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Basic setting

@ set of neurons [n] = {1,...,n}
e neural code C C F§ with Fp, = {0,1}
@ codewords (or "codes") C 5 ¢ = (cy,. .., cp) describe

activation state of neurons

e support supp(c) ={i € [n] : ¢; =1}
supp(C) = Ucecsupp(c) C 21"

2l7] = set of all subsets of [n]

@ neglect information about timing and rate of neural activity:
focus on combinatorial neural code
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Simplicial complex of the code

o A c 2" simplicial complex if when o € A and 7 C o then
alsoT € A

@ neural code C simplicial if supp(C) simplicial complex

@ if not, define simplicial complex of the neural code C as
A(C) ={o C [n] : ¢ Csupp(c), forsomeceC}

smallest simplicial complex containing supp(C)

Simplicial complex Invalid Simplicial complex
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Receptive fields

@ patterns of neuron activity

@ maps f; : X — R, from space X of stimuli: average firing
rate of /-th neuron in [n] in response to stimulus x € X

@ open sets U; = {x € X : f(x) > 0} (receptive fields) usually
assume convex

@ place field of a neuron i € [n]: preferred convex region of the
stimulus space where it has a high firing rate
(orientiation—selective neurons: tuning curves, preference for
particular angle, intervals on a circle)

@ code words from receptive fields overlap

activity pattern QOO C O activity pattern OO QOO
codeword 11100 codeword 0 0 1 01
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Convex Receptive Field Code

e stimulis space X; set of neurons [n] = {1,..., n}; receptive
fields f; : X — R, with convex sets U; = {f; > 0}

@ collection of (convex) open sets U = {Us,..., Uy}

e receptive field code

CU) = {c € F3 : (Nicsupp(c) Ui) ~ (Ujgsupp(e)Us) # 0}

all binary codewords corresponding to stimuli in X
@ with convention: intersection over () is X and union over 0 is ()

o if Uic[yUi C X: there are points of stimulus space not covered

by receptive field (word ¢ = (0,0, ...,0) in C); if Nigpy Ui # 0
word ¢ = (1,1,...,1) € C points where all neurons activated
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Main Question

e if know the code C = C(U) without knowing X and & what can
you learn about the geometry of X7 (to what extent X is
reconstructible from C(U))

e Step One: given a code C C F§ with m = #C (number of code
words) there exists an X C R9 and a collection of (not necessarily
convex) open sets U = {Ui, ..., Up} with U; C X such that
C=CU)

e list code words ¢; = (¢j1,...,¢n) €C, i=1,....,m

@ for each code word c; choose a point x; € R and an open

neighborhood N; 3 x, such that N; NN =0 for i #
o take U = {U1,..., Up} and X = U, N} with

u= U N
ck :j€supp(ck)
o if zero code word in C then Ny = X ~ U;jU; is set of outside
points not captured by code
@ by construction C = C(U)
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Caveat

e can always find a (X,U) given C so that C = C(U) but not
always with U; convex
e Example: C =3~ {(1,1,1),(0,0,1)} cannot be realized by a
U = {U, Uz, Us} with U; convex
@ suppose possible: U; C RY convex and C = C(U)
@ know that Uy N Us # 0 because (1,1,0) € C
e know that (U; N U3) \ Uz # 0 because (1,0,1) € C
e know that (U> N Us) \ Uy # 0 because (0,1,1) € C
e take points p1 € (U1 NU3)\ Uz and pp € (U2N Usz) ~\ U both
in Us convex, so segment ¢ = tp; + (1 — t)po, t € [0,1] in U3
o if £ passes through U; N U, then Uy N U N Uz # ) but
(1,1,1) ¢ C (contradiction)
@ or / does not intersect U; N Us but then ¢ intersects the
complement of Uy U U (see fig) this would imply (0,0,1) € C
(contradiction)
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U'] UZ U-] U2

/N

2N

the two cases of the previous example
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Constraints on the Stimulus Space

e Codes C that can be realized as C = C(U) with U; convex put
strong constraints on the geometry of the stimulus space X
two types of constraints

