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Basic setting

set of neurons [n] = {1, . . . , n}
neural code C ⊂ Fn

2 with F2 = {0, 1}
codewords (or ”codes”) C ∋ c = (c1, . . . , cn) describe
activation state of neurons

support supp(c) = {i ∈ [n] : ci = 1}

supp(C) = ∪c∈Csupp(c) ⊂ 2[n]

2[n] = set of all subsets of [n]

neglect information about timing and rate of neural activity:
focus on combinatorial neural code
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Simplicial complex of the code

∆ ⊂ 2[n] simplicial complex if when σ ∈ ∆ and τ ⊂ σ then
also τ ∈ ∆

neural code C simplicial if supp(C) simplicial complex

if not, define simplicial complex of the neural code C as

∆(C) = {σ ⊂ [n] : σ ⊆ supp(c), for some c ∈ C}

smallest simplicial complex containing supp(C)
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Receptive fields

patterns of neuron activity

maps fi : X → R+ from space X of stimuli: average firing
rate of i-th neuron in [n] in response to stimulus x ∈ X

open sets Ui = {x ∈ X : f (x) > 0} (receptive fields) usually
assume convex

place field of a neuron i ∈ [n]: preferred convex region of the
stimulus space where it has a high firing rate
(orientiation-selective neurons: tuning curves, preference for
particular angle, intervals on a circle)

code words from receptive fields overlap
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Convex Receptive Field Code

stimulis space X ; set of neurons [n] = {1, . . . , n}; receptive
fields fi : X → R+, with convex sets Ui = {fi > 0}
collection of (convex) open sets U = {U1, . . . ,Un}
receptive field code

C(U) = {c ∈ Fn
2 :

(
∩i∈supp(c)Ui

)
∖
(
∪j /∈supp(c)Uj

)
̸= ∅}

all binary codewords corresponding to stimuli in X

with convention: intersection over ∅ is X and union over ∅ is ∅
if ∪i∈[n]Ui ⊊ X : there are points of stimulus space not covered
by receptive field (word c = (0, 0, . . . , 0) in C); if ∩i∈[n]Ui ̸= ∅
word c = (1, 1, . . . , 1) ∈ C points where all neurons activated
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Main Question

• if know the code C = C(U) without knowing X and U what can
you learn about the geometry of X? (to what extent X is
reconstructible from C(U))
• Step One: given a code C ⊂ Fn

2 with m = #C (number of code
words) there exists an X ⊆ Rd and a collection of (not necessarily
convex) open sets U = {U1, . . . ,Un} with Ui ⊂ X such that
C = C(U)

list code words ci = (ci ,1, . . . , ci ,n) ∈ C, i = 1, . . . ,m

for each code word ci choose a point xci ∈ Rd and an open
neighborhood Ni ∋ xci such that Ni ∩Nj = ∅ for i ̸= j

take U = {U1, . . . ,Un} and X = ∪m
j=1Nj with

Uj =
⋃

ck : j∈supp(ck )

Nk

if zero code word in C then N0 = X ∖ ∪jUj is set of outside
points not captured by code

by construction C = C(U)
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Caveat

• can always find a (X ,U) given C so that C = C(U) but not
always with Ui convex

• Example: C = F3
2 ∖ {(1, 1, 1), (0, 0, 1)} cannot be realized by a

U = {U1,U2,U3} with Ui convex

suppose possible: Ui ⊂ Rd convex and C = C(U)
know that U1 ∩ U2 ̸= ∅ because (1, 1, 0) ∈ C
know that (U1 ∩ U3)∖ U2 ̸= ∅ because (1, 0, 1) ∈ C
know that (U2 ∩ U3)∖ U1 ̸= ∅ because (0, 1, 1) ∈ C
take points p1 ∈ (U1 ∩U3)∖U2 and p2 ∈ (U2 ∩U3)∖U1 both
in U3 convex, so segment ℓ = tp1 + (1− t)p2, t ∈ [0, 1] in U3

if ℓ passes through U1 ∩ U2 then U1 ∩ U2 ∩ U3 ̸= ∅ but
(1, 1, 1) /∈ C (contradiction)

or ℓ does not intersect U1 ∩ U2 but then ℓ intersects the
complement of U1 ∪ U2 (see fig) this would imply (0, 0, 1) ∈ C
(contradiction)
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the two cases of the previous example
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Constraints on the Stimulus Space

