Neural Codes and Neural Rings: Topology and Algebraic Geometry

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017
Geometry of Neuroscience

References for this lecture:

- Curto, Carina; Itskov, Vladimir; Veliz-Cuba, Alan; Youngs, Nora, The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes, Bull. Math. Biol. 75 (2013), no. 9, 1571-1611.
- Nora Youngs, The Neural Ring: using Algebraic Geometry to analyze Neural Codes, arXiv:1409.2544
- Yuri Manin, Neural codes and homotopy types: mathematical models of place field recognition, Mosc. Math. J. 15 (2015), no. 4, 741-748
- Carina Curto, Nora Youngs, Neural ring homomorphisms and maps between neural codes, arXiv:1511.00255
- Elizabeth Gross, Nida Kazi Obatake, Nora Youngs, Neural ideals and stimulus space visualization, arXiv:1607.00697
- Yuri Manin, Error-correcting codes and neural networks, preprint, 2016

Basic setting

- set of neurons $[n]=\{1, \ldots, n\}$
- neural code $\mathcal{C} \subset \mathbb{F}_{2}^{n}$ with $\mathbb{F}_{2}=\{0,1\}$
- codewords (or "codes") $\mathcal{C} \ni \subset=\left(c_{1}, \ldots, c_{n}\right)$ describe activation state of neurons
- support $\operatorname{supp}(c)=\left\{i \in[n]: c_{i}=1\right\}$

$$
\operatorname{supp}(\mathcal{C})=\cup_{c \in \mathcal{C}} \operatorname{supp}(c) \subset 2^{[n]}
$$

$2^{[n]}=$ set of all subsets of [n]

- neglect information about timing and rate of neural activity: focus on combinatorial neural code

Simplicial complex of the code

- $\Delta \subset 2^{[n]}$ simplicial complex if when $\sigma \in \Delta$ and $\tau \subset \sigma$ then also $\tau \in \Delta$
- neural code \mathcal{C} simplicial if $\operatorname{supp}(\mathcal{C})$ simplicial complex
- if not, define simplicial complex of the neural code \mathcal{C} as

$$
\Delta(\mathcal{C})=\{\sigma \subset[n]: \sigma \subseteq \operatorname{supp}(c), \text { for some } c \in \mathcal{C}\}
$$

smallest simplicial complex containing $\operatorname{supp}(\mathcal{C})$

Receptive fields

- patterns of neuron activity
- maps $f_{i}: X \rightarrow \mathbb{R}_{+}$from space X of stimuli: average firing rate of i-th neuron in $[n]$ in response to stimulus $x \in X$
- open sets $U_{i}=\{x \in X: f(x)>0\}$ (receptive fields) usually assume convex
- place field of a neuron $i \in[n]$: preferred convex region of the stimulus space where it has a high firing rate (orientiation-selective neurons: tuning curves, preference for particular angle, intervals on a circle)
- code words from receptive fields overlap

Convex Receptive Field Code

- stimulis space X; set of neurons $[n]=\{1, \ldots, n\}$; receptive fields $f_{i}: X \rightarrow \mathbb{R}_{+}$, with convex sets $U_{i}=\left\{f_{i}>0\right\}$
- collection of (convex) open sets $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$
- receptive field code

$$
\mathcal{C}(\mathcal{U})=\left\{c \in \mathbb{F}_{2}^{n}:\left(\cap_{i \in \operatorname{supp}(c)} U_{i}\right) \backslash\left(\cup_{j \notin \operatorname{supp}(c)} U_{j}\right) \neq \emptyset\right\}
$$

all binary codewords corresponding to stimuli in X

- with convention: intersection over \emptyset is X and union over \emptyset is \emptyset
- if $\cup_{i \in[n]} U_{i} \subsetneq X$: there are points of stimulus space not covered by receptive field (word $c=(0,0, \ldots, 0)$ in \mathcal{C}); if $\cap_{i \in[n]} U_{i} \neq \emptyset$ word $c=(1,1, \ldots, 1) \in \mathcal{C}$ points where all neurons activated

