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Motives and Noncommutative motives

• Motives (pure): smooth projective algebraic varieties X
cohomology theories HdR , HBetti , Hetale, . . .
universal cohomology theory: motives⇒ realizations

• NC Motives (pure): smooth propert dg-categories A
homological invariants: K -theory, Hochschild and cyclic cohomology
universal homological invariant: NC motives
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dg-categories

A category whose morphism sets A (x , y) are complexes of
k -modules (k = base ring or field) with composition satisfying
Leibniz rule

d(f ◦ g) = df ◦ g + (−1)deg(f )f ◦ dg

dgcat = category of (small) dg-categories with dg-functors

(preserving dg-structure)
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From varieties to dg-categories

X ⇒ Ddg
perf (X)

dg-category of perfect complexes

H0 gives derived category Dperf (X) of perfect complexes of
OX -modules

saturated dg-categories (Kontsevich)
• smooth dgcat: perfect as a bimodule over itself
• proper dgcat: if the complexes A (x , y) are perfect
• saturated = smooth + perfect

smooth projective variety X ⇒ smooth proper dgcat Ddg
perf (X)

(but also smooth proper dgcat not from smooth proj varieties)
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derived Morita equivalences

• A op same objects and morphisms A op(x , y) = A (y , x); right dg
A -module: dg-functor A op → Cdg(k) (dg-cat of complexes of
k -modules); C (A ) cat of A -modules; D(A ) (derived cat of A )
localization of C (A ) w/ resp to quasi-isom

• functor F : A → B is derived Morita equivalence iff induced
functor D(B)→ D(A ) (restriction of scalars) is an equivalence of
triangulated categories

• cohomological invariants (K -theory, Hochschild and cyclic
cohomologies) are derived Morita invariant: send derived Morita
equivalences to isomorphisms
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symmetric monoidal category Hmo

• homotopy category: dg-categories up to derived Morita
equivalences

• ⊗ extends from k -algebras to dg-categories

• can be derived with respect to derived Morita equivalences (gives
symmetric monoidal structure on Hmo)

• saturated dg-categories = dualizable objects in Hmo
(Cisinski–Tabuada)

• Euler characteristic of dualizable object: χ(A ) = HH(A )
Hochschild homology complex (Cisinski–Tabuada)
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Further refinement: Hmo0

• all cohomological invariants listed are “additive invariants":

E : dgcat→ A, E(A )⊕ E(B) = E(|M|)

where A additive category and |M| dg-category
Obj(|M|) = Obj(A ) ∪ Obj(B) morphisms A (x , y), B(x , y),
X(x , y) with X a A –B bimodule

• Hmo0: objects dg-categories, morphisms K0rep(A ,B) with
rep(A ,B) ⊂ D(A op ⊗L B) full triang subcat of A –B bimodules X
with X(a,−) ∈ Dperf (B); composition = (derived) tensor product of
bimodules

• UA : dgcat→ Hmo0, id on objects, sends dg-functor to class in
Grothendieck group of associated bimodule

• all additive invariants factor through Hmo0
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noncommutative Chow motives (Kontsevich) NChowF (k)

• Hmo0;F = the F -linearization of additive category Hmo0

• Hmo\0;F = idempotent completion of Hmo0;F

• NChowF (k) = idempotent complete full subcategory gen by
saturated dg-categories

NChowF (k):

Objects: (A , e) smooth proper dg-categories (and idempotents)

Morphisms K0(A op ⊗L
k B)F (correspondences)

Composition: induced by derived tensor product of bimodules
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relation to commutative Chow motives (Tabuada):

ChowQ(k)/−⊗Q(1) ↪→ NChowQ(k)

commutative motives embed as noncommutative motives after
moding out by the Tate motives

orbit category ChowQ(k)/−⊗Q(1)

(C ,⊗, 1) additive, F − linear , rigid symmetric monoidal;
O ∈ Obj(C ) ⊗-invertible object:
orbit category C /−⊗O same objects and morphisms

