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Basic setting

set of neurons [n] = {1, . . . , n}
neural code C ⊂ Fn

2 with F2 = {0, 1}
codewords (or ”codes”) C 3 c = (c1, . . . , cn) describe
activation state of neurons

support supp(c) = {i ∈ [n] : ci = 1}

supp(C) = ∪c∈Csupp(c) ⊂ 2[n]

2[n] = set of all subsets of [n]

neglect information about timing and rate of neural activity:
focus on combinatorial neural code
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Simplicial complex of the code

∆ ⊂ 2[n] simplicial complex if when σ ∈ ∆ and τ ⊂ σ then
also τ ∈ ∆

neural code C simplicial if supp(C) simplicial complex

if not, define simplicial complex of the neural code C as

∆(C) = {σ ⊂ [n] : σ ⊆ supp(c), for some c ∈ C}

smallest simplicial complex containing supp(C)
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Receptive fields

patterns of neuron activity

maps fi : X → R+ from space X of stimuli: average firing
rate of i-th neuron in [n] in response to stimulus x ∈ X

open sets Ui = {x ∈ X : f (x) > 0} (receptive fields) usually
assume convex

place field of a neuron i ∈ [n]: preferred convex region of the
stimulus space where it has a high firing rate
(orientiation-selective neurons: tuning curves, preference for
particular angle, intervals on a circle)

code words from receptive fields overlap
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Convex Receptive Field Code

stimulis space X ; set of neurons [n] = {1, . . . , n}; receptive
fields fi : X → R+, with convex sets Ui = {fi > 0}
collection of (convex) open sets U = {U1, . . . ,Un}
receptive field code

C(U) = {c ∈ Fn
2 :

(
∩i∈supp(c)Ui

)
r
(
∪j /∈supp(c)Uj

)
6= ∅}

all binary codewords corresponding to stimuli in X

with convention: intersection over ∅ is X and union over ∅ is ∅
if ∪i∈[n]Ui ( X : there are points of stimulus space not covered
by receptive field (word c = (0, 0, . . . , 0) in C); if ∩i∈[n]Ui 6= ∅
word c = (1, 1, . . . , 1) ∈ C points where all neurons activated
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Main Question

• if know the code C = C(U) without knowing X and U what can
you learn about the geometry of X? (to what extent X is
reconstructible from C(U))

• Step One: given a code C ⊂ Fn
2 with m = #C (number of code

words) there exists an X ⊆ Rd and a collection of (not necessarily
convex) open sets U = {U1, . . . ,Un} with Ui ⊂ X such that
C = C(U)

list code words ci = (ci ,1, . . . , ci ,n) ∈ C, i = 1, . . . ,m
for each code word ci choose a point xci ∈ Rd and an open
neighborhood Ni 3 xci such that Ni ∩Nj = ∅ for i 6= j
take U = {U1, . . . ,Un} and X = ∪mj=1Nj with

Uj =
⋃

ck : j∈supp(ck )

Nk

if zero code word in C then N0 = X r ∪jUj is set of outside
points not captured by code
by construction C = C(U)
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Caveat

• can always find a (X ,U) given C so that C = C(U) but not
always with Ui convex

• Example: C = F3
2 r {(1, 1, 1), (0, 0, 1)} cannot be realized by a

U = {U1,U2,U3} with Ui convex

suppose possible: Ui ⊂ Rd convex and C = C(U)

know that U1 ∩ U2 6= ∅ because (1, 1, 0) ∈ C
know that (U1 ∩ U3) r U2 6= ∅ because (1, 0, 1) ∈ C
know that (U2 ∩ U3) r U1 6= ∅ because (0, 1, 1) ∈ C
take points p1 ∈ (U1 ∩U3)rU2 and p2 ∈ (U2 ∩U3)rU1 both
in U3 convex, so segment ` = tp1 + (1− t)p2, t ∈ [0, 1] in U3

if ` passes through U1 ∩ U2 then U1 ∩ U2 ∩ U3 6= ∅ but
(1, 1, 1) /∈ C (contradiction)

or ` does not intersect U1 ∩ U2 but then ` intersects the
complement of U1 ∪ U2 (see fig) this would imply (0, 0, 1) ∈ C
(contradiction)
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the two cases of the previous example
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Constraints on the Stimulus Space

• Codes C that can be realized as C = C(U) with Ui convex put
strong constraints on the geometry of the stimulus space X

two types of constraints

1 constraints from the simplicial complex ∆(C)

2 other constraints from C not captured by ∆(C)