Main Question

- if know the code $\mathcal{C}=\mathcal{C}(\mathcal{U})$ without knowing X and \mathcal{U} what can you learn about the geometry of X ? (to what extent X is reconstructible from $\mathcal{C}(\mathcal{U})$)
- Step One: given a code $\mathcal{C} \subset \mathbb{F}_{2}^{n}$ with $m=\# \mathcal{C}$ (number of code words) there exists an $X \subseteq \mathbb{R}^{d}$ and a collection of (not necessarily convex) open sets $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ with $U_{i} \subset X$ such that $\mathcal{C}=\mathcal{C}(\mathcal{U})$
- list code words $c_{i}=\left(c_{i, 1}, \ldots, c_{i, n}\right) \in \mathcal{C}, i=1, \ldots, m$
- for each code word c_{i} choose a point $x_{c_{i}} \in \mathbb{R}^{d}$ and an open neighborhood $\mathcal{N}_{i} \ni x_{c_{i}}$ such that $\mathcal{N}_{i} \cap \mathcal{N}_{j}=\emptyset$ for $i \neq j$
- take $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ and $X=\cup_{j=1}^{m} \mathcal{N}_{j}$ with

$$
U_{j}=\bigcup_{c_{k}: j \in \operatorname{supp}\left(c_{k}\right)} \mathcal{N}_{k}
$$

- if zero code word in \mathcal{C} then $\mathcal{N}_{0}=X \backslash \cup_{j} U_{j}$ is set of outside points not captured by code
- by construction $\mathcal{C}=\mathcal{C}(\mathcal{U})$

Caveat

- can always find a (X, \mathcal{U}) given \mathcal{C} so that $\mathcal{C}=\mathcal{C}(\mathcal{U})$ but not always with U_{i} convex
- Example: $\mathcal{C}=\mathbb{F}_{2}^{3} \backslash\{(1,1,1),(0,0,1)\}$ cannot be realized by a $\mathcal{U}=\left\{U_{1}, U_{2}, U_{3}\right\}$ with U_{i} convex
- suppose possible: $U_{i} \subset \mathbb{R}^{d}$ convex and $\mathcal{C}=\mathcal{C}(\mathcal{U})$
- know that $U_{1} \cap U_{2} \neq \emptyset$ because $(1,1,0) \in \mathcal{C}$
- know that $\left(U_{1} \cap U_{3}\right) \backslash U_{2} \neq \emptyset$ because $(1,0,1) \in \mathcal{C}$
- know that $\left(U_{2} \cap U_{3}\right) \backslash U_{1} \neq \emptyset$ because $(0,1,1) \in \mathcal{C}$
- take points $p_{1} \in\left(U_{1} \cap U_{3}\right) \backslash U_{2}$ and $p_{2} \in\left(U_{2} \cap U_{3}\right) \backslash U_{1}$ both in U_{3} convex, so segment $\ell=t p_{1}+(1-t) p_{2}, t \in[0,1]$ in U_{3}
- if ℓ passes through $U_{1} \cap U_{2}$ then $U_{1} \cap U_{2} \cap U_{3} \neq \emptyset$ but $(1,1,1) \notin \mathcal{C}$ (contradiction)
- or ℓ does not intersect $U_{1} \cap U_{2}$ but then ℓ intersects the complement of $U_{1} \cup U_{2}$ (see fig) this would imply $(0,0,1) \in \mathcal{C}$ (contradiction)

Constraints on the Stimulus Space

- Codes \mathcal{C} that can be realized as $\mathcal{C}=\mathcal{C}(\mathcal{U})$ with U_{i} convex put strong constraints on the geometry of the stimulus space X
two types of constraints
(1) constraints from the simplicial complex $\Delta(\mathcal{C})$
(2) other constraints from \mathcal{C} not captured by $\Delta(\mathcal{C})$