• Codes C that can be realized as C = C(U) with Ui convex put
strong constraints on the geometry of the stimulus space X

two types of constraints

1 constraints from the simplicial complex ∆(C)
2 other constraints from C not captured by ∆(C)

Simplicial nerve of an open covering

U = {U1, . . . ,Un} convex open sets in Rd with d < n

nerve N (U) simplicial complex: σ = {i1, . . . , ik} ∈ 2[n] is in
N (U) iff Ui1 ∩ · · · ∩ Uik ̸= ∅
N (U) = ∆(C(U))
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convex open sets Ui and simplicial nerve N (U)
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another example of convex open sets Ui and simplicial nerve N (U)

The complex N (U) is also known as the Čech complex of the
collection U = {U1, . . . ,Un} of convex open sets
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• Topological fact (Helly’s theorem): convex U1, . . . ,Uk ⊂ Rd

with d < k : if intersection of every d + 1 of the Ui nonempty then
also ∩k

i=1Ui ̸= ∅
Consequence: the nerve N (U) completely determined by its
d-skeleton (largest n-complex with that given d-skeleton)
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Nerve Theorem
• Allen Hatcher Algebraic topology, Cambridge University Press,
2002 (Corollary 4G.3)

• Homotopy types: The homotopy type of X (U) = ∪n
i=1Ui is the

same as the homotopy type of the nerve N (U)

• Consequence: X (U) and N (U) have the same homology and
homotopy groups (but not necessarily the same dimension)

• Note: the space X (U) may not capture all of the stimulus space
X if the Ui are not an open covering of X , that is, if X ∖X (U) ̸= ∅
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Homology groups
• very useful topological invariants, computationally tractable

• simplicial complex N ⊂ 2[n]; groups of k-chains Ck = Ck(N )
abelian group spanned by k-dimensional simplices of N

• boundary maps on simplicial complexes ∂k : Ck → Ck−1

∂k−1 ◦ ∂k = 0

usually stated as ∂2 = 0

• cycles Zk = Ker(∂k) ⊂ Ck and boundaries
Bk+1 = Range(∂k+1) ⊂ Ck

• because ∂2 = 0 inclusion Bk+1 ⊂ Zk

• homology groups: quotient groups

Hk(N ,Z) =
Ker(∂k)

Range(∂k+1)
= Zk/Bk+1
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Boundary maps
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Chain complexes and Homology

Hp(X ,Z) = Ker(∂p : Cp → Cp−1)/Im(∂p+1 : Cp+1 → Cp)
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What else does C tells us about X?

all have same ∆(C) = 2[3] because (1, 1, 1) code word for all cases
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Embedding dimension

• minimal embedding dimension d : minimal dimension for which
code C can be realized as C(U) with open sets Ui ⊂ Rd

• topological dimension: minimum d such that any open covering
has a refinement such that no point is in more than d + 1 open
sets of the covering

• in previous examples ∆(C) = 2[3] same but different embedding
dimension
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Main information carried by the code C = C(U):
nontrivial inclusions

• some inclusion relations between intersections and unions always
trivially satisfied: example U1 ∩ U2 ⊂ U2 ∪ U3 because
U1 ∩ U2 ⊂ U2

• other inclusion relations are specific of the structure of the
collection U of open sets and not always automatically satisfied:
this is the information encoded in C(U)

• all relations of the form ⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj

for σ ∩ τ = ∅, including all empty intersections relations⋂
i∈σ

Ui = ∅
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Problem: how to algorithmically extract this information from C
without having to construct U?

