Noncommutative numerical motives and the Tannakian formalism

Matilde Marcolli and Goncalo Tabuada

2011

Matilde Marcolli and Goncalo Tabuada Noncommutative numerical motives and the Tannakian formalism

イロト イヨト イヨト

Motives and Noncommutative motives

• Motives (pure): smooth projective algebraic varieties X cohomology theories H_{dR} , H_{Betti} , H_{etale} , ... universal cohomology theory: motives \Rightarrow realizations

• NC Motives (pure): smooth propert dg-categories *A* homological invariants: *K*-theory, Hochschild and cyclic cohomology universal homological invariant: NC motives

・ロン ・回 と ・ ヨン・

dg-categories

 \mathscr{A} category whose morphism sets $\mathscr{A}(x, y)$ are complexes of *k*-modules (k = base ring or field) with composition satisfying Leibniz rule

$$d(f \circ g) = df \circ g + (-1)^{\deg(f)} f \circ dg$$

dgcat = category of (small) dg-categories with dg-functors (preserving dg-structure)

イロト イポト イヨト イヨト

From varieties to dg-categories

$$X \Rightarrow \mathscr{D}_{perf}^{dg}(X)$$

dg-category of perfect complexes

 H^0 gives derived category $\mathscr{D}_{perf}(X)$ of perfect complexes of \mathscr{O}_X -modules

saturated dg-categories (Kontsevich)

- smooth dgcat: perfect as a bimodule over itself
- proper dgcat: if the complexes $\mathscr{A}(x, y)$ are perfect
- saturated = smooth + perfect

smooth projective variety $X \Rightarrow$ smooth proper dgcat $\mathscr{D}_{perf}^{dg}(X)$ (but also smooth proper dgcat not from smooth proj varieties)

イロト イボト イヨト イヨト

derived Morita equivalences

• \mathscr{A}^{op} same objects and morphisms $\mathscr{A}^{op}(x, y) = \mathscr{A}(y, x)$; right dg \mathscr{A} -module: dg-functor $\mathscr{A}^{op} \to \mathscr{C}_{dg}(k)$ (dg-cat of complexes of *k*-modules); $\mathscr{C}(\mathscr{A})$ cat of \mathscr{A} -modules; $\mathscr{D}(\mathscr{A})$ (derived cat of \mathscr{A}) localization of $\mathscr{C}(\mathscr{A})$ w/ resp to quasi-isom

• functor $F : \mathscr{A} \to \mathscr{B}$ is derived Morita equivalence iff induced functor $\mathscr{D}(\mathscr{B}) \to \mathscr{D}(\mathscr{A})$ (restriction of scalars) is an equivalence of triangulated categories

• cohomological invariants (*K*-theory, Hochschild and cyclic cohomologies) are derived Morita invariant: send derived Morita equivalences to isomorphisms

symmetric monoidal category Hmo

- homotopy category: dg-categories up to derived Morita equivalences
- \otimes extends from *k*-algebras to dg-categories
- can be derived with respect to derived Morita equivalences (gives symmetric monoidal structure on Hmo)
- saturated dg-categories = dualizable objects in Hmo (Cisinski-Tabuada)
- Euler characteristic of dualizable object: $\chi(\mathscr{A}) = HH(\mathscr{A})$ Hochschild homology complex (Cisinski–Tabuada)

イロト イポト イヨト イヨト

Further refinement: Hmoo

• all cohomological invariants listed are "additive invariants":

$$E: \texttt{dgcat} o A, \ E(\mathscr{A}) \oplus E(\mathscr{B}) = E(|M|)$$

where A additive category and |M| dg-category $Obj(|M|) = Obj(\mathscr{A}) \cup Obj(\mathscr{B})$ morphisms $\mathscr{A}(x, y), \mathscr{B}(x, y),$ X(x, y) with X a $\mathscr{A}-\mathscr{B}$ bimodule

• Hmo₀: objects dg-categories, morphisms K_0 rep $(\mathscr{A}, \mathscr{B})$ with rep $(\mathscr{A}, \mathscr{B}) \subset \mathscr{D}(\mathscr{A}^{op} \otimes^{\mathbb{L}} \mathscr{B})$ full triang subcat of $\mathscr{A}-\mathscr{B}$ bimodules X with $X(a, -) \in \mathscr{D}_{perf}(\mathscr{B})$; composition = (derived) tensor product of bimodules

