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Basic setting

@ set of neurons [n] = {1,...,n}
e neural code C C F§ with Fp, = {0,1}
@ codewords (or "codes") C 3 ¢ = (cy,. .., cp) describe

activation state of neurons

@ support supp(c) ={i € [n] : ¢, =1}
supp(C) = Ucecsupp(c) C 21"

2l7] = set of all subsets of [n]

@ neglect information about timing and rate of neural activity:
focus on combinatorial neural code
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Simplicial complex of the code

o A c 2" simplicial complex if when o € A and 7 C o then
alsoT € A

@ neural code C simplicial if supp(C) simplicial complex

@ if not, define simplicial complex of the neural code C as
A(C) ={o C[n] : o Csupp(c), forsome c e C}

smallest simplicial complex containing supp(C)

Simplicial complex Invalid Simplicial complex
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Receptive fields

@ patterns of neuron activity

@ maps f;i : X = R from space X of stimuli: average firing
rate of i-th neuron in [n] in response to stimulus x € X

@ open sets U; = {x € X : f(x) > 0} (receptive fields) usually
assume convex

@ place field of a neuron i € [n]: preferred convex region of the
stimulus space where it has a high firing rate
(orientiation—selective neurons: tuning curves, preference for
particular angle, intervals on a circle)

@ code words from receptive fields overlap

A 12t 88 4 5
L

activity pattern O QO QO activity pattern O QQQQ
codeword 11100 codeword 0 0 101

B
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Convex Receptive Field Code
e stimulis space X; set of neurons [n] = {1,..., n}; receptive
fields f; : X — R, with convex sets U; = {f; > 0}
@ collection of (convex) open sets U = {U4, ..., Un}

e receptive field code

CU) = {c € F3 : (Nicsupp(c) Ui) ~ (Ujgsupp(e)Us) # 0}

all binary codewords corresponding to stimuli in X
@ with convention: intersection over () is X and union over 0 is ()

o if Uic[yUi C X: there are points of stimulus space not covered
by receptive field (word ¢ = (0,0, ...,0) in C); if Nigpy Ui # 0
word ¢ = (1,1,...,1) € C points where all neurons activated

Matilde Marcolli and Doris Tsao Neural Codes and Rings



Main Question

e if know the code C = C(U/) without knowing X and U what can
you learn about the geometry of X? (to what extent X is
reconstructible from C(U/))

e Step One: given a code C C F§ with m = #C (number of code
words) there exists an X C R9 and a collection of (not necessarily
convex) open sets U = {Ui,..., Uy} with U; C X such that
C=CU)

e list code words ¢; = (¢j1,...,¢n) €C, i=1,...,m

o for each code word ¢; choose a point x¢; € R9 and an open

neighborhood N; 3 x, such that N; NN =0 for i # j
o take U = {U1,..., Us} and X = U, N with

u= U M
cx 1 jE€supp(cy)
o if zero code word in C then Ny = X ~ U;jU; is set of outside

points not captured by code
@ by construction C = C(U)
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Caveat

e can always find a (X,U) given C so that C = C(U/) but not
always with U; convex
e Example: C =3~ {(1,1,1),(0,0,1)} cannot be realized by a
U = {Ui, Uz, Us} with U; convex
@ suppose possible: U; € RY convex and C = C(U)
@ know that Uy N U, # () because (1,1,0) € C
e know that (U; N U3) \ Uz # ) because (1,0,1) € C
e know that (U> N Us) \ Us # 0 because (0,1,1) € C
@ take points p; € (U1 NUsz) \ Uz and py € (U>N Us) \ U both
in Us convex, so segment £ = tpy + (1 — t)p2, t €[0,1] in Us
e if £ passes through U; N Us then Uy N U N Us # B but
(1,1,1) ¢ C (contradiction)
@ or / does not intersect U; N Us but then ¢ intersects the

complement of Uy U U, (see fig) this would imply (0,0,1) € C
(contradiction)
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the two cases of the previous example
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Constraints on the Stimulus Space

e Codes C that can be realized as C = C(U) with U; convex put
strong constraints on the geometry of the stimulus space X
two types of constraints

@ constraints from the simplicial complex A(C)

@ other constraints from C not captured by A(C)

Simplicial nerve of an open covering
o U ={Ui,...,U,} convex open sets in RY with d < n

o nerve N'(U) simplicial complex: o = {i1,...,ix} € 2I" is in
NU)iff Uyn---nU;, #0
o N(U)=A(CU))
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convex open sets U; and simplicial nerve N (i)
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another example of convex open sets U; and simplicial nerve N (i)