• key method: Algebraic Geometry (ideals and varieties)

• Rings and ideals: R commutative ring with unit, I ⊂ R ideal
(additive subgroup; for a ∈ I and for all b ∈ R product ab ∈ I )

• set S generators of I = ⟨S⟩

I = {r1a1 + · · ·+ rnan : ri ∈ R, ai ∈ S , n ∈ N}

• prime ideal: ℘ ⊊ R and if ab ∈ ℘ then a ∈ ℘ or b ∈ ℘

• maximal ideal: m ⊊ R and if I ideal m ⊂ I ⊂ R then either m = I
or I = R (geometrically maximal ideals correspond to points)

• radical ideal: rn ∈ I implies r ∈ I for all n

• prime decomposition: radical I = ℘1 ∩ · · · ∩ ℘n with ℘i prime
ideals
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Affine Algebraic Varieties

• polynomial ring R = K [x1, . . . , xn] over a field K ; I ⊂ R ideal ⇒
variety V (I )

V (I ) = {v ∈ Kn : f (v) = 0, ∀f ∈ I}

• ideals I ⊆ J ⇒ varieties V (J) ⊆ V (I )

• spectrum of a ring R: set of prime ideals

Spec(R) = {℘ ⊂ R : ℘ prime ideal }

• modeling n neurons with binary states on/off, so
K = F2 = {0, 1} and v = (v1, . . . , vn) ∈ Fn

2 a possible state of the
set of neurons
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Neural Ring

given a binary code C ⊂ Fn
2 (neural code)

ideal I = IC ⊂ F2[x1, . . . , xn] of polynomials vanishing on
codewords

IC = {f ∈ F2[x1, . . . , xn] : f (c) = 0, ∀c ∈ C}

quotient ring (neural ring)

RC = F2[x1, . . . , xn]/IC

• Note: working over F2 so 2 ≡ 0, with relations xi (1− xi ), so in
RC all elements idempotent y2 = y (cross terms vanish): Boolean

ring isomorphic to F#C
2 , but useful to keep the explicit coordinate

functions xi that measure the activity of the i-th neuron
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Neural Ring Spectrum

• maximal ideals in polynomial ring F2[x1, . . . , xn] correspond to
points v ∈ Fn

2, namely

mv = ⟨x1 − v1, . . . , xn − vn⟩

• in a Boolean ring prime ideal spectrum and maximal ideal
spectrum coincide

• for the neural ring RC spectrum

Spec(RC) = {m̄v : v ∈ C ⊂ Fn
2}

where m̄v image in quotient ring of maximal ideal mv in
F2[x1, . . . , xn]

• so spectrum of the neural ring recovers the code words of C
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Neural ideal

• in general difficult to provide explicit generators for the ideal IC
(problem for practical computational purposes)

• another closely related (more tractable) ideal: neural ideal JC

• given v ∈ Fn
2 (a possible state of a system of n neurons) take

function

ρv =
n∏

i=1

(1− vi − xi ) =
∏

i∈supp(v)

xi
∏

j /∈supp(v)

(1− xj)

ρv ∈ F2[x1, . . . , xn]

• binary code C ⊂ Fn
2 ⇒ ideal JC

JC = ⟨ρv : v /∈ C⟩

when C = Fn
2 have JC = 0 trivial ideal
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• ideal of Boolean relations B = Bn

B = ⟨xi (1− xi ) : i ∈ [n]⟩

• relation between ideals IC and JC

IC = JC + B = ⟨ρv , xi (1− xi ) : v /∈ C, i ∈ [n]⟩
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Neural Ring Relations

• Notation: given U = {U1, . . . ,Un} open sets and σ ⊂ [n]

Uσ := ∩i∈σUi , xσ :=
∏
i∈σ

xi , (1− xτ ) :=
∏
j∈τ

(1− xj)

• interpret coordinates xi as functions on X :

xi (p) =

{
1 p ∈ Ui

0 p /∈ Ui

• inclusions and relations: Uσ ⊂ Ui ∪ Uj , then xσ = 1 implies
either xi = 1 or xj = 1 so relation

xσ(1− xi )(1− xj)

• all inclusion Uσ ⊆ ∪i∈τUi correspond to relations xσ
∏

i∈τ (1− xi )

• ideal IC(U) generated by them (relations defining RC)

IC(U) = ⟨xσ
∏
i∈τ

(1− xi ) : Uσ ⊆ ∪i∈τUi ⟩
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Canonical Form pseudomonomial relations