- \mathscr{U}_A : dgcat \to Hmo₀, id on objects, sends dg-functor to class in Grothendieck group of associated bimodule
- all additive invariants factor through Hmoo

noncommutative Chow motives (Kontsevich) $NChow_F(k)$

- $Hmo_{0;F} = the \ F$ -linearization of additive category Hmo_0
- $\operatorname{Hmo}_{0;F}^{\natural} = \text{idempotent completion of } \operatorname{Hmo}_{0;F}$
- $NChow_F(k) = idempotent complete full subcategory gen by saturated dg-categories$

$\operatorname{NChow}_{F}(k)$:

- Objects: (*A*, *e*) smooth proper dg-categories (and idempotents)
- Morphisms $K_0(\mathscr{A}^{op} \otimes_k^{\mathbb{L}} \mathscr{B})_F$ (correspondences)
- Composition: induced by derived tensor product of bimodules

relation to commutative Chow motives (Tabuada):

$$\operatorname{Chow}_{\mathbb{Q}}(k)/_{-\otimes \mathbb{Q}(1)} \hookrightarrow \operatorname{NChow}_{\mathbb{Q}}(k)$$

commutative motives embed as noncommutative motives after moding out by the Tate motives

orbit category $\operatorname{Chow}_{\mathbb{Q}}(k)/_{-\otimes \mathbb{Q}(1)}$

 $(\mathscr{C}, \otimes, \mathbf{1})$ additive, F - linear, rigid symmetric monoidal; $\mathscr{O} \in \operatorname{Obj}(\mathscr{C}) \otimes$ -invertible object: orbit category $\mathscr{C}/_{-\otimes \mathscr{O}}$ same objects and morphisms

$$\operatorname{Hom}_{\mathscr{C}/_{-\otimes \mathscr{O}}}(X,Y) = \oplus_{j\in \mathbb{Z}}\operatorname{Hom}_{\mathscr{C}}(X,Y\otimes \mathscr{O}^{\otimes j})$$

イロト イポト イラト イラト 一日

Numerical noncommutative motives

M.M., G.Tabuada, *Noncommutative motives, numerical equivalence, and semi-simplicity*, arXiv:1105.2950

 (\mathscr{A}, e) and (\mathscr{B}, e') objects in NChow_F(k) and correspondences

$$\underline{X} = e \circ [\sum_{i} a_{i}X_{i}] \circ e', \quad \underline{Y} = e' \circ [\sum_{j} b_{j}Y_{j}] \circ e$$

 X_i and Y_j bimodules

 \Rightarrow intersection number:

$$\langle \underline{X}, \underline{Y}
angle = \sum_{ij} [HH(\mathscr{A}; X_i \otimes_{\mathscr{B}}^{\mathbb{L}} Y_j)] \in K_0(k)_F$$

with $[HH(\mathscr{A}; X_i \otimes_{\mathscr{B}}^{\mathbb{L}} Y_j)]$ class in $K_0(k)_F$ of Hochschild homology complex of \mathscr{A} with coefficients in the $\mathscr{A}-\mathscr{A}$ bimodule $X_i \otimes_{\mathscr{B}}^{\mathbb{L}} Y_j$

イロト イボト イヨト イヨト

numerically trivial: \underline{X} if $\langle \underline{X}, \underline{Y} \rangle = 0$ for all \underline{Y}

- \otimes -ideal \mathscr{N} in the category NChow_F(k)
- \mathcal{N} largest \otimes -ideal strictly contained in NChow_{*F*}(*k*) numerical motives: NNum_{*F*}(*k*)

 $\operatorname{NNum}_{F}(k) = \operatorname{NChow}_{F}(k) / \mathcal{N}$

abelian semisimple (M.M., G.Tabuada, arXiv:1105.2950)

• $NNum_F(k)$ is abelian semisimple

analog of Jannsen's result for commutative numerical pure motives

What about Tannakian structures and motivic Galois groups?

For commutative motives this involves standard conjectures (C = Künneth and D = homological and numerical equivalence)

Questions:

- is $NNum_F(k)$ (neutral) super-Tannakian?
- is there a good analog of the standard conjecture C (Künneth)?
- does this make the category Tannakian?
- is there a good analog of standard conjecture D (numerical = homological)?
- does this neutralize the Tannakian category?
- relation between motivic Galois groups for commutative and noncommutative motives?