@ constraints from the simplicial complex A(C)

@ other constraints from C not captured by A(C)

Simplicial nerve of an open covering
o U ={Ui,...,U,} convex open sets in RY with d < n

o nerve N'(U4) simplicial complex: o = {i1,..., i} € 2[" is in
NU)iffU,N---NU, #0
o N(U)=A(CUU))
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convex open sets U; and simplicial nerve N (i)
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another example of convex open sets U; and simplicial nerve N (i)

The complex N (U) is also known as the Cech complex of the
collection U = { U1, ..., U,} of convex open sets
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e Topological fact (Helly's theorem): convex Uy, ..., Ux C RY
with d < k: if intersection of every d 4+ 1 of the U; nonempty then
also NK_ Ui # 0

Consequence: the nerve N'(U) completely determined by its
d-skeleton (largest n-complex with that given d-skeleton)

(The 1-Skeleton)
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Nerve Theorem
e Allen Hatcher Algebraic topology, Cambridge University Press,
2002 (Corollary 4G.3)

e Homotopy types: The homotopy type of X(U) = U, U; is the
same as the homotopy type of the nerve N (i)

e Consequence: X(U) and N(U) have the same homology and
homotopy groups (but not necessarily the same dimension)

e Note: the space X(U) may not capture all of the stimulus space
X if the U; are not an open covering of X, that is, if X ~ X(U) # 0
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Homology groups
e very useful topological invariants, computationally tractable

e simplicial complex ' C 2["]; groups of k-chains C, = Ci(N)
abelian group spanned by k-dimensional simplices of N

e boundary maps on simplicial complexes 0y : C, — Ci_1
Ok—100,k =0

usually stated as 9% = 0

e cycles Z, = Ker(9x) C Cx and boundaries
Byy1 = Range(0k11) C Ck

e because 9% = 0 inclusion By, C Zj

e homology groups: quotient groups

_ Ker(0r)
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Boundary maps

v, :’1
o,
/ —_ [v.Hv.)
Vi Vo.
v, v,
0,
——— [V|,V2]‘[V0,V2]+[VO,V|]
Vo Vi Vg —— = V)
v, v,
0
v ;
7 2 —— Y [V1=V2:V3]-[Vuavzav3]
+[V0=V| ,V3] - [Vl)?vl :Vz]
VD V, Vu Vl
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Chain complexes and Homology

Hp(X,Z) = Ker(ap : Cp — Cp_l)/Im(8p+1 : Cp+1 — Cp)
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What else does C tells us about X7?

Figure 3: Four arrangements of three convex receptive
fields, Y = {U,,Us,Us}, each having A(C(U)) = 2Bl
Square boxes denote the stimulus space X in cases where
U,UlLULs € X. (A) C(U) = 2B, including the all-zeros
codeword 000. (B) C(i4) = {111,101,011,001}, with
X = Us. (C) C(U) = {111,011,001,000}. (D) C(Ud) =
{111,101,011,110,100,010}, and X = U; UU;. The
minimal embedding dimension for the codes in panels A
and D is d = 2, while for panels B and Citisd = 1.

all have same A(C) = 2B because (1,1,1) code word for all cases
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Embedding dimension

e minimal embedding dimension d: minimal dimension for which
code C can be realized as C(U/) with open sets U; C R?

e topological dimension: minimum d such that any open covering
has a refinement such that no point is in more than d + 1 open
sets of the covering

7 i
|.. ' | | R .:I
|Y k:> \
( %—%

2 gverlap

3 overlap

e in previous examples A(C) = 2B same but different embedding
dimension
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Main information carried by the code C = C(U):
nontrivial inclusions

e some inclusion relations between intersections and unions always
trivially satisfied: example U; N Uy C Us U U3 because
Uuynth cl

e other inclusion relations are specific of the structure of the
collection U of open sets and not always automatically satisfied:
this is the information encoded in C(U)

e all relations of the form
ﬂ U, C U U;
i€o JeT
for c N7 = (), including all empty intersections relations