• subsets σ, τ ⊂ [n]: if σ ∩ τ ̸= ∅ then xσ(1− xτ ) ∈ B, if σ ∩ τ = ∅
then xσ(1− xτ ) ∈ JC

• functions of the form f (x) = xσ(1− xτ ) with σ ∩ τ = ∅
pseudomonomial; ideal J generated by such: pseudomonomial ideal

• minimal pseudomonomial: f ∈ J pseudomonomial, no other
pseudomonomial g with deg(g) < deg(f ) and f = gh for some
h ∈ F2[x1, . . . , xn]

• canonical form of pseudomonomial ideal J = ⟨f1, . . . , fℓ⟩ with fk
all the minimal pseudomonomials in J

• ideal JC = ⟨ρv : v /∈ C⟩ is pseudomonomial (not IC because of
Boolean relations)
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Canonical Form of Neural Ring JC : CF (JC)

• given a binary code C ⊂ Fn
2 suppose realized as C = C(U) with

U = {U1, . . . ,Un} in X (not necessarily convex)

• some σ ⊆ [n] minimal for a property P if P satisfied by σ and
not satisfied by any τ ⊊ σ

• canonical form CF (JC) of JC three types of relations:

1 xσ with σ minimal for Uσ = ∅
2 xσ(1− xτ ) with σ ∩ τ =, Uσ ̸= ∅ ∪i∈τUi ̸= X , and σ, τ

minimal for Uσ ⊆ ∪i∈τUi

3 (1− xτ ) with τ minimal for X ⊆ ∪i∈τUi

• minimal embedding dimension

d ≥ max
σ : xσ∈CF (JC)

#σ − 1

• there are efficient algorithms to compute CF (JC) given C
(without passing through U)
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Example
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How good as codes are neural codes?

how does one evaluate properties of codes in coding theory?

codes and code parameters, bounds

neural codes as error correcting codes

neural mechanisms passing from bad to good codes
(Chaudhuri–Fiete)

expander graphs and codes

Hopfield equations and hyperplane arrangements

Hopfield networks

expander codes and Hopfield networks
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When is a code a good code?

• view error correcting codes as an optimization problem

optimize encoding: more choice of code words make for better
encoding

optimize decoding: sparse code words make for better
decoding (better error correction: only one true code word
near a corrupted one)

• alphabet A = F2 (for binary codes), code C ⊂ Fn
2 (length n of

code words), x = (x1, . . . , xn) ∈ C code words

• unstructured: don’t necessarily require that the code is linear
(C ⊂ Fn

2 not necessarily an F2-vector space)
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Code parameters

• k = k(C ) := log2 #C and [k] = [k(C )] integer part of k(C )

2[k] ≤ #C = 2k < 2[k]+1

• Hamming distance: x = (ai ) and y = (bi ) in C

d((ai ), (bi )) := #{i ∈ (1, . . . , n) | ai ̸= bi}

• Minimal distance d = d(C ) of the code

d(C ) := min {d(a, b) | a, b ∈ C , a ̸= b}

• code parameters:

R = k/n = transmission rate of the code

δ = d/n = relative minimum distance of the code

Small R: fewer code words, easier decoding, but longer encoding
signal; small δ: too many code words close to received one, more
difficult decoding.
• Optimization problem: increase both R and δ... how good can
codes be?

Matilde Marcolli Neural Codes and Rings



Bounds in the space of code parameters

• code points (R(C ), δ(C )) in square [0, 1]2

• there is a tension between optimizing R and δ, which can be
seen in several bounds

• singleton bound: R + δ ≤ 1

• typical random codes (Shannon Random Code Ensemble: code
words and letter generated uniformly and randomly as i.i.d.
random variables) tend to accumulate in the region below the
Gilbert–Varshamov curve

• Gilbert–Varshamov curve: R = 1
2(1− H2(δ)) with q-ary entropy

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)
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• this comes from looking at the asymptotic behavior of volumes
of balls in the Hamming distance when the code length n → ∞,
governed by the function Hq(δ)

Volume estimate:

q(Hq(δ)−o(1))n ≤ Volq(n, d = nδ) =
d∑

j=0

(
n

j

)
(q − 1)j ≤ qHq(δ)n

Gives probability of parameter δ for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

E ∼
(
qk

2

)
Volq(n, d)q

−n ∼ qn(Hq(δ)−1+2R)+o(n)
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Asymptotic bound

• there is another curve in the space of code parameters: the
asymptotic bound, existence was proved by Manin using spoiling
operations on codes

Yu.I.Manin, What is the maximum number of points on a
curve over F2? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715–720.