イロト イポト イヨト イヨト

Tannakian categories $(\mathscr{C}, \otimes, \mathbf{1})$

F-linear, abelian, rigid symmetric monoidal with End(1) = F

• Tannakian: $\exists K$ -valued *fiber functor*, K field ext of F: exact faithful \otimes -functor $\omega : \mathscr{C} \to \operatorname{Vect}(K)$; neutral if K = F

 $\begin{array}{l} \omega \Rightarrow \mathsf{equivalence} \ \mathscr{C} \simeq \operatorname{Rep}_{\mathcal{F}}(\operatorname{Gal}(\mathscr{C})) \ \text{affine group scheme (Galois group)} \\ & \operatorname{Gal}(\mathscr{C}) = \underline{\operatorname{Aut}}^{\otimes}(\omega) \end{array}$

• intrinsic characterization (Deligne): F char zero, \mathscr{C} Tannakian iff $\operatorname{Tr}(id_X)$ non-negative integer for each object X

イロト イボト イヨト イヨト

super-Tannakian categories $(\mathscr{C}, \otimes, 1)$

F-linear, abelian, rigid symmetric monoidal with End(1) = F*s*Vect(*K*) super-vector spaces $\mathbb{Z}/2\mathbb{Z}$ -graded

• super-Tannakian: \exists *K*-valued *super fiber functor*, *K* field ext of *F*: exact faithful \otimes -functor $\omega : \mathscr{C} \to s$ Vect(*K*); neutral if K = F

 $\omega \Rightarrow \text{equivalence } \mathscr{C} \simeq \text{Rep}_{\mathcal{F}}(s\text{Gal}(\mathscr{C}), \epsilon) \text{ super-reps of affine super-group-scheme (super-Galois group)} s\text{Gal}(\mathscr{C}) = \underline{\text{Aut}}^{\otimes}(\omega) \quad \epsilon = \text{parity automorphism}$

• intrinsic characterization (Deligne) F char zero, \mathscr{C} super-Tannakian iff Shur finite (if F alg closed then neutral super-Tannakian iff Schur finite)

• Schur finite: symm grp S_n , idempotent $c_{\lambda} \in \mathbb{Q}[S_n]$ for partition λ of n (irreps of S_n), Schur functors $S_{\lambda} : \mathscr{C} \to \mathscr{C}$, $S_{\lambda}(X) = c_{\lambda}(X^{\otimes n})$ $\mathscr{C} =$ Schur finite iff all objects X annihilated by some Schur functor $S_{\lambda}(X) = 0$

イロト イポト イヨト イヨト

Main results

M.M., G.Tabuada, *Noncommutative numerical motives, Tannakian structures, and motivic Galois groups*, arXiv:1110.2438

assume either: (i) $K_0(k) = \mathbb{Z}$, *F* is *k*-algebra; (ii) *k* and *F* both field extensions of a field *K*

- Thm 1: $NNum_F(k)$ is super-Tannakian; if F alg closed also neutral
- Thm 2: standard conjecture $C_{NC}(\mathscr{A})$: the Künneth projectors

$$\pi^{\pm}_{\mathscr{A}}: \overline{HP}_{*}(\mathscr{A}) \twoheadrightarrow \overline{HP}^{\pm}_{*}(\mathscr{A}) \hookrightarrow \overline{HP}_{*}(\mathscr{A})$$

are algebraic: $\pi_{\mathscr{A}}^{\pm} = \overline{HP}_{*}(\underline{\pi}_{\mathscr{A}}^{\pm})$ with $\underline{\pi}_{\mathscr{A}}^{\pm}$ correspondences. If *k* field ext of *F* char 0, sign conjecture implies

$$C^+(Z) \Rightarrow C_{NC}(\mathscr{D}_{perf}^{dg}(Z))$$

i.e. on commutative motives more likely to hold than sign conjecture

- Thm 3: *k* and *F* char 0, one extension of other: if C_{NC} holds then change of symmetry isomorphism in tensor structure gives category $NNum_F^{\dagger}(k)$ Tannakian
- Thm 4: standard conjecture $D_{NC}(\mathscr{A})$:

$$K_0(\mathscr{A})_F/\sim_{\mathit{hom}}=K_0(\mathscr{A})_F/\sim_{\mathit{num}}$$

homological defined by periodic cyclic homology: kernel of

$$K_0(\mathscr{A})_F = \operatorname{Hom}_{\operatorname{NChow}_F(k)}(k, \mathscr{A}) \xrightarrow{\overline{HP}_*} \operatorname{Hom}_{s\operatorname{Vect}(K)}(\overline{HP}_*(k), \overline{HP}_*(\mathscr{A}))$$