The complex N (U) is also known as the Cech complex of the
collection U = { U1, ..., U,} of convex open sets
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e Topological fact (Helly's theorem): convex Uy, ..., Ux C RY
with d < k: if intersection of every d 4+ 1 of the U; nonempty then
also NK_ Ui # 0

Consequence: the nerve N'(U) completely determined by its
d-skeleton (largest n-complex with that given d-skeleton)

(The 1-Skeleton)
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Nerve Theorem
e Allen Hatcher Algebraic topology, Cambridge University Press,
2002 (Corollary 4G.3)

e Homotopy types: The homotopy type of X(U/) = U, U; is the
same as the homotopy type of the nerve N(U)

e Consequence: X(U) and N'(U) have the same homology and
homotopy groups (but not necessarily the same dimension)

e Note: the space X(U) may not capture all of the stimulus space
X if the U; are not an open covering of X, that is, if X ~ X(U) # 0
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Homology groups
e very useful topological invariants, computationally tractable

o simplicial complex N C 2[": groups of k-chains C; = Ci(N)
abelian group spanned by k-dimensional simplices of N

e boundary maps on simplicial complexes 0y : C, — Ci_1
Ok—100k =0

usually stated as 9°> = 0

e cycles Z, = Ker(0x) C Cx and boundaries
Biy1 = Range(0k11) C Ck

e because 9% = 0 inclusion By,1 C Zx

e homology groups: quotient groups

Ker(0k)

N 2) = Range(0k+1)

= Zi/Bi11
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Boundary maps

v, :rl
o,
N ——— [vi]-[vo
Vi Vo.
v, v,
0,
——— [V|,V2]‘[V0,V2]+[VO,V|]
Vo vy Vy — = ¥y
v, v,
' 8
V.
7 2 —— Y2 [anzaV}]'[vaavzavs]
+[V03V| JVS] - [VO:VI :Vz]
Vo v, Vo v,
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Chain complexes and Homology

Hp(X,Z) = Ker(9p : Cp = Cp—1)/Im(0pt1 : Copr1 — Cp)
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What else does C tells us about X7?

Figure 3: Four arrangements of three convex receptive
fields, Y = {U,,Us,Us}, each having A(C(U)) = 2Bl
Square boxes denote the stimulus space X in cases where
U,UlLULs € X. (A) C(U) = 2B, including the all-zeros
codeword 000. (B) C(i4) = {111,101,011,001}, with
X = Us. (C) C(U) = {111,011,001,000}. (D) C(Ud) =
{111,101,011,110,100,010}, and X = U; UU;. The
minimal embedding dimension for the codes in panels A
and D is d = 2, while for panels B and Citisd = 1.

all have same A(C) = 2B because (1,1,1) code word for all cases
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Embedding dimension

e minimal embedding dimension d: minimal dimension for which
code C can be realized as C(U) with open sets U; C RY

e topological dimension: minimum d such that any open covering
has a refinement such that no point is in more than d + 1 open
sets of the covering

2 overlap

3 overlap

e in previous examples A(C) = 2B same but different embedding
dimension
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Main information carried by the code C = C(U):
nontrivial inclusions

e some inclusion relations between intersections and unions always
trivially satisfied: example U; N U, C Uy U Us because
Uint c U,

e other inclusion relations are specific of the structure of the
collection U of open sets and not always automatically satisfied:
this is the information encoded in C(U)

e all relations of the form
Nu<Uy
i€o JET
for o N7 = (), including all empty intersections relations

U=0

i€o
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Problem: how to algorithmically extract this information from C
without having to construct 47

e key method: Algebraic Geometry (ideals and varieties)

e Rings and ideals: R commutative ring with unit, / C R ideal
(additive subgroup; for a € I and for all b € R product ab € /)

e set S generators of | = (S)

| ={nai+---+nma,: rieR,a €S, neN}

e prime ideal: ¢ C Randifabe pthenaecporbeyp

e maximal ideal: m C R and if | ideal m C | C R then either m =/
or | = R (geometrically maximal ideals correspond to points)

e radical ideal: r” € | implies r € | for all n

e primary decomposition: | = p1 N --- N @, with @; prime ideals
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Affine Algebraic Varieties

e polynomial ring R = K|[x, ..., x| over a field K; | C R ideal =
variety V/(/)

V(I)={veK": f(v)=0,VYfel}
e ideals /| C J = varieties V(J) C V(/)
e spectrum of a ring R: set of prime ideals

Spec(R) = {p C R : p prime ideal }

e modeling n neurons with binary states on/off, so
K =F,={0,1} and v = (v1,..., vy) € F] a possible state of the
set of neurons
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Neural Ring

@ given a binary code C C F3 (neural code)