(Ui=0

i€o
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Problem: how to algorithmically extract this information from C
without having to construct U7

e key method: Algebraic Geometry (ideals and varieties)

e Rings and ideals: R commutative ring with unit, / C R ideal
(additive subgroup; for a € I and for all b € R product ab € /)

e set S generators of | = (S)

I ={na+---+ma,: rneER,a €S, neN}

e prime ideal: p C Randifabe pthenacporbeyp

e maximal ideal: m C R and if / ideal m C / C R then either m =/
or | = R (geometrically maximal ideals correspond to points)

e radical ideal: r" € | implies r € I for all n

e prime decomposition: radical | = p1 N --- N @, with p; prime
ideals
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Affine Algebraic Varieties

e polynomial ring R = K[x,...,x,] over a field K; | C R ideal =
variety V/(/)

V(II)={veK": f(v)=0,Vfel}
e ideals | C J = varieties V/(J) C V/(/)
e spectrum of a ring R: set of prime ideals

Spec(R) = {p C R : p prime ideal }

e modeling n neurons with binary states on/off, so
K =F,={0,1} and v = (v1,...,vp) € F] a possible state of the
set of neurons
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Neural Ring

@ given a binary code C C F3 (neural code)

e ideal | = o C Fy[xy,...,xpn] of polynomials vanishing on
codewords

le = {f € Falx1,...,x5] : f(c) =0, VceC}
@ quotient ring (neural ring)
Re = Fa[x1,...,xal/lc

e Note: working over F; so 2 = 0, with relations x;(1 — x;), so in
Rec all elements idempotent y? = y (cross terms vanish): Boolean
ring isomorphic to ch, but useful to keep the explicit coordinate
functions x; that measure the activity of the /-th neuron
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Neural Ring Spectrum

e maximal ideals in polynomial ring Fa[xi, ..., x,] correspond to
points v € FJ, namely

m, = (X1 — Vi,...,Xn — Vp)

e in a Boolean ring prime ideal spectrum and maximal ideal
spectrum coincide

e for the neural ring Re spectrum
Spec(Re) = {m, : veC C F5}

where m, image in quotient ring of maximal ideal m, in
Falx1, ..., xn]
e so spectrum of the neural ring recovers the code words of C
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Neural ideal

e in general difficult to provide explicit generators for the ideal /¢
(problem for practical computational purposes)

e another closely related (more tractable) ideal: neural ideal J¢

e given v € FJ (a possible state of a system of n neurons) take
function

n

pv:H(l_Vi_Xi): H Xj H (1—x)

i=1 iesupp(v) j¢supp(v)

Pv € FQ[Xl, e ,Xn]
e binary code C C 5 = ideal J¢

Jo=(p,:vgQ)

when C = [ have Jg = 0 trivial ideal
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e ideal of Boolean relations B = B,

B={(xi(l-—x):ié€][n])

e relation between ideals Iz and J¢

le=Je+B={(py, xi(l—x;) : v¢&C,i€l[n])
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Neural Ring Relations

e Notation: given U = {Us,..., U,} open sets and o C [n]
U, =Nico Ui, x5 1= HX,, (1—x):= H(l — Xj)
i€o JeT

e interpret coordinates x; as functions on X:
1 pey;
X =
i(p) { 0 pé U
e inclusions and relations: U, C U; U Uj, then x, = 1 implies
either x; = 1 or x; = 1 so relation

X (1 =x)(1 =)

e all inclusion U, C Ujc,U; correspond to relations x, [ ;. (1 — x;)
e ideal /o) generated by them (relations defining Re)
le@y = (%o H(l —xi) : Uy CUier Up)
ier
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Canonical Form pseudomonomial relations

e subsets 0,7 C [n]: if oNT # 0 then x,(1 —x;) € B, ifon7T =10
then x,(1 — x;) € J¢

e functions of the form f(x) = x,(1 — x;) with o N7 =10
pseudomonomial; ideal J generated by such: pseudomonomial ideal

e minimal pseudomonomial: f € J pseudomonomial, no other
pseudomonomial g with deg(g) < deg(f) and f = gh for some
h e IFQ[Xl, - ,Xn]