Simplicial nerve of an open covering

- $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ convex open sets in \mathbb{R}^{d} with $d<n$
- nerve $\mathcal{N}(\mathcal{U})$ simplicial complex: $\sigma=\left\{i_{1}, \ldots, i_{k}\right\} \in 2^{[n]}$ is in $\mathcal{N}(\mathcal{U})$ iff $U_{i_{1}} \cap \cdots \cap U_{i_{k}} \neq \emptyset$
- $\mathcal{N}(\mathcal{U})=\Delta(\mathcal{C}(\mathcal{U}))$

convex open sets U_{i} and simplicial nerve $\mathcal{N}(\mathcal{U})$

another example of convex open sets U_{i} and simplicial nerve $\mathcal{N}(\mathcal{U})$
The complex $\mathcal{N}(\mathcal{U})$ is also known as the Čech complex of the collection $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ of convex open sets
- Topological fact (Helly's theorem): convex $U_{1}, \ldots, U_{k} \subset \mathbb{R}^{d}$ with $d<k$: if intersection of every $d+1$ of the U_{i} nonempty then also $\cap_{i=1}^{k} U_{i} \neq \emptyset$
Consequence: the nerve $\mathcal{N}(\mathcal{U})$ completely determined by its d-skeleton (largest n-complex with that given d-skeleton)

Nerve Theorem

- Allen Hatcher Algebraic topology, Cambridge University Press, 2002 (Corollary 4G.3)
- Homotopy types: The homotopy type of $X(\mathcal{U})=\cup_{i=1}^{n} U_{i}$ is the same as the homotopy type of the nerve $\mathcal{N}(\mathcal{U})$
- Consequence: $X(\mathcal{U})$ and $\mathcal{N}(\mathcal{U})$ have the same homology and homotopy groups (but not necessarily the same dimension)
- Note: the space $X(\mathcal{U})$ may not capture all of the stimulus space X if the U_{i} are not an open covering of X, that is, if $X \backslash X(\mathcal{U}) \neq \emptyset$

Homology groups

- very useful topological invariants, computationally tractable
- simplicial complex $\mathcal{N} \subset 2^{[n]}$; groups of k-chains $C_{k}=C_{k}(\mathcal{N})$ abelian group spanned by k-dimensional simplices of \mathcal{N}
- boundary maps on simplicial complexes $\partial_{k}: C_{k} \rightarrow C_{k-1}$

$$
\partial_{k-1} \circ \partial_{k}=0
$$

usually stated as $\partial^{2}=0$

- cycles $Z_{k}=\operatorname{Ker}\left(\partial_{k}\right) \subset C_{k}$ and boundaries
$B_{k+1}=\operatorname{Range}\left(\partial_{k+1}\right) \subset C_{k}$
- because $\partial^{2}=0$ inclusion $B_{k+1} \subset Z_{k}$
- homology groups: quotient groups

$$
H_{k}(\mathcal{N}, \mathbb{Z})=\frac{\operatorname{Ker}\left(\partial_{k}\right)}{\operatorname{Range}\left(\partial_{k+1}\right)}=Z_{k} / B_{k+1}
$$

Boundary maps

Chain complexes and Homology

$$
H_{p}(X, \mathbb{Z})=\operatorname{Ker}\left(\partial_{p}: C_{p} \rightarrow C_{p-1}\right) / \operatorname{Im}\left(\partial_{p+1}: C_{p+1} \rightarrow C_{p}\right)
$$

What else does \mathcal{C} tells us about X ?

Figure 3: Four arrangements of three convex receptive fields, $\mathcal{U}=\left\{U_{1}, U_{2}, U_{3}\right\}$, each having $\Delta(\mathcal{C}(\mathcal{U}))=2^{[3]}$. Square boxes denote the stimulus space X in cases where $U_{1} \cup U_{2} \cup U_{3} \subsetneq X$. (A) $\mathcal{C}(\mathcal{U})=22^{[3]}$, including the all-zeros codeword 000. (B) $\mathcal{C}(\mathcal{U})=\{111,101,011,001\}$, with $X=U_{3}$. (C) $\mathcal{C}(\mathcal{U})=\{111,011,001,000\}$. (D) $\mathcal{C}(\mathcal{U})=$ $\{111,101,011,110,100,010\}$, and $X=U_{1} \cup U_{2}$. The minimal embedding dimension for the codes in panels A and D is $d=2$, while for panels B and C it is $d=1$.
all have same $\Delta(\mathcal{C})=2^{[3]}$ because $(1,1,1)$ code word for all cases