• no explicit expression for the asymptotic bound R = αq(δ) (in
fact question about the computability of this function because of
relation to Kolmogorov complexity)

Yu.I.Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246

Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, J. Differential
Geom. 97 (2014), no. 1, 91–108
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Estimates on the asymptotic bound
• known estimates about the asymptotic bound

Plotkin bound:

αq(δ) = 0, for δ ≥ q − 1

q

singleton bound: R = αq(δ) lies below R + δ = 1

Hamming bound:

αq(δ) ≤ 1− Hq(
δ

2
)

Gilbert–Varshamov bound:

αq(δ) ≥ 1− Hq(δ)

• no statistical description of the asymptotic bound unlike the
Gilbert–Varshamov bound and random codes
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Characterization of the asymptotic bound
• R = αq(δ) separates the region below where code points are
dense and have infinite multiplicity and region above where code
points are isolated and have finite multiplicity

Yuri I. Manin, Matilde Marcolli, Error-correcting codes and phase
transitions, Mathematics in Computer Science (2011) 5:133—170

Good codes: codes near or above the asymptotic bound

• main source of good codes: algebro-geometric codes

M.A. Tsfasman, S.G. Vladut, Th. Zink, Modular curves, Shimura
curves, and Goppa codes, better than Varshamov-Gilbert bound,
Math. Nachr. 109 (1982) 21–28

• other unexpected sources of codes above the asymptotic bound:
linguistics

K.Shu, M.Marcolli, Syntactic structures and code parameters,
Math. Comput. Sci. 11 (2017), no. 1, 79–90.

M.Marcolli, Syntactic parameters and a coding theory perspective
on entropy and complexity of language families, Entropy 18 (2016)
no. 4, paper 110
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Neural codes as error-correcting codes

C. Curto, V. Itskov, K. Morrison, Z. Roth, J.L. Walker,
Combinatorial neural codes from a mathematical coding
theory perspective, Neural Comput. 25 (2013), no. 7,
1891–1925.

comparison between error-correcting properties of neural
codes and random codes of the same length and size
probability of a neuron failing to fire in response to a stimulus
is greater that the probability of a neuron firing in the absence
of a stimulus
so binary asymmetric channel (BAC) false-positive probability
0 < p < 1/2 of 0 flipping to 1 and false-negative probability
0 < q < 1/2 opposite flip, with p ≤ q
also assume error probability p ≤ s smaller than the sparsity s
of the neural code (with w(c) = #{i : ci = 1} weight)

s = s(C ) :=
1

#C

∑
c∈C

w(c)

n
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overall probability of error in transmission p(1− s) + qs (for
words transmitted with equal probabilities)

maximum likelihood decoder: P(r |c) probability of r received
if c transmitted

cML = argmaxc∈C P(r |c)

for symmetric p = q decoding equivalent to usual
minimization of Hamming distance

cp=q
ML = argmaxc∈C dH(c, r)
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• observed performance for 2-dimensional receptor field neural
codes compared to random codes
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neural codes have high redundancy: low values of the R(C )
transmission rate parameter R(C ) = n−1 log2#C

but also low values of the relative minimum distance δ(C ):
consider a pair Ui ∩ Uj ̸= ∅ of overlapping receptor fields open
sets: code words c , c ′ with ci = 1 and c ′j = 1 and there is a
code word ĉ with both ĉi = ĉj = 1, so achieve min of
Hamming distance

below the Gilbert-Varsamov line (where typical behavior of
random codes is located)

if an error-tolerance threshold introduced between original
code word and decoded one, then error-correction more similar
to random codes case
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Most neural codes are not good codes, but “rely on” good codes

Yuri I. Manin, Error-correcting codes and neural networks,
Selecta Math. (N.S.) 24 (2018), no. 1, 521–530.