HomC /−⊗O
(X ,Y ) = ⊕j∈ZHomC (X ,Y ⊗ O⊗j)
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Numerical noncommutative motives
M.M., G.Tabuada, Noncommutative motives, numerical equivalence,
and semi-simplicity, arXiv:1105.2950

(A , e) and (B, e′) objects in NChowF (k) and correspondences

X = e ◦ [
∑

i

aiXi ] ◦ e′, Y = e′ ◦ [
∑

j

bjYj ] ◦ e

Xi and Yj bimodules

⇒ intersection number:

〈X ,Y 〉 =
∑

ij

[HH(A ;Xi ⊗L
B Yj)] ∈ K0(k)F

with [HH(A ;Xi ⊗L
B Yj)] class in K0(k)F of Hochschild homology

complex of A with coefficients in the A –A bimodule Xi ⊗L
B Yj
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numerically trivial: X if 〈X ,Y 〉 = 0 for all Y

• ⊗-ideal N in the category NChowF (k)

•N largest ⊗-ideal strictly contained in NChowF (k)

numerical motives: NNumF (k)

NNumF (k) = NChowF (k)/N

abelian semisimple (M.M., G.Tabuada, arXiv:1105.2950)

• NNumF (k) is abelian semisimple

analog of Jannsen’s result for commutative numerical pure motives
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What about Tannakian structures and motivic Galois groups?

For commutative motives this involves standard conjectures (C =
Künneth and D = homological and numerical equivalence)

Questions:

is NNumF (k) (neutral) super-Tannakian?

is there a good analog of the standard conjecture C (Künneth)?

does this make the category Tannakian?

is there a good analog of standard conjecture D (numerical =
homological)?

does this neutralize the Tannakian category?

relation between motivic Galois groups for commutative and
noncommutative motives?
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Tannakian categories (C ,⊗, 1)

F -linear, abelian, rigid symmetric monoidal with End(1) = F

• Tannakian: ∃ K -valued fiber functor, K field ext of F : exact faithful
⊗-functor ω : C → Vect(K ); neutral if K = F

ω⇒ equivalence C ' RepF (Gal(C )) affine group scheme (Galois
group) Gal(C ) = Aut⊗(ω)

• intrinsic characterization (Deligne): F char zero, C Tannakian iff
Tr(idX ) non-negative integer for each object X
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super-Tannakian categories (C ,⊗, 1)

F -linear, abelian, rigid symmetric monoidal with End(1) = F

sVect(K ) super-vector spaces Z/2Z-graded

• super-Tannakian: ∃ K -valued super fiber functor, K field ext of F :
exact faithful ⊗-functor ω : C → sVect(K ); neutral if K = F

ω⇒ equivalence C ' RepF (sGal(C ), ε) super-reps of affine
super-group-scheme (super-Galois group)
sGal(C ) = Aut⊗(ω) ε = parity automorphism

• intrinsic characterization (Deligne) F char zero, C super-Tannakian
iff Shur finite (if F alg closed then neutral super-Tannakian iff Schur
finite)

• Schur finite: symm grp Sn, idempotent cλ ∈ Q[Sn] for partition λ of
n (irreps of Sn), Schur functors Sλ : C → C , Sλ(X) = cλ(X⊗n)
C = Schur finite iff all objects X annihilated by some Schur functor
Sλ(X) = 0
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Main results

M.M., G.Tabuada, Noncommutative numerical motives, Tannakian
structures, and motivic Galois groups, arXiv:1110.2438

assume either: (i) K0(k) = Z, F is k -algebra; (ii) k and F both field
extensions of a field K

• Thm 1: NNumF (k) is super-Tannakian; if F alg closed also neutral

• Thm 2: standard conjecture CNC(A ): the Künneth projectors

π±A : HP∗(A ) � HP±∗ (A ) ↪→ HP∗(A )

are algebraic: π±A = HP∗(π
±
A ) with π±A correspondences. If k field

ext of F char 0, sign conjecture implies

C+(Z )⇒ CNC(D
dg
perf (Z ))

i.e. on commutative motives more likely to hold than sign conjecture
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• Thm 3: k and F char 0, one extension of other: if CNC holds then
change of symmetry isomorphism in tensor structure gives category
NNum†F (k) Tannakian