Embedding dimension

- minimal embedding dimension d: minimal dimension for which code \mathcal{C} can be realized as $\mathcal{C}(\mathcal{U})$ with open sets $U_{i} \subset \mathbb{R}^{d}$
- topological dimension: minimum d such that any open covering has a refinement such that no point is in more than $d+1$ open sets of the covering

- in previous examples $\Delta(\mathcal{C})=2{ }^{[3]}$ same but different embedding dimension

Main information carried by the code $\mathcal{C}=\mathcal{C}(\mathcal{U})$:
nontrivial inclusions

- some inclusion relations between intersections and unions always trivially satisfied: example $U_{1} \cap U_{2} \subset U_{2} \cup U_{3}$ because $U_{1} \cap U_{2} \subset U_{2}$
- other inclusion relations are specific of the structure of the collection \mathcal{U} of open sets and not always automatically satisfied: this is the information encoded in $\mathcal{C}(\mathcal{U})$
- all relations of the form

$$
\bigcap_{i \in \sigma} U_{i} \subseteq \bigcup_{j \in \tau} U_{j}
$$

for $\sigma \cap \tau=\emptyset$, including all empty intersections relations

$$
\bigcap_{i \in \sigma} U_{i}=\emptyset
$$

Problem: how to algorithmically extract this information from \mathcal{C} without having to construct \mathcal{U} ?

- key method: Algebraic Geometry (ideals and varieties)
- Rings and ideals: R commutative ring with unit, $I \subset R$ ideal (additive subgroup; for $a \in I$ and for all $b \in R$ product $a b \in I$)
- set S generators of $I=\langle S\rangle$

$$
I=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n}: r_{i} \in R, a_{i} \in S, n \in \mathbb{N}\right\}
$$

- prime ideal: $\wp \subsetneq R$ and if $a b \in \wp$ then $a \in \wp$ or $b \in \wp$
- maximal ideal: $\mathfrak{m} \subsetneq R$ and if I ideal $\mathfrak{m} \subset I \subset R$ then either $\mathfrak{m}=I$ or $I=R$ (geometrically maximal ideals correspond to points)
- radical ideal: $r^{n} \in I$ implies $r \in I$ for all n
- primary decomposition: $I=\wp_{1} \cap \cdots \cap \wp_{n}$ with \wp_{i} prime ideals

Affine Algebraic Varieties

- polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ over a field $K ; I \subset R$ ideal \Rightarrow variety $V(I)$

$$
V(I)=\left\{v \in K^{n}: f(v)=0, \forall f \in I\right\}
$$

- ideals $I \subseteq J \Rightarrow$ varieties $V(J) \subseteq V(I)$
- spectrum of a ring R : set of prime ideals

$$
\operatorname{Spec}(R)=\{\wp \subset R: \wp \text { prime ideal }\}
$$

- modeling n neurons with binary states on/off, so $K=\mathbb{F}_{2}=\{0,1\}$ and $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{2}^{n}$ a possible state of the set of neurons

Neural Ring

- given a binary code $\mathcal{C} \subset \mathbb{F}_{2}^{n}$ (neural code)
- ideal $I=I_{\mathcal{C}} \subset \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials vanishing on codewords

$$
I_{\mathcal{C}}=\left\{f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]: f(c)=0, \forall c \in \mathcal{C}\right\}
$$

- quotient ring (neural ring)

$$
R_{\mathcal{C}}=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] / I_{\mathcal{C}}
$$

- Note: working over \mathbb{F}_{2} so $2 \equiv 0$, so in $R_{\mathcal{C}}$ all elements idempotent $y^{2}=y$ (cross terms vanish): Boolean ring isomorphic to $\mathbb{F}_{2}^{\# \mathcal{C}}$, but useful to keep the explicit coordinate functions x_{i} that measure the activity of the i-th neuron