e canonical form of pseudomonomial ideal J = (f1, ..., f;) with f,
all the minimal pseudomonomials in J

e ideal Jo = (p, : v ¢ C) is pseudomonomial (not Iz because of
Boolean relations)
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Canonical Form of Neural Ring Jo: CF(Je)

e given a binary code C C FJ suppose realized as C = C(U) with
U={U,...,Up} in X (not necessarily convex)

e some o C [n] minimal for a property P if P satisfied by o and
not satisfied by any 7 C ¢
e canonical form CF(J¢) of Je three types of relations:
@ x, with ¢ minimal for U, = ()
Q X, (1 —x;)withont=, U, #0 Ui, U; # X, and o, 7
minimal for U, C Uje, U;
© (1 — x;) with 7 minimal for X C Uje, U;

e minimal embedding dimension

d> a -1
- U:Xo'rgc)lf_(.jc)#o-

e there are efficient algorithms to compute CF(J¢) given C
(without passing through i)
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Example

A. CF(J¢) = {0}. There are no relations here because ¢ = 219,
B. CF(J¢) = {1 — z3}. This Type 3 relation reflects the fact that X = Us.

C. CF(Jg) = {z1(1 — z2),z2(1 — z3),z1(1 — z3)}. These Type 2 relations correspond to U/; C Uy,
Uy € U, and Uy € Us. Note that the first two of these receptive field relationships imply the
third; correspondingly, the third canonical form relation satisfies: z1(1 —3) = (1 — z3) - [z1(1 —
z9)] + 1 - [z2(1 — z3)).

D. CF(J¢) = {(1—21)(1—=z»)}. This Type 3 relation reflects X = U; UU», and implies U3 C Uy UUs.
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How good as codes are neural codes?
@ how does one evaluate properties of codes in coding theory?
codes and code parameters, bounds

neural codes as error correcting codes

neural mechanisms passing from bad to good codes
(Chaudhuri-Fiete)

expander graphs and codes
Hopfield equations and hyperplane arrangements

Hopfield networks

expander codes and Hopfield networks
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When is a code a good code?

e view error correcting codes as an optimization problem

@ optimize encoding: more choice of code words make for better
encoding

@ optimize decoding: sparse code words make for better
decoding (better error correction: only one true code word
near a corrupted one)

e alphabet A = F, (for binary codes), code C C Fj (length n of
code words), x = (x1,...,%,) € C code words

e unstructured. don't necessarily require that the code is linear
(C C 5 not necessarily an Fa-vector space)
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Code parameters
e k = k(C) :=logy, #C and [k] = [k(C)] integer part of k(C)
okl < #.C = 2k < olk+1

e Hamming distance: x = (a;) and y = (b;) in C

d((ai), (b)) = #{i € (1,...,n)[a; # bi}
e Minimal distance d = d(C) of the code
d(C) :=min{d(a,b)|a,b e C,a# b}

e code parameters:
@ R = k/n = transmission rate of the code
@ 0 = d/n = relative minimum distance of the code

Small R: fewer code words, easier decoding, but longer encoding
signal; small §: too many code words close to received one, more
difficult decoding.

e Optimization problem: increase both R and §... how good can
codes be?
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Bounds in the space of code parameters
e code points (R(C),5(C)) in square [0, 1]

e there is a tension between optimizing R and ¢, which can be
seen in several bounds

e singleton bound: R+6 <1

e typical random codes (Shannon Random Code Ensemble: code
words and letter generated uniformly and randomly as i.i.d.
random variables) tend to accumulate in the region below the
Gilbert—Varshamov curve

e Gilbert—Varshamov curve: R = (1 — Ha()) with g-ary entropy

Hq(6) = 0 logy(q — 1) — 6 log, 6 — (1 —6) log,(1 — 0)
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e this comes from looking at the asymptotic behavior of volumes
of balls in the Hamming distance when the code length n — oo,
governed by the function Hgy(0)