• Thm 4: standard conjecture DNC(A ):

K0(A )F/ ∼hom= K0(A )F/ ∼num

homological defined by periodic cyclic homology: kernel of

K0(A )F = HomNChowF (k)(k ,A )
HP∗−→ HomsVect(K )(HP∗(k),HP∗(A ))

when k field ext of F char 0: D(Z )⇒ DNC(D
dg
perf (Z ))

i.e. for commutative motives more likely to hold than D conjecture
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• Thm 5: F ext of k char 0: if CNC and DNC hold then NNum†F (k) is a
neutral Tannakian category with periodic cyclic homology as fiber
functor

• Thm 6: k char 0: if C, D and CNC , DNC hold then

sGal(NNumk(k) � Ker(t : sGal(Numk(k)) � Gm)

Gal(NNum†k(k) � Ker(t : Gal(Num†k(k)) � Gm)

where t induced by inclusion of Tate motives in the category of
(commutative) numerical motives

(using periodic cyclic homology and de Rham cohomology)
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Thm 1: Schur finiteness HH : NChowF (k)→ Dc(F)
F -linear symmetric monoidal functor (Hochschild homology)

(NChowF (k)/Ker(HH))\ → Dc(F)

faithful F -linear symmetric monoidal

Dc(A ) = full triang subcat of compact objects in D(A )⇒ Dc(F)
identified with fin-dim Z-graded F -vector spaces: Shur finite

general fact: L : C1 → C2 F -linear symmetric monoidal functor:
X ∈ C1 Schur finite⇒ L(X) ∈ C2 Schur finite; L faithful then also
converse: L(X) ∈ C2 Schur finite⇒ X ∈ C1 Schur finite

conclusion: (NChowF (k)/Ker(HH))\ is Schur finite

also Ker(HH) ⊂ N with F -linear symmetric monoidal functor
(NChowF (k)/Ker(HH))\ → (NChowF (k)/N )\ = NNumF (k)

⇒ NNumF (k) Schur finite⇒ super-Tannakian
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Thm 2: periodic cyclic homology
mixed complex (M, b,B) with b2 = B2 = Bb + bB = 0,
deg(b) = 1 = − deg(B): periodized

· · ·
∏

n even

Mn
b+B→

∏
n odd

Mn
b+B→

∏
n even

Mn · · ·

periodic cyclic homology (the derived cat of Z/2Z-graded complexes

HP : dgcat→ DZ/2Z(k)

induces F -linear symmetric monoidal functor

HP∗ : NChowF (k)→ sVect(F)

or to sVect(k) if k field ext of F
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Note the issue here:

• mixed complex functor symmetric monoidal but 2-periodization not
(infinite product don’t commute with ⊗)

• lax symmetric monoidal with DZ/2Z(k) ' SVect(k) (not fin dim)

• HP : dgcat→ SVect(k) additive invariant: through Hmo0(k)

• NChowF (k) = (Hmo0(k)sp)]F (sp = gen by smooth proper dgcats)

• periodic cyclic hom finite dimensional for smooth proper dgcats + a
result of Emmanouil
⇒ lax symmetric monoidal HP∗ : Hmo0(k)sp → sVect(k) is
symmetric monoidal
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standard conjecture CNC (Künneth type)

• CNC(A ): Künneth projections

π±A : HP∗(A ) � HP±∗ (A ) ↪→ HP∗(A )

are algebraic: π±A = HP∗(π
±
A ) image of correspondences

• then from Keller have
HP∗(D

dg
perf (Z )) = HP∗(D

dg
perf (Z )) = HP∗(Z ) = ⊕n evenHn

dR(Z )

• hence C+(Z )⇒ CNC(D
dg
perf (Z )) with π±

Ddg
perf (Z)

image of π±Z under

Chow(k)→ Chow(k)/−⊗Q(1) ↪→ NChow(k)

classical: (using deRham as Weil cohomology) C(Z ) for Z
correspondence, the Künneth projections πn