Simplicial nerve of an open covering

U = {U1, . . . ,Un} convex open sets in Rd with d < n

nerve N (U) simplicial complex: σ = {i1, . . . , ik} ∈ 2[n] is in
N (U) iff Ui1 ∩ · · · ∩ Uik 6= ∅
N (U) = ∆(C(U))
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convex open sets Ui and simplicial nerve N (U)
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another example of convex open sets Ui and simplicial nerve N (U)

The complex N (U) is also known as the Čech complex of the
collection U = {U1, . . . ,Un} of convex open sets
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• Topological fact (Helly’s theorem): convex U1, . . . ,Uk ⊂ Rd

with d < k : if intersection of every d + 1 of the Ui nonempty then
also ∩ki=1Ui 6= ∅
Consequence: the nerve N (U) completely determined by its
d-skeleton (largest n-complex with that given d-skeleton)
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Nerve Theorem
• Allen Hatcher Algebraic topology, Cambridge University Press,
2002 (Corollary 4G.3)

• Homotopy types: The homotopy type of X (U) = ∪ni=1Ui is the
same as the homotopy type of the nerve N (U)

• Consequence: X (U) and N (U) have the same homology and
homotopy groups (but not necessarily the same dimension)

• Note: the space X (U) may not capture all of the stimulus space
X if the Ui are not an open covering of X , that is, if X rX (U) 6= ∅
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Homology groups
• very useful topological invariants, computationally tractable

• simplicial complex N ⊂ 2[n]; groups of k-chains Ck = Ck(N )
abelian group spanned by k-dimensional simplices of N

• boundary maps on simplicial complexes ∂k : Ck → Ck−1

∂k−1 ◦ ∂k = 0

usually stated as ∂2 = 0

• cycles Zk = Ker(∂k) ⊂ Ck and boundaries
Bk+1 = Range(∂k+1) ⊂ Ck

• because ∂2 = 0 inclusion Bk+1 ⊂ Zk

• homology groups: quotient groups

Hk(N ,Z) =
Ker(∂k)

Range(∂k+1)
= Zk/Bk+1
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Boundary maps

Matilde Marcolli and Doris Tsao Neural Codes and Rings



Chain complexes and Homology

Hp(X ,Z) = Ker(∂p : Cp → Cp−1)/Im(∂p+1 : Cp+1 → Cp)
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What else does C tells us about X?

all have same ∆(C) = 2[3] because (1, 1, 1) code word for all cases
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Embedding dimension

• minimal embedding dimension d : minimal dimension for which
code C can be realized as C(U) with open sets Ui ⊂ Rd

• topological dimension: minimum d such that any open covering
has a refinement such that no point is in more than d + 1 open
sets of the covering

• in previous examples ∆(C) = 2[3] same but different embedding
dimension
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Main information carried by the code C = C(U):
nontrivial inclusions

• some inclusion relations between intersections and unions always
trivially satisfied: example U1 ∩ U2 ⊂ U2 ∪ U3 because
U1 ∩ U2 ⊂ U2

• other inclusion relations are specific of the structure of the
collection U of open sets and not always automatically satisfied:
this is the information encoded in C(U)

• all relations of the form ⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj

for σ ∩ τ = ∅, including all empty intersections relations⋂
i∈σ

Ui = ∅
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Problem: how to algorithmically extract this information from C
without having to construct U?

• key method: Algebraic Geometry (ideals and varieties)

• Rings and ideals: R commutative ring with unit, I ⊂ R ideal
(additive subgroup; for a ∈ I and for all b ∈ R product ab ∈ I )

• set S generators of I = 〈S〉

I = {r1a1 + · · ·+ rnan : ri ∈ R, ai ∈ S , n ∈ N}

• prime ideal: ℘ ( R and if ab ∈ ℘ then a ∈ ℘ or b ∈ ℘

• maximal ideal: m ( R and if I ideal m ⊂ I ⊂ R then either m = I
or I = R (geometrically maximal ideals correspond to points)

• radical ideal: rn ∈ I implies r ∈ I for all n

• primary decomposition: I = ℘1 ∩ · · · ∩ ℘n with ℘i prime ideals
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Affine Algebraic Varieties

• polynomial ring R = K [x1, . . . , xn] over a field K ; I ⊂ R ideal ⇒
variety V (I )

V (I ) = {v ∈ Kn : f (v) = 0, ∀f ∈ I}

• ideals I ⊆ J ⇒ varieties V (J) ⊆ V (I )

• spectrum of a ring R: set of prime ideals

Spec(R) = {℘ ⊂ R : ℘ prime ideal }

• modeling n neurons with binary states on/off, so
K = F2 = {0, 1} and v = (v1, . . . , vn) ∈ Fn