Volume estimate:

d
q(Hq((S)*O( ))n < Vol n d — nd = Z <n> (q — 1 J < qu((S)n
Jj=0

Gives probability of parameter § for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

p
£ <<72 ) Vol (n, d)g~" ~ g"He(®)~1+2R)+o()
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Asymptotic bound

e there is another curve in the space of code parameters: the
asymptotic bound, existence was proved by Manin using spoiling
operations on codes

@ Yu.l.Manin, What is the maximum number of points on a
curve over F»7 J. Fac. Sci. Tokyo, IA, Vol. 28 (1981),
715-720.

e no explicit expression for the asymptotic bound R = a4(0) (in
fact question about the computability of this function because of
relation to Kolmogorov complexity)

@ Yu.l.Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246

@ Yu.l. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, J. Differential
Geom. 97 (2014), no. 1, 91-108
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Estimates on the asymptotic bound
e known estimates about the asymptotic bound

@ Plotkin bound:

aq(0) =0, for 0> q;l

@ singleton bound: R = ag(0) lies below R+6 =1

@ Hamming bound:

@ Gilbert—Varshamov bound:
ag(8) > 1 — Hg(0)

e no statistical description of the asymptotic bound unlike the
Gilbert—Varshamov bound and random codes
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Characterization of the asymptotic bound

e R = a4(0) separates the region below where code points are
dense and have infinite multiplicity and region above where code
points are isolated and have finite multiplicity

@ Yuri . Manin, Matilde Marcolli, Error-correcting codes and phase
transitions, Mathematics in Computer Science (2011) 5:133—170

Good codes: codes near or above the asymptotic bound
e main source of good codes: algebro-geometric codes

@ M.A. Tsfasman, S.G. Vladut, Th. Zink, Modular curves, Shimura
curves, and Goppa codes, better than Varshamov-Gilbert bound,
Math. Nachr. 109 (1982) 21-28

e other unexpected sources of codes above the asymptotic bound:
linguistics
@ K.Shu, M.Marcolli, Syntactic structures and code parameters,
Math. Comput. Sci. 11 (2017), no. 1, 79-90.

@ M.Marcolli, Syntactic parameters and a coding theory perspective
on entropy and complexity of language families, Entropy 18 (2016)
no. 4, paper 110
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Neural codes as error-correcting codes

@ C. Curto, V. Itskov, K. Morrison, Z. Roth, J.L. Walker,
Combinatorial neural codes from a mathematical coding
theory perspective, Neural Comput. 25 (2013), no. 7,
1891-1925.

@ comparison between error-correcting properties of neural
codes and random codes of the same length and size

@ probability of a neuron failing to fire in response to a stimulus
is greater that the probability of a neuron firing in the absence
of a stimulus

@ so binary asymmetric channel (BAC) false-positive probability
0 < p < 1/2 of 0 flipping to 1 and false-negative probability
0 < g < 1/2 opposite flip, with p < g

@ also assume error probability p < s smaller than the sparsity s
of the neural code (with w(c) = #{i LG = 1} weight)

S_S

# ceC
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@ overall probability of error in transmission p(1 —s) + gs (for
words transmitted with equal probabilities)

e maximum likelihood decoder: P(r|c) probability of r received
if ¢ transmitted

cvr = argmax ¢ P(r|c)

for symmetric p = g decoding equivalent to usual
minimization of Hamming distance

p=q _
cy = argmax.cc dy(c,r)
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e observed performance for 2-dimensional receptor field neural
codes compared to random codes

ML decoding for 2D RF codes

SEE RERERY R R g e JEEF TRRY
0.8t

prob correct

0.2H{ =2D RF Codes
— = Shuffled Codes
I Random CW Codes

0
0.01 0015 002 0025 003 0035 004 0045 005 0055 006
false positive probability p
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@ neural codes have high redundancy: low values of the R(C)
transmission rate parameter R(C) = n~!log, #C

@ but also low values of the relative minimum distance 6(C):
consider a pair U; N U; # 0 of overlapping receptor fields open
sets: code words ¢, ¢’ with ¢; =1 and cjf =1 and there is a
code word & with both & = & = 1, so achieve min of
Hamming distance

@ below the Gilbert-Varsamov line (where typical behavior of
random codes is located)

