

Neural Ring Relations

• Notation: given $\mathcal{U} = \{U_1, \dots, U_n\}$ open sets and $\sigma \subset [n]$

$$U_{\sigma} := \cap_{i \in \sigma} U_i, \quad x_{\sigma} := \prod_{i \in \sigma} x_i, \quad (1 - x_{\tau}) := \prod_{j \in \tau} (1 - x_j)$$

• interpret coordinates x_i as functions on X:

$$\mathbf{x}_i(p) = \left\{ egin{array}{cc} 1 & p \in U_i \ 0 & p \notin U_i \end{array}
ight.$$

• inclusions and relations: $U_{\sigma} \subset U_i \cup U_j$, then $x_{\sigma} = 1$ implies either $x_i = 1$ or $x_i = 1$ so relation

$$x_{\sigma}(1-x_i)(1-x_j)$$

- all inclusion $U_{\sigma} \subseteq \bigcup_{i \in \tau} U_i$ correspond to relations $x_{\sigma} \prod_{i \in \tau} (1 x_i)$
- ideal $I_{\mathcal{C}(\mathcal{U})}$ generated by them (relations defining $R_{\mathcal{C}}$)

$$I_{\mathcal{C}(\mathcal{U})} = \langle x_{\sigma} \prod_{i \in \tau} (1 - x_i) : U_{\sigma} \subseteq \bigcup_{i \in \tau} U_i \rangle$$

Canonical Form pseudomonomial relations

• subsets $\sigma, \tau \subset [n]$: if $\sigma \cap \tau \neq \emptyset$ then $x_{\sigma}(1 - x_{\tau}) \in \mathcal{B}$, if $\sigma \cap \tau = \emptyset$ then $x_{\sigma}(1 - x_{\tau}) \in J_{\mathcal{C}}$

• functions of the form $f(x) = x_{\sigma}(1 - x_{\tau})$ with $\sigma \cap \tau = \emptyset$ pseudomonomial; ideal J generated by such: pseudomonomial ideal

• minimal pseudomonomial: $f \in J$ pseudomonomial, no other pseudomonomial g with $\deg(g) < \deg(f)$ and f = gh for some $h \in \mathbb{F}_2[x_1, \ldots, x_n]$

• canonical form of pseudomonomial ideal $J = \langle f_1, \ldots, f_\ell \rangle$ with f_k all the minimal pseudomonomials in J

• ideal $J_{\mathcal{C}} = \langle \rho_v : v \notin \mathcal{C} \rangle$ is pseudomonomial (not $I_{\mathcal{C}}$ because of Boolean relations)

(ロ) (同) (E) (E) (E)

Canonical Form of Neural Ring J_C : $CF(J_C)$

• given a binary code $C \subset \mathbb{F}_2^n$ suppose realized as C = C(U) with $U = \{U_1, \ldots, U_n\}$ in X (not necessarily convex)

• some $\sigma \subseteq [n]$ minimal for a property *P* if *P* satisfied by σ and not satisfied by any $\tau \subsetneq \sigma$

• canonical form $CF(J_C)$ of J_C three types of relations:

1
$$x_{\sigma}$$
 with σ minimal for $U_{\sigma} = \emptyset$

2 x_σ(1 − x_τ) with σ ∩ τ =, U_σ ≠ ∅ ∪_{i∈τ} U_i ≠ X, and σ, τ minimal for U_σ ⊆ ∪_{i∈τ} U_i

$${f 0}~~(1-x_ au)$$
 with au minimal for $X\subseteq \cup_{i\in au} U_i$

• minimal embedding dimension

$$d \geq \max_{\sigma \,:\, x_{\sigma} \in CF(J_{\mathcal{C}})} \# \sigma - 1$$

• there are efficient algorithms to compute $CF(J_C)$ given C(without passing through \mathcal{U})

Example

- A. $CF(J_{\mathcal{C}}) = \{0\}$. There are no relations here because $\mathcal{C} = 2^{[3]}$.
- B. $CF(J_{\mathcal{C}}) = \{1 x_3\}$. This Type 3 relation reflects the fact that $X = U_3$.
- C. $CF(J_{\mathcal{C}}) = \{x_1(1-x_2), x_2(1-x_3), x_1(1-x_3)\}$. These Type 2 relations correspond to $U_1 \subset U_2$, $U_2 \subset U_3$, and $U_1 \subset U_3$. Note that the first two of these receptive field relationships imply the third; correspondingly, the third canonical form relation satisfies: $x_1(1-x_3) = (1-x_3) \cdot [x_1(1-x_2)] + x_1 \cdot [x_2(1-x_3)]$.
- D. $CF(J_{\mathcal{C}}) = \{(1-x_1)(1-x_2)\}$. This Type 3 relation reflects $X = U_1 \cup U_2$, and implies $U_3 \subset U_1 \cup U_2$.

イロン イヨン イヨン イヨン