• models of encoding of stimulus space via error-correcting codes

• computing code parameters of typical neural codes corresponding
to visual stimuli gives codes with very low positioning in the space
of code parameters (not good codes): combinatorics of covering
can make minimal Hamming distance between code words small

• auxiliary codes involved in the formation of “place maps” in the
brain; experiments show these show signatures of “criticality”

M. Nonnenmacher, Ch. Behrens, Ph. Berens, M. Bethge, J. Macke,
Signatures of criticality arise in simple neural models with
correlations, arXiv:1603.00097

G. Tkacik, T. Mora, O. Marre, D. Amodei, S. Palmer, M. Berry, W.
Bialekl, Thermodynamics and signatures of criticality in a network
of neurons, Proc. Nat. Ac. Sci, 112(37):11, 2015, 508–517
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• in this paper Manin makes a proposal that the “criticality”
behavior of neural codes involved in place field maps is related to
their position as “good codes” near the asymptotic bound

• the idea is based on a characterization of the asymptotic bound
for error-correcting codes via Kolmogorov complexity and another
characterization as a phase transition obtained in

Yu.I. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, J. Differential Geom.
97 (2014), no. 1, 91–108

Yuri I. Manin, Matilde Marcolli, Error-correcting codes and phase
transitions, Mathematics in Computer Science (2011) 5:133—170

• in turn criticality can be characterized as behavior of a system
near a phase transition and codes weighted by a probability
distribution based on Kolmogorov complexity have a phase
transition at the asymptotic bound
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bad to good neural codes via expaner graphs (Rishidev Chaudhuri
and Ila Fiete)

R. Chaudhuri, I. Fiete, Bipartite expander Hopfield networks as
self-decoding high-capacity error correcting codes, 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada.

neural mechanism from “bad codes” of open coverings of
place fields to “good codes”, via expander graphs
Hopfield networks used as models for neural memory (error
correction through dynamics)
Hopfield networks with exponentially many robust stable
states via expander codes
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First Step: binary Hopfield networks

binary Hopfield network: model of memory storage and
retrieval in neuronal networks

analogy with spin glass models in statistical physics

population of N neurons Si : each two possible states Si = ±1
firing/not-firing (in a fixed time interval ∆t)

discrete dynamics (Wij weight matrix assumed symmetric,
Wij = Wji )

Si (n + 1) = sign

∑
j

WijSj(n)


update rule implemented a single Si at a time: either
maintaining value or flipping
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energy functional

E = −
∑
ij

WijSiSj

Lyapunov function of the dynamics: decreases under flipping
of a single Si under update rule

if Si (n + 1) = −Si (n) and Sj(n + 1) = Sj(n) = Sj for j ̸= i

E(n + 1)− E(n) = −2
∑
ji

WjiSj(Si (n + 1)− Si (n))

= −4
∑
ji

WjiSjSi (n + 1) = −4(
∑
ji

WjiSj)sign(
∑
ji

WjiSj) < 0

with update rule (and symmetric W )

so binary Hopfield dynamics flows toward energy minima
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Memory storage and retrieval in binary Hopfield networks

idea: choice of weight matrix Wij determined by given set of
patterns one wants to store in the network

set of M patterns: binary strings {πa
i }a=1,...,M, i=1,...,N

satisfying
∑

i π
a
i = 0

Hebbian learning rule: take weights of the form

Wij =
1

N

M∑
a=1

πa
i π

a
j

compare state Si with one of the pattern πa
i by measuring

overlap

µa =
1

N

∑
i

πa
i Si

max value +1 when complete match of Si and πa
i , min value

−1 when opposite pattern (value ∼ 0 low correlation)
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update rule of the binary Hopfield network∑
j