@ if an error-tolerance threshold introduced between original
code word and decoded one, then error-correction more similar
to random codes case
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Most neural codes are not good codes, but “rely on” good codes

@ Yuri I. Manin, Error-correcting codes and neural networks,
Selecta Math. (N.S.) 24 (2018), no. 1, 521-530.

e models of encoding of stimulus space via error-correcting codes

e computing code parameters of typical neural codes corresponding
to visual stimuli gives codes with very low positioning in the space
of code parameters (not good codes): combinatorics of covering
can make minimal Hamming distance between code words small

e auxiliary codes involved in the formation of “place maps” in the
brain; experiments show these show signatures of “criticality”

@ M. Nonnenmacher, Ch. Behrens, Ph. Berens, M. Bethge, J. Macke,
Signatures of criticality arise in simple neural models with
correlations, arXiv:1603.00097

@ G. Tkacik, T. Mora, O. Marre, D. Amodei, S. Palmer, M. Berry, W.
Bialekl, Thermodynamics and signatures of criticality in a network
of neurons, Proc. Nat. Ac. Sci, 112(37):11, 2015, 508-517
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e in this paper Manin makes a proposal that the “criticality”
behavior of neural codes involved in place field maps is related to
their position as “good codes” near the asymptotic bound

e the idea is based on a characterization of the asymptotic bound
for error-correcting codes via Kolmogorov complexity and another
characterization as a phase transition obtained in

@ Yu.l. Manin, M. Marcolli, Kolmogorov complexity and the
asymptotic bound for error-correcting codes, J. Differential Geom.
97 (2014), no. 1, 91-108

@ Yuri I. Manin, Matilde Marcolli, Error-correcting codes and phase
transitions, Mathematics in Computer Science (2011) 5:133—170

e in turn criticality can be characterized as behavior of a system
near a phase transition and codes weighted by a probability
distribution based on Kolmogorov complexity have a phase
transition at the asymptotic bound
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bad to good neural codes via expaner graphs (Rishidev Chaudhuri
and lla Fiete)
@ R. Chaudhuri, |. Fiete, Bipartite expander Hopfield networks as
self-decoding high-capacity error correcting codes, 33rd Conference

on Neural Information Processing Systems (NeurlPS 2019),
Vancouver, Canada.

@ neural mechanism from “bad codes” of open coverings of
place fields to “good codes”, via expander graphs

e Hopfield networks used as models for neural memory (error
correction through dynamics)

@ Hopfield networks with exponentially many robust stable
states via expander codes

Sparse transient activation

® o e o O [

oo. - ® O C’00000.
(o]

o o © o
o o o ® O g0 0O

Dense stable coding core
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First Step: binary Hopfield networks

@ binary Hopfield network: model of memory storage and
retrieval in neuronal networks

@ analogy with spin glass models in statistical physics

@ population of N neurons S;: each two possible states S; = +1
firing/not-firing (in a fixed time interval At)

e discrete dynamics (Wj; weight matrix assumed symmetric,
Wij = Wj)

Si(n+ 1) =sign Z W;; Sj(n)

J

@ update rule implemented a single S; at a time: either
maintaining value or flipping
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energy functional
-2 Wisis)
i

@ Lyapunov function of the dynamics: decreases under flipping
of a single S; under update rule

o if S;(n+1) = —5;(n) and Sj(n+ 1) = Sj(n) = Sj for j # i

E(n+1)— :—2ZWJ,5 i((n+1) — Si(n))

:_4ZWJ’55 n+1 ZWJ,S agnZWﬂS <0
Jji

with update rule (and symmetric W)

@ so binary Hopfield dynamics flows toward energy minima
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Memory storage and retrieval in binary Hopfield networks

@ idea: choice of weight matrix Wj; determined by given set of
patterns one wants to store in the network

e set of M patterns: binary strings {7?}.=1. M, i=1,..N
satisfying > ;77 =0

@ Hebbian learning rule: take weights of the form

1M
_ a_a
Wi = > i
a=1
@ compare state S; with one of the pattern 77 by measuring

overlap
1
p = N Z T Si
i
a

max value +1 when complete match of S; and 77, min value
—1 when opposite pattern (value ~ 0 low correlation)
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@ update rule of the binary Hopfield network
1
D WS = d_miniS =Y miw
J Jja a