when k field ext of F char 0: $D(Z) \Rightarrow D_{NC}(\mathscr{D}_{perf}^{dg}(Z))$

i.e. for commutative motives more likely to hold than D conjecture

イロト イポト イヨト イヨト 一日

- Thm 5: *F* ext of *k* char 0: if C_{NC} and D_{NC} hold then $\text{NNum}_{F}^{\dagger}(k)$ is a neutral Tannakian category with periodic cyclic homology as fiber functor
- Thm 6: k char 0: if C, D and C_{NC}, D_{NC} hold then

sGal(NNum_k(k) \rightarrow Ker(t : sGal(Num_k(k)) \rightarrow \mathbb{G}_m)

$$\operatorname{Gal}(\operatorname{NNum}_k^{\dagger}(k) \twoheadrightarrow \operatorname{Ker}(t : \operatorname{Gal}(\operatorname{Num}_k^{\dagger}(k)) \twoheadrightarrow \mathbb{G}_m)$$

where *t* induced by inclusion of Tate motives in the category of (commutative) numerical motives

(using periodic cyclic homology and de Rham cohomology)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Thm 1: Schur finiteness \overline{HH} : NChow_{*F*}(*k*) $\rightarrow \mathscr{D}_{c}(F)$ *F*-linear symmetric monoidal functor (Hochschild homology)

$$(\operatorname{NChow}_F(k)/\operatorname{Ker}(\overline{HH}))^{\natural} \to \mathscr{D}_c(F)$$

faithful F-linear symmetric monoidal

 $\mathscr{D}_{c}(\mathscr{A}) = \text{full triang subcat of compact objects in } \mathscr{D}(\mathscr{A}) \Rightarrow \mathscr{D}_{c}(F)$ identified with fin-dim \mathbb{Z} -graded *F*-vector spaces: Shur finite

general fact: $L : \mathscr{C}_1 \to \mathscr{C}_2$ *F*-linear symmetric monoidal functor: $X \in \mathscr{C}_1$ Schur finite $\Rightarrow L(X) \in \mathscr{C}_2$ Schur finite; *L* faithful then also converse: $L(X) \in \mathscr{C}_2$ Schur finite $\Rightarrow X \in \mathscr{C}_1$ Schur finite conclusion: $(NChow_F(k)/Ker(\overline{HH}))^{\natural}$ is Schur finite also $Ker(\overline{HH}) \subset \mathscr{N}$ with *F*-linear symmetric monoidal functor $(NChow_F(k)/Ker(\overline{HH}))^{\natural} \to (NChow_F(k)/\mathscr{N})^{\natural} = NNum_F(k)$ $\Rightarrow NNum_F(k)$ Schur finite \Rightarrow super-Tannakian

イロン 不良 とくほどう

Thm 2: periodic cyclic homology mixed complex (M, b, B) with $b^2 = B^2 = Bb + bB = 0$, deg(b) = 1 = -deg(B): periodized

$$\cdots \prod_{n \text{ even}} M_n \stackrel{b+B}{\to} \prod_{n \text{ odd}} M_n \stackrel{b+B}{\to} \prod_{n \text{ even}} M_n \cdots$$

periodic cyclic homology (the derived cat of $\mathbb{Z}/2\mathbb{Z}$ -graded complexes

$$HP$$
 : dgcat $o \mathscr{D}_{\mathbb{Z}/2\mathbb{Z}}(k)$

induces F-linear symmetric monoidal functor

$$\overline{HP}_*$$
: NChow_F(k) \rightarrow sVect(F)

or to sVect(k) if k field ext of F

イロト イポト イヨト イヨト

Note the issue here:

• mixed complex functor symmetric monoidal but 2-periodization not (infinite product don't commute with \otimes)

- *lax symmetric monoidal* with $\mathscr{D}_{\mathbb{Z}/2\mathbb{Z}}(k) \simeq SVect(k)$ (not fin dim)
- HP : dgcat \rightarrow SVect(k) additive invariant: through Hmo₀(k)
- NChow_{*F*}(k) = (Hmo₀(k)^{*sp*})^{\sharp}_{*F*} (sp = gen by smooth proper dgcats)
- periodic cyclic hom *finite dimensional* for smooth proper dgcats + a result of Emmanouil

 \Rightarrow lax symmetric monoidal \overline{HP}_* : $Hmo_0(k)^{sp} \rightarrow sVect(k)$ is symmetric monoidal

standard conjecture *C_{NC}* (Künneth type)