WijSj =
1

N

∑
j ,a

πa
i π

a
j Sj =

∑
a

πa
i µ

a

energy with minima at the M patters (where overlap
maximum) and their opposites

E = −N
∑
a

(µa)2

initializing dynamics close to one of the stored patterns will
cause dynamics to reconstruct the pattern by flowing to
corresponding energy minimum
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case of single pattern πi : fixed point of dynamics

sign(
∑
j

Wijπj) = sign(
1

N

∑
j

πiπjπj) = sign(πi ) = πi

but not always for multiple patterns:

sign(
∑
j

Wijπ
a
j ) = sign

 1

N

∑
j ,b

πb
i π

b
j π

a
j



= πa
i sign

1 +
1

N

∑
j ,b ̸=a

πb
i π

a
i π

b
j π

a
j


since

∑
j π

a
j π

a
j = N and πa

i π
a
i = 1

continuous parameters Hopfield networks (we’ll discuss later)
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Second Step: Expander Graphs

sparse graphs (few edges) but strong connectivity properties
(many paths between nodes, short)

both highly connected and sparse, exhibit pseudo-random
behavior

random walk through the graph gets lost quickly: good for
stochastic and diffusion processes

geometric property: every not “too large” subset of vertices
has a “large” boundary (“expander”)

expander versus non-expander:
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Expansion Constant

two sets of vertices S ,T of graph G then E (S ,T ) set of
edges of G one end-vertex in S the other in T

∂S = E (S ,G ∖ S) “boundary” of the region with vertex set S

expansion constant of G

h(G ) := min{# ∂S

# S
|S ⊂ V , #S ≤ n/2}

graph-theoretic analog of Cheeger constant for Riemannian
manifolds

h(M) := inf
Y

Vn−1(X )

min{Vn(M1),Vn(M2)
,

infimum over all (n − 1)-dimensional submanifolds X ⊂ M
that decompose M = M1 ∪X M2

h(M) measures whether the manifold M has bottlenecks, so
does h(G )

related to spectrum of graph Laplacian
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Expander Property: (γ, α)-expander graph

N = #V (G ), α > 1, 0 < γ < 1: for S ⊂ V (G )

#S ≤ γN =⇒ #∂S ≥ α#S

often taken with γ = 2 as in h(G ) above
a good expander graph has large expansion constant and low
vertex degrees

Bipartite Expander Graphs:

(γ, 1− ϵ)-expander: subsets S ⊂ V (G ) with deg(v) = z (fixed
valence) and #S ≤ γN have

#N(S) = #∂S > (1− ϵ) z #S

in particular case of the (z , k)-biregular graphs z =input set
valence, k =output set valence
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Bipartite Graphs and Linear Codes

binary [n, k , d ]2-code C ⊂ Fn
2, linear if C linear subspace of

F2-vector space Fn
2, then k = dimF2(C )

parity-check matrix H of C is an (n − k)× n matrix of rank
n − k over F2, with C = {x ∈ Fn

2 |Hx = 0}
H provides description of linear code in terms of bipartite
graph:
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Tanner Codes

start with a linear binary code C0 ⊂ Fd
2 with code parameters

(R0, δ0) (not necessarily a good code)

G a bipartite graph with n inputs m-outputs and
right-d-regular (all output vertices same valence d)

Tanner code T (G ,C0) ⊂ Fn
2

T (G ,C0) = {x = (xv )v∈Vin(G) | x |N(v ′) ∈ C0, ∀v ′ ∈ Vout(G )}

code parameters

R ≥ 1− md

n
(1− R0) and δ ≥ γ

δ-estimate if G is (c , d)-biregular with c ≥ 3 and (γ, c(1− ϵ))
expander, and ϵ < 1− 1/d0 for δ0 = d0/d .