@ energy with minima at the M patters (where overlap
maximum) and their opposites

E=—N> ()

@ initializing dynamics close to one of the stored patterns will
cause dynamics to reconstruct the pattern by flowing to
corresponding energy minimum
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@ case of single pattern 7;: fixed point of dynamics

1
sign(z W) = sign(ﬁ Z mimym;) = sign(m;) = m;
J J

@ but not always for multiple patterns:

1
sign(z Wijn}) = sign N Z 7r,4’7rjl-’7rf
Jj

) 1
= sign [ 1+ N E W?W?ﬂj’ﬂf
J,b#a
since >, mim? = N and 7777 = 1

@ continuous parameters Hopfield networks (we'll discuss later)
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Second Step: Expander Graphs

@ sparse graphs (few edges) but strong connectivity properties
(many paths between nodes, short)

@ both highly connected and sparse, exhibit pseudo-random
behavior

@ random walk through the graph gets lost quickly: good for
stochastic and diffusion processes

@ geometric property: every not “too large” subset of vertices
has a “large” boundary (“expander”)

@ expander versus non-expander:

om one node to another.
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Expansion Constant

@ two sets of vertices S, T of graph G then E(S, T) set of
edges of G one end-vertex in S the other in T

@ 0S5 =E(S,G~ S) "boundary” of the region with vertex set S
@ expansion constant of G

#08S
45

@ graph-theoretic analog of Cheeger constant for Riemannian
manifolds

h(G) := min{ |SCV, #5<n/2}

. Vi-1(X)
h(M) := inf min{V,,(Mll), V,(Ma)’

infimum over all (n — 1)-dimensional submanifolds X ¢ M

that decompose M = My Ux M,

@ h(M) measures whether the manifold M has bottlenecks, so
does h(G)

@ related to spectrum of graph Laplacian
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Expander Property: (7, a)-expander graph
e N=#V(G),a>1,0<y< 1 for S C V(G)
#S < YN = #9IS5 > a#S
@ often taken with v =2 as in h(G) above
@ a good expander graph has large expansion constant and low

vertex degrees
Bipartite Expander Graphs:

@ (7,1 —€)-expander: subsets S C V(G) with deg(v) = z (fixed
valence) and #S < N have
#N(S) =#0S> (1 —€)z#S

@ in particular case of the (z, k)-biregular graphs z =input set
valence, k =output set valence
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Bipartite Graphs and Linear Codes
@ binary [n, k, d]s-code C C FJ, linear if C linear subspace of
[Fa-vector space 3, then k = dimp,(C)
@ parity-check matrix H of C is an (n — k) x n matrix of rank
n — k over Fy, with C = {x € F§ | Hx = 0}
@ H provides description of linear code in terms of bipartite
graph:

Code Constraints:
X +x+x,+x,=0

X +x,+x,+x,=0

X+x,+x+x=0
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Tanner Codes

@ start with a linear binary code Cy C Fg with code parameters
(Ro, do) (not necessarily a good code)

@ G a bipartite graph with n inputs m-outputs and
right-d-regular (all output vertices same valence d)

Tanner code T(G, Gy) C F3

T(G, CO) = {X = (Xv)VEVin(G) |X’N(v’) € Co, W' e Vout(G)}

(]

code parameters

Rzl—de(l—Ro) and 3>~

d-estimate if G is (c, d)-biregular with ¢ > 3 and (7, ¢(1 — €))
expander, and € < 1 —1/dy for 9 = dp/d.