Neural Ring Spectrum

- maximal ideals in polynomial ring $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ correspond to points $v \in \mathbb{F}_{2}^{n}$, namely

$$
\mathfrak{m}_{v}=\left\langle x_{1}-v_{1}, \ldots, x_{n}-v_{n}\right\rangle
$$

- in a Boolean ring prime ideal spectrum and maximal ideal spectrum coincide
- for the neural ring $R_{\mathcal{C}}$ spectrum

$$
\operatorname{Spec}\left(R_{\mathcal{C}}\right)=\left\{\overline{\mathfrak{m}}_{v}: v \in \mathcal{C} \subset \mathbb{F}_{2}^{n}\right\}
$$

where $\overline{\mathfrak{m}}_{V}$ image in quotient ring of maximal ideal \mathfrak{m}_{v} in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$

- so spectrum of the neural ring recovers the code words of \mathcal{C}

Neural ideal

- in general difficult to provide explicit generators for the ideal $I_{\mathcal{C}}$ (problem for practical computational purposes)
- another closely related (more tractable) ideal: neural ideal $J_{\mathcal{C}}$
- given $v \in \mathbb{F}_{2}^{n}$ (a possible state of a system of n neurons) take function

$$
\rho_{v}=\prod_{i=1}^{n}\left(1-v_{i}-x_{i}\right)=\prod_{i \in \operatorname{supp}(v)} x_{i} \prod_{j \notin \operatorname{supp}(v)}\left(1-x_{j}\right)
$$

$\rho_{v} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$

- binary code $\mathcal{C} \subset \mathbb{F}_{2}^{n} \Rightarrow$ ideal $J_{\mathcal{C}}$

$$
J_{\mathcal{C}}=\left\langle\rho_{v}: v \notin \mathcal{C}\right\rangle
$$

when $\mathcal{C}=\mathbb{F}_{2}^{n}$ have $J_{\mathcal{C}}=0$ trivial ideal

- ideal of Boolean relations $\mathcal{B}=\mathcal{B}_{n}$

$$
\mathcal{B}=\left\langle x_{i}\left(1-x_{i}\right): i \in[n]\right\rangle
$$

- relation between ideals I_{C} and $J_{\mathcal{C}}$

$$
I_{\mathcal{C}}=J_{\mathcal{C}}+\mathcal{B}=\left\langle\rho_{v}, x_{i}\left(1-x_{i}\right): v \notin \mathcal{C}, i \in[n]\right\rangle
$$

Neural Ring Relations

- Notation: given $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ open sets and $\sigma \subset[n]$

$$
U_{\sigma}:=\cap_{i \in \sigma} U_{i}, \quad x_{\sigma}:=\prod_{i \in \sigma} x_{i}, \quad\left(1-x_{\tau}\right):=\prod_{j \in \tau}\left(1-x_{j}\right)
$$

- interpret coordinates x_{i} as functions on X :

$$
x_{i}(p)= \begin{cases}1 & p \in U_{i} \\ 0 & p \notin U_{i}\end{cases}
$$

- inclusions and relations: $U_{\sigma} \subset U_{i} \cup U_{j}$, then $x_{\sigma}=1$ implies either $x_{i}=1$ or $x_{j}=1$ so relation

$$
x_{\sigma}\left(1-x_{i}\right)\left(1-x_{j}\right)
$$

- all inclusion $U_{\sigma} \subseteq \cup_{i \in \tau} U_{i}$ correspond to relations $x_{\sigma} \prod_{i \in \tau}\left(1-x_{i}\right)$
- ideal $I_{\mathcal{C}(\mathcal{U})}$ generated by them (relations defining $R_{\mathcal{C}}$)

$$
I_{\mathcal{C}(\mathcal{U})}=\left\langle x_{\sigma} \prod_{i \in \tau}\left(1-x_{i}\right): U_{\sigma} \subseteq \cup_{i \in \tau} U_{i}\right\rangle
$$