(but regularity assumptions on expander graphs not so
realistic for neural codes applications)
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Usual Hopfield networks

N neurons xi , binary values detect whether the neurons active
or inactive in n-th time interval

network with discrete dynamics

xi (n + 1) =

{
1 if

∑
j Wijxj(n) + θj > 0

0 if
∑

j Wijxj(n) + θj ≤ 0,

−θj activation thresholds and Wij weight matrix

energy functional

E (x) = −1

2

∑
i ,j

Wijxixj −
∑
i

θixi

discrete update rule of the dynamics: changing state of a
neuron and accepting the change if it decreasing the energy
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Higher Hopfield networks from linear codes

linear code C with constraints specified by the parity check
matrix H
represented as a bipartite graph G : set of (input) nodes the n
digits of the code words (code length n), set of (output)
nodes the linear constraints imposed by parity check matrix
(codim n − k) ∑

v∈N(v ′)

xv = 0, for v ′ ∈ Vout(G )

write parity check constraints multiplicatively: spins
sj = eπixj ∈ {±1}∑

j :Hij=1

xj = 0 =⇒
∏

j :Hij=1

sj = 1

then energy functional minimized at xj satisfying
H-constraints

E (s) = −
∑
i

∏
j :Hij=1

sj

Matilde Marcolli Neural Codes and Rings



the interactions
∏

j :Hij=1 sj of the higher Hopfield network
N-simplex instead of graph vertex... reduce to usual Hopfield
networks

N ′ = #Vout(G ) number of parity-check constraints

assume v ′ ∈ Vout(G ) have valence deg(v ′) = zC

graph G has (γ, (1− ϵ))-expander property if for S ⊂ Vin(G )
with #S ≤ γN boundary ∂S = N(S) ⊂ Vout(G ) has
#N(S) ≥ c(1− ϵ)#S .

since Vout(G ) is set of linear constraints of C and Vin(G ) set
of variables, the expander property means a sufficiently small
subset S of variables participates in a significant part of linear
constraints

zC = #N(v ′) input neurons in Vin(G ) connected to v ′ can
take 2zC possible states σ = (xv )v∈N(v ′)

fix a set Σ = {σ1, . . . , σN′} = {σv ′}v ′∈Vout(G) of such states
σv ′ = (xv ,v ′)v∈N(v ′) with the property that any two σi , σj ,
i ̸= j in Σ differ in at least two digits
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“Glomerulus” structure (node Hopfield network)

obtain a “constraint node network” Gν′ with at most 2zC−1

nodes (all with shared inputs from vertices of N(ν ′):
glomerulus (node Hopfield network)
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Energy functional

E (x , y) = −(x tUx + θy +
1

2
y tWy)

x = (xv )v∈Vin(G) and y = (yv ′)v ′∈Vout(G)

U = (Uv ,v ′) with v ∈ Vin(G ) and v ′ ∈ Vout(G )

Uv ,v ′ =

{
1 xv ,v ′ = 1

−1 xv ,v ′ = 0.

θ = (θv ′)v ′∈Vout(G) be given by

θv ′ = deg(v ′)−
∑

v∈N(v ′)

xv ,v ′ ,

with deg(v ′) = zC
W the (N ′ × N ′)-matrix with zeros on the diagonal and all
other entries equal to −(zC − 1): inhibitory connection
between constraint neurons

energy minima given by x = σv ′ and yu = δv ′,u
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if neuron within node Hopfield network Gv ′ receives input
matching configuration σv ′ (its “preferred state”) becomes
active (energetically preferred configuration because of the
U-term in the energy)

suppresses other neurons in Gv ′ because of inhibition W -term

if input does not match any σv ′ higher energy configuration

minimum energy states occur when input neuron
configuration satisfies all the linear constraints (and
corresponding constraint node Hopfield networks active)

total number of minimum energy states grows exponentially
with size of network

for sufficiently large N,N ′ sparse network (with all nodes of
constraint node Hopfield networks Gv ′ and all input nodes of
G ) and has good expander properties

energy based decoding: flips violate parity check constraints
and increase energy: get number of errors by energy value
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as brain model (Chaudhuri–Fiete)

bipartite graph: neurons as the input nodes, output nodes
representing small networks of neurons interacting
competitively with each other through inhibition

size of these small networks at output nodes is bounded
(2zC−1) independently of sizes N,N ′ of vertex set of bipartite
graph

input patterns in a very high-dimensional space (possibly
neocortex)

mapped to the exponentially-many stable states of a bipartite
expander Hopfield network (possibly hippocampus)

providing memory labels for patterns that network can retrieve

expander codes associated to these networks with good code
properties: possible mechanism for passing from bad error
correcting properties of neural codes to good codes
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