(but regularity assumptions on expander graphs not so
realistic for neural codes applications)
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Usual Hopfield networks

@ N neurons Xx;, binary values detect whether the neurons active
or inactive in n-th time interval

@ network with discrete dynamics

1 if S Wxi(n) +0; >0
, _ j Vi J
xi(n+1) { 0 if Y2 Wyxi(n)+6; <0,

—0; activation thresholds and Wj; weight matrix

@ energy functional
1
E(x) = ) Z Wiixixj — Z 0;x;
iJ i

@ discrete update rule of the dynamics: changing state of a
neuron and accepting the change if it decreasing the energy
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Higher Hopfield networks from linear codes
@ linear code C with constraints specified by the parity check
matrix H
o represented as a bipartite graph G: set of (input) nodes the n
digits of the code words (code length n), set of (output)
nodes the linear constraints imposed by parity check matrix
(codim n — k)
Z x, =0, for v € Vou(G)
veN(v’)
@ write parity check constraints multiplicatively: spins
sj=¢e"™ e {£1}
Y xy=0— J[ s=1
J: Hij:]- Jj: H,‘j=1

@ then energy functional minimized at x; satisfying

H-constraints
E(s)=— Z H sj

i jiH=1
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@ the interactions Hj:H,-j:I s; of the higher Hopfield network
N-simplex instead of graph vertex... reduce to usual Hopfield
networks

o N' = #V,,:(G) number of parity-check constraints

e assume v/ € V,,:(G) have valence deg(v') = z¢

@ graph G has (7, (1 — €))-expander property if for S C Vi,(G)
with #S < N boundary 9S = N(S) C Vou:(G) has
EN(S) > c(1- #S.

@ since Vo,t(G) is set of linear constraints of C and Vj,(G) set
of variables, the expander property means a sufficiently small
subset S of variables participates in a significant part of linear
constraints

@ zc = #N(V') input neurons in Vj,(G) connected to v/ can
take 27¢ possible states o = (xv)yen(v)

o fixaset X ={01,...,0n} = {0v}vev,.(c) of such states
ov = (Xv,v/)ven(v) With the property that any two o}, 0,

i # j in X differ in at least two digits
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“Glomerulus” structure (node Hopfield network)
@ obtain a “constraint node network” G, with at most 2%¢—1
nodes (all with shared inputs from vertices of N(1/):
glomerulus (node Hopfield network)

2zc—1
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Energy functional
t L.
E(x,y) = —(x"Ux + 0y + 5 Wy)

® X = (Xv)ve\/;,,(G) and y = ()/v’)v'evaut(c)
o U= (U, ) with v e Vip(G) and v/ € V,,e(G)

1 x,,=1
Uv,v’:{ Y

-1 Xyv! = 0.

0 0= (0u/)vcva.(c) be given by

0’_deg Z Xv,v/s

veN(v’)
with deg(v') = z¢
e W the (N’ x N’)-matrix with zeros on the diagonal and all
other entries equal to —(z¢ — 1): inhibitory connection
between constraint neurons
@ energy minima given by x = o, and y, =,/ ,
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@ if neuron within node Hopfield network G, receives input
matching configuration o,/ (its “preferred state”) becomes
active (energetically preferred configuration because of the
U-term in the energy)

@ suppresses other neurons in G,/ because of inhibition W-term
@ if input does not match any o,/ higher energy configuration

@ minimum energy states occur when input neuron
configuration satisfies all the linear constraints (and
corresponding constraint node Hopfield networks active)

@ total number of minimum energy states grows exponentially
with size of network

e for sufficiently large N, N’ sparse network (with all nodes of
constraint node Hopfield networks G, and all input nodes of
G) and has good expander properties

@ energy based decoding: flips violate parity check constraints
and increase energy: get number of errors by energy value
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as brain model (Chaudhuri-Fiete)

@ bipartite graph: neurons as the input nodes, output nodes
representing small networks of neurons interacting
competitively with each other through inhibition

@ size of these small networks at output nodes is bounded
(22¢—1) independently of sizes N, N’ of vertex set of bipartite
graph

@ input patterns in a very high-dimensional space (possibly
neocortex)

@ mapped to the exponentially-many stable states of a bipartite
expander Hopfield network (possibly hippocampus)

@ providing memory labels for patterns that network can retrieve

@ expander codes associated to these networks with good code
properties: possible mechanism for passing from bad error
correcting properties of neural codes to good codes
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