2 a possible state of the
set of neurons
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Neural Ring

given a binary code C ⊂ Fn
2 (neural code)

ideal I = IC ⊂ F2[x1, . . . , xn] of polynomials vanishing on
codewords

IC = {f ∈ F2[x1, . . . , xn] : f (c) = 0, ∀c ∈ C}

quotient ring (neural ring)

RC = F2[x1, . . . , xn]/IC

• Note: working over F2 so 2 ≡ 0, so in RC all elements
idempotent y2 = y (cross terms vanish): Boolean ring isomorphic

to F#C
2 , but useful to keep the explicit coordinate functions xi that

measure the activity of the i-th neuron
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Neural Ring Spectrum

• maximal ideals in polynomial ring F2[x1, . . . , xn] correspond to
points v ∈ Fn

2, namely

mv = 〈x1 − v1, . . . , xn − vn〉

• in a Boolean ring prime ideal spectrum and maximal ideal
spectrum coincide

• for the neural ring RC spectrum

Spec(RC) = {m̄v : v ∈ C ⊂ Fn
2}

where m̄v image in quotient ring of maximal ideal mv in
F2[x1, . . . , xn]

• so spectrum of the neural ring recovers the code words of C
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Neural ideal

• in general difficult to provide explicit generators for the ideal IC
(problem for practical computational purposes)

• another closely related (more tractable) ideal: neural ideal JC

• given v ∈ Fn
2 (a possible state of a system of n neurons) take

function

ρv =
n∏

i=1

(1− vi − xi ) =
∏

i∈supp(v)

xi
∏

j /∈supp(v)

(1− xj)

ρv ∈ F2[x1, . . . , xn]

• binary code C ⊂ Fn
2 ⇒ ideal JC

JC = 〈ρv : v /∈ C〉

when C = Fn
2 have JC = 0 trivial ideal
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• ideal of Boolean relations B = Bn

B = 〈xi (1− xi ) : i ∈ [n]〉

• relation between ideals IC and JC

IC = JC + B = 〈ρv , xi (1− xi ) : v /∈ C, i ∈ [n]〉
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Neural Ring Relations

• Notation: given U = {U1, . . . ,Un} open sets and σ ⊂ [n]

Uσ := ∩i∈σUi , xσ :=
∏
i∈σ

xi , (1− xτ ) :=
∏
j∈τ

(1− xj)

• interpret coordinates xi as functions on X :

xi (p) =

{
1 p ∈ Ui

0 p /∈ Ui

• inclusions and relations: Uσ ⊂ Ui ∪ Uj , then xσ = 1 implies
either xi = 1 or xj = 1 so relation

xσ(1− xi )(1− xj)

• all inclusion Uσ ⊆ ∪i∈τUi correspond to relations xσ
∏

i∈τ (1− xi )

• ideal IC(U) generated by them (relations defining RC)

IC(U) = 〈xσ
∏
i∈τ

(1− xi ) : Uσ ⊆ ∪i∈τUi 〉
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Canonical Form pseudomonomial relations

• subsets σ, τ ⊂ [n]: if σ ∩ τ 6= ∅ then xσ(1− xτ ) ∈ B, if σ ∩ τ = ∅
then xσ(1− xτ ) ∈ JC

• functions of the form f (x) = xσ(1− xτ ) with σ ∩ τ = ∅
pseudomonomial; ideal J generated by such: pseudomonomial ideal

• minimal pseudomonomial: f ∈ J pseudomonomial, no other
pseudomonomial g with deg(g) < deg(f ) and f = gh for some
h ∈ F2[x1, . . . , xn]

• canonical form of pseudomonomial ideal J = 〈f1, . . . , f`〉 with fk
all the minimal pseudomonomials in J

• ideal JC = 〈ρv : v /∈ C〉 is pseudomonomial (not IC because of
Boolean relations)
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Canonical Form of Neural Ring JC : CF (JC)

• given a binary code C ⊂ Fn
2 suppose realized as C = C(U) with

U = {U1, . . . ,Un} in X (not necessarily convex)

• some σ ⊆ [n] minimal for a property P if P satisfied by σ and
not satisfied by any τ ( σ

• canonical form CF (JC) of JC three types of relations:

1 xσ with σ minimal for Uσ = ∅
2 xσ(1− xτ ) with σ ∩ τ =, Uσ 6= ∅ ∪i∈τUi 6= X , and σ, τ

minimal for Uσ ⊆ ∪i∈τUi

3 (1− xτ ) with τ minimal for X ⊆ ∪i∈τUi

• minimal embedding dimension

d ≥ max
σ : xσ∈CF (JC)

#σ − 1

• there are efficient algorithms to compute CF (JC) given C
(without passing through U)
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Example
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