Z : H∗dR(Z ) � Hn
dR(Z )

are algebraic, πn
Z = H∗dR(π

n
Z ), with πn

Z correspondences

sign conjecture: C+(Z ): Künneth projectors π+Z =
∑dim Z

n=0 π2n
Z are

algebraic, π+Z = H∗dR(π
+
Z ) (hence π−Z also)
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Thm 3: Tannakian category first steps

• have F -linear symmetric monoidal and also full and essentially
surjective functor: NChowF (k)/Ker(HP∗)→ NChowF (k)/N

• assuming CNC(A ): have π±(A ,e) = e ◦ π±A ◦ e; if X trivial in

NChowF (k)/N intersection numbers 〈X n, π±(A ,e)〉 vanishes
(N is ⊗-ideal)

• intersection number is categorical trace of X n ◦ π±(A ,e)
(M.M., G.Tabuada, 1105.2950)

⇒ Tr(HP∗(X n ◦ π±(A ,e)) = Tr(HP±∗ (X)n) = 0

trace all n-compositions vanish⇒ nilpotent HP±∗ (X)

• conclude: nilpotent ideal as kernel of

EndNChowF (k)/Ker(HP∗)(A , e) � EndNChowF (k)/N (A , e)

• then functor (NChowF (k)/Ker(HP∗))\ → NNumF (k) full
conservative essentially surjective: (quotient by N full and ess surj;
idempotents can be lifted along surj F -linear homom with nilpotent
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Tannakian category: modification of tensor structure

• H : C → sVect(K ) symmetric monoidal F -linear (K ext of F )
faithful, Künneth projectors π±N = H(π±N ) for π±N ∈ EndC (N) for all
N ∈ C then modify symmetry isomorphism

c†N1,N2
= cN1,N2 ◦ (eN1 ⊗ eN2) with eN = 2π+N − idN

• get F -linear symmetric monoidal functor

C †
H→ sVect(K )→ Vect(K )

• if P : C → D , F -linear symmetric monoidal (essentially) surjective,
then P : C † → D† (use image of eN to modify D compatibly)

• apply to functors HP∗ : (NChowF (k)/Ker(HP∗))\ → sVect(K ) and
(NChowF (k)/Ker(HP∗))\ → NNumF (k)

⇒ obtain NNum†F (k) satisfying Deligne’s intrinsic characterization for
Tannakian: with Ñ lift to (NChowF (k)/Ker(HP∗))\,† have

rk(N) = rk(HP∗(Ñ)) = dim(HP+
∗ (Ñ)) + dim(HP−∗ (Ñ)) ≥ 0
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Thm 4: Noncommutative homological motives

HP∗ : NChowF (k)→ sVect(K )

K0(A )F = HomNChowF (k)(k ,A )
HP∗→ HomsVect(K )(HP∗(k),HP∗(A ))

kernel gives homological equivalence K0(A )F mod ∼hom

• DNC(A ) standard conjecture:

K0(A )F/ ∼hom= K0(A )F/ ∼num

• on ChowF (k)/−⊗Q(1) induces homological equivalence with sHdR

(de Rham even/odd)⇒ Z ∗
hom(Z )F � K0(D

dg
perf (Z ))F/ ∼hom

• classical cycles Z ∗
hom(Z )F ' Z ∗

num(Z )F ; for numerical
Z ∗

num(Z )F
∼→ K0(D

dg
perf (Z ))F/ ∼num; then get

D(Z )⇒ DNC(D
dg
perf (Z ))
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Thm 5: assume CNC and DNC then

HP∗ : NNum†F (k)→ Vect(F)

exact faithful ⊗-functor: fiber functor⇒ neutral Tannakian category
NNum†F (k)

Thm 6: Motivic Galois groups
• Galois group of neutral Tannakian category Gal(NNum†F (k)) want
to compare with commutative case Gal(Num†F (k))