@ ideal | = lo C Fa[xy,...,xpn] of polynomials vanishing on
codewords

le = {f € IE‘2[Xl7"'axn] . f(C) =0, Ve € C}
@ quotient ring (neural ring)

RC = F2[X]_,. .. ,Xn]/lc

e Note: working over F so 2 =0, so in R¢ all elements
idempotent y? = y (cross terms vanish): Boolean ring isomorphic
to ch, but useful to keep the explicit coordinate functions x; that
measure the activity of the i-th neuron
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Neural Ring Spectrum

e maximal ideals in polynomial ring Fa[x1, ..., xn] correspond to
points v € 3, namely

my, = (X1 — Vi,...,Xp — Vp)

e in a Boolean ring prime ideal spectrum and maximal ideal
spectrum coincide

e for the neural ring Re spectrum
Spec(Re) = {m, : veC CFj}

where m, image in quotient ring of maximal ideal m, in
Fz[Xl, N 7X,,]
e so spectrum of the neural ring recovers the code words of C
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Neural ideal

e in general difficult to provide explicit generators for the ideal ¢
(problem for practical computational purposes)

e another closely related (more tractable) ideal: neural ideal J¢

e given v € [ (a possible state of a system of n neurons) take
function

n

p=Ja-vi-x)= [ x [I @-x)

i=1 i€supp(v)  j¢supp(v)

pPv € FQ[X]_, . ,Xn]
e binary code C C 5 = ideal J¢

Jo=1{p,: v

when C = FJ have Je = 0 trivial ideal
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e ideal of Boolean relations B = BB,

B=(xi(1—x):i¢€][n])

e relation between ideals I¢ and J¢

le =Je+B={py, xi(l—x;) : v&C,icln])
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Neural Ring Relations

e Notation: given U = {Ui,..., Up} open sets and o C [n]
Us = NicoUi, X5 := Hx,, (1—x7):= H(l — Xj)
i€o JET

e interpret coordinates x; as functions on X:

1 e U;
X,‘(P)—{ 0 Z¢U’

e inclusions and relations: U, C U; U Uj, then x, = 1 implies
either x; = 1 or x; = 1 so relation

Xo(1 = x;)(1 — x;j)
e all inclusion U, C Uje, U; correspond to relations x, [ ;. (1 — x;)

e ideal /o) generated by them (relations defining Re)

lewy = o [ [ = %) © Us C Uier Uy)

ier
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Canonical Form pseudomonomial relations

e subsets o, 7 C [n]: if oNT # D then x,(1—x;) € B, ifonN7T =1
then x,(1 — x;) € J¢

e functions of the form f(x) = x,(1 — x;) with o N7 =10
pseudomonomial; ideal J generated by such: pseudomonomial ideal

e minimal pseudomonomial: f € J pseudomonomial, no other
pseudomonomial g with deg(g) < deg(f) and f = gh for some
he FQ[Xl, . ,X,,]

e canonical form of pseudomonomial ideal J = (f1,..., f;) with f;
all the minimal pseudomonomials in J

e ideal Jo = (p, : v ¢ C) is pseudomonomial (not Iz because of
Boolean relations)

Matilde Marcolli and Doris Tsao Neural Codes and Rings



Canonical Form of Neural Ring Jo: CF(Je)

e given a binary code C C Fj suppose realized as C = C(U/) with
U={U,...,Up} in X (not necessarily convex)

e some o C [n] minimal for a property P if P satisfied by o and
not satisfied by any 7 C o
e canonical form CF(J¢) of Je three types of relations:
@ x, with ¢ minimal for U, =0
Q x,(1—x;)withonNt=, Uy #0 Ui, U; # X, and o, 7
minimal for U, C Uje, U;
© (1 — x;) with 7 minimal for X C Uje, U;

e minimal embedding dimension

d> -1
T o :xgn;aC)IE_(Jc) #o

e there are efficient algorithms to compute CF(J¢) given C
(without passing through i)
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Example

A. CF(J¢) = {0}. There are no relations here because C = 21,
B. CF(J¢) = {1 — z3}. This Type 3 relation reflects the fact that X = Us.

C. CF(J¢) = {z1(1 — z3), za(1 — z3), z1(1 — z3)}. These Type 2 relations correspond to Uy € Uy,
Us C Us, and Uy C Us. Note that the first two of these receptive field relationships imply the
third; correspondingly, the third canonical form relation satisfies: z;(1 —z3) = (1 —z3) - [z1(1 —
z2)] + &1 - [22(1 — 23)].

D. CF(J¢) = {(1=x1)(1—z2)}. This Type 3 relation reflects X = U; UUs, and implies U3 C U; UUs.
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