Canonical Form pseudomonomial relations

- subsets $\sigma, \tau \subset[n]$: if $\sigma \cap \tau \neq \emptyset$ then $x_{\sigma}\left(1-x_{\tau}\right) \in \mathcal{B}$, if $\sigma \cap \tau=\emptyset$ then $x_{\sigma}\left(1-x_{\tau}\right) \in J_{\mathcal{C}}$
- functions of the form $f(x)=x_{\sigma}\left(1-x_{\tau}\right)$ with $\sigma \cap \tau=\emptyset$ pseudomonomial; ideal J generated by such: pseudomonomial ideal
- minimal pseudomonomial: $f \in J$ pseudomonomial, no other pseudomonomial g with $\operatorname{deg}(g)<\operatorname{deg}(f)$ and $f=g h$ for some $h \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$
- canonical form of pseudomonomial ideal $J=\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$ with f_{k} all the minimal pseudomonomials in J
- ideal $J_{\mathcal{C}}=\left\langle\rho_{v}: v \notin \mathcal{C}\right\rangle$ is pseudomonomial (not $I_{\mathcal{C}}$ because of Boolean relations)

Canonical Form of Neural Ring $J_{\mathcal{C}}: C F\left(J_{\mathcal{C}}\right)$

- given a binary code $\mathcal{C} \subset \mathbb{F}_{2}^{n}$ suppose realized as $\mathcal{C}=\mathcal{C}(\mathcal{U})$ with $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ in X (not necessarily convex)
- some $\sigma \subseteq[n]$ minimal for a property P if P satisfied by σ and not satisfied by any $\tau \subsetneq \sigma$
- canonical form $\operatorname{CF}\left(J_{\mathcal{C}}\right)$ of $J_{\mathcal{C}}$ three types of relations:
(1) x_{σ} with σ minimal for $U_{\sigma}=\emptyset$
(2) $x_{\sigma}\left(1-x_{\tau}\right)$ with $\sigma \cap \tau=, U_{\sigma} \neq \emptyset \cup_{i \in \tau} U_{i} \neq X$, and σ, τ minimal for $U_{\sigma} \subseteq \cup_{i \in \tau} U_{i}$
(3) $\left(1-x_{\tau}\right)$ with τ minimal for $X \subseteq \cup_{i \in \tau} U_{i}$
- minimal embedding dimension

$$
d \geq \max _{\sigma: x_{\sigma} \in C F\left(J_{\mathcal{C}}\right)} \# \sigma-1
$$

- there are efficient algorithms to compute $\operatorname{CF}\left(J_{\mathcal{C}}\right)$ given \mathcal{C} (without passing through \mathcal{U})

Example

A. $C F\left(J_{\mathcal{C}}\right)=\{0\}$. There are no relations here because $\mathcal{C}=2^{[3]}$.
B. $C F\left(J_{\mathcal{C}}\right)=\left\{1-x_{3}\right\}$. This Type 3 relation reflects the fact that $X=U_{3}$.
C. $C F\left(J_{\mathcal{C}}\right)=\left\{x_{1}\left(1-x_{2}\right), x_{2}\left(1-x_{3}\right), x_{1}\left(1-x_{3}\right)\right\}$. These Type 2 relations correspond to $U_{1} \subset U_{2}$, $U_{2} \subset U_{3}$, and $U_{1} \subset U_{3}$. Note that the first two of these receptive field relationships imply the third; correspondingly, the third canonical form relation satisfies: $x_{1}\left(1-x_{3}\right)=\left(1-x_{3}\right) \cdot\left[x_{1}(1-\right.$ $\left.\left.x_{2}\right)\right]+x_{1} \cdot\left[x_{2}\left(1-x_{3}\right)\right]$.
D. $C F\left(J_{\mathcal{C}}\right)=\left\{\left(1-x_{1}\right)\left(1-x_{2}\right)\right\}$. This Type 3 relation reflects $X=U_{1} \cup U_{2}$, and implies $U_{3} \subset U_{1} \cup U_{2}$.