• super-Galois group of super-Tannakian category sGal(NNumF (k))
compare with commutative motives case sGal(NumF (k))

• related question: what are truly noncommutative motives?
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Tate triples (Deligne–Milne)

• For A = Z or Z/2Z and B = Gm or µ2, Tannakian cat C with
A-grading: A-grading on objects with (X ⊗ Y )a = ⊕a=b+cX b ⊗ Y c ;
homom w : B → Aut⊗(idC ) (weight); central hom B → Aut⊗(ω)

• Tate triple (C ,w ,T ): Z-graded Tannakian C with weight w ,
invertible object T (Tate object) weight −2

• Tate triple⇒ central homom w : Gm → Gal(C ) and homom
t : Gal(C )→ Gm with t ◦ w = −2.

• H = Ker(t : Gal(C )→ Gm) defines Tannakian category
' Rep(H). It is the “quotient Tannakian category" (Milne) of inclusion
of subcategory gen by Tate object into C
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Galois group and orbit category

• T = (C ,w ,T ) Tate triple, S ⊂ C gen by T , pseudo-ab envelope
(C /−⊗T )

\ of orbit cat C /−⊗T is neutral Tannakian with

Gal((C /−⊗T )
\) ' Ker(t : Gal(C ) � Gm)

• Quotient Tannakian categories with resp to a fiber functor (Milne):
ω0 : S → Vect(F) then C /ω0 pseudo-ab envelope of C ′ with same
objects as C and morphisms HomC ′(X ,Y ) = ω0(HomC (X ,Y )H)
with X H largest subobject where H acts trivially

• fiber functor ω0 : X 7→ colimnHomC (⊕n
r=−n1(r),X) ∈ Vect(F)

⇒ get C ′ = C /−⊗T
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super-Tannakian case: super Tate triples

• Need a super-Tannakian version of Tate triples

• super Tate triple: S T = (C , ω, π±,T †) with C = neutral
super-Tannakian; ω : C → sVect(F) super-fiber functor; idempotent
endos: ω(π±X ) = π±X Künneth proj.; neutral Tate triple
T † = (C †,w ,T ) with C † modified symmetry constraint from C
using π±

• assuming C and D: a super Tate triple for (comm) num motives

(Numk(k), sH∗dR, π
±
X , (Num†k(k),w ,Q(1)))
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super-Tannakian case: orbit category

•S T = (C , ω, π±,T †) super Tate triple; S ⊂ C full neutral
super-Tannakian subcat gen by T

• Assume: π−T (T ) = 0; for K = Ker(t : Gal(C †)→ Gm) of Tate
triple T †, if ε : µ2 → H induced Z/2Z grading from t ◦w = −2; then
(H, ε) super-affine group scheme is Ker of sGal(C )→ sGal(S ) and
RepF (H, ε) = Rep†F (H).

• Conclusion: pseudoabelian envelope of C /−⊗T is neutral
super-Tannakian and seq of exact ⊗-functors S ⊂ C → (C /−⊗T )

\

gives
sGal((C /−⊗T )

\)
∼→ Ker(t : sGal(C )→ Gm)

• have also (C †/−⊗T )
\ ' (C /−⊗T )

\,† ' Rep†F (H, ε) ' RepF (H)
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Then for Galois groups:

• then surjective Gal(NNum†k(k)) � Gal((Num†k(k)/−⊗Q(1))
\) from

embedding of subcategory and
Gal((Num†k(k)/−⊗Q(1))

\) = Ker(t : Num†k(k)→ Gm)

• for super-Tannakian: surjective (from subcategory)
sGal(NNumk(k)) � sGal((Numk(k)/−⊗Q(1))

\) and
sGal((Numk(k)/−⊗Q(1))

\) ' Ker(t : sGal(Numk(k)) � Gm)

•What is kernel? Ker = “truly noncommutative motives"

Gal(NNum†k(k)) � Ker(t : Num†k(k)→ Gm)

sGal(NNumk(k)) � Ker(t : sGal(Numk(k)) � Gm)

what do they look line? examples (nc tori, ...)? general properties?
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