• $C_{NC}(\mathscr{A})$: Künneth projections

$$\pi^{\pm}_{\mathscr{A}}: \overline{HP}_{*}(\mathscr{A}) \twoheadrightarrow \overline{HP}^{\pm}_{*}(\mathscr{A}) \hookrightarrow \overline{HP}_{*}(\mathscr{A})$$

are algebraic: $\pi^\pm_{\mathscr{A}} = \overline{\mathit{HP}}_*(\underline{\pi}^\pm_{\mathscr{A}})$ image of correspondences

• then from Keller have

$$\overline{HP}_{*}(\mathscr{D}_{perf}^{dg}(Z)) = HP_{*}(\mathscr{D}_{perf}^{dg}(Z)) = HP_{*}(Z) = \bigoplus_{n \, even} H^{n}_{dR}(Z)$$

• hence $C^{+}(Z) \Rightarrow C_{NC}(\mathscr{D}_{perf}^{dg}(Z))$ with $\underline{\pi}^{\pm}_{\mathscr{D}_{perf}^{dg}(Z)}$ image of $\underline{\pi}^{\pm}_{Z}$ under
 $Chow(k) \rightarrow Chow(k)/_{-\otimes \mathbb{Q}(1)} \hookrightarrow NChow(k)$

classical: (using deRham as Weil cohomology) C(Z) for Z correspondence, the Künneth projections $\pi_Z^n : H^*_{dR}(Z) \twoheadrightarrow H^n_{dR}(Z)$ are algebraic, $\pi_Z^n = H^*_{dR}(\underline{\pi}_Z^n)$, with $\underline{\pi}_Z^n$ correspondences

sign conjecture: $C^+(Z)$: Künneth projectors $\pi_Z^+ = \sum_{n=0}^{\dim Z} \pi_Z^{2n}$ are algebraic, $\pi_Z^+ = H_{dR}^*(\underline{\pi}_Z^+)$ (hence π_Z^- also)

Thm 3: Tannakian category first steps

- have *F*-linear symmetric monoidal and also full and essentially surjective functor: $\operatorname{NChow}_F(k)/\operatorname{Ker}(\overline{HP}_*) \to \operatorname{NChow}_F(k)/\mathscr{N}$
- assuming $C_{NC}(\mathscr{A})$: have $\underline{\pi}^{\pm}_{(\mathscr{A},e)} = e \circ \underline{\pi}^{\pm}_{\mathscr{A}} \circ e$; if \underline{X} trivial in $\operatorname{NChow}_{F}(k)/\mathscr{N}$ intersection numbers $\langle \underline{X}^{n}, \underline{\pi}^{\pm}_{(\mathscr{A},e)} \rangle$ vanishes $(\mathscr{N} \text{ is } \otimes \text{-ideal})$
- intersection number is categorical trace of $\underline{X}^n \circ \underline{\pi}^{\pm}_{(\mathscr{A},e)}$ (M.M., G.Tabuada, 1105.2950)

$$\Rightarrow \operatorname{Tr}(\overline{HP}_*(\underline{X}^n \circ \underline{\pi}^{\pm}_{(\mathscr{A}, \mathbf{e})}) = \operatorname{Tr}(\overline{HP}^{\pm}_*(\underline{X})^n) = 0$$

trace all n-compositions vanish \Rightarrow nilpotent $\overline{HP}^{\pm}_{*}(\underline{X})$

• conclude: nilpotent ideal as kernel of

$$\operatorname{End}_{\operatorname{NChow}_{F}(k)/\operatorname{Ker}(\overline{HP}_{*})}(\mathscr{A}, e) \twoheadrightarrow \operatorname{End}_{\operatorname{NChow}_{F}(k)/\mathscr{N}}(\mathscr{A}, e)$$

• then functor $(NChow_F(k)/Ker(\overline{HP}_*))^{\natural} \rightarrow NNum_F(k)$ full conservative essentially surjective: (quotient by \mathscr{N} full and ess surj; idempotents can be lifted along surj *F*-linear homom with nilpotent Tannakian category: modification of tensor structure

• $H : \mathscr{C} \to s \operatorname{Vect}(K)$ symmetric monoidal *F*-linear (*K* ext of *F*) faithful, Künneth projectors $\pi_N^{\pm} = H(\underline{\pi}_N^{\pm})$ for $\underline{\pi}_N^{\pm} \in \operatorname{End}_{\mathscr{C}}(N)$ for all $N \in \mathscr{C}$ then modify symmetry isomorphism

$$c^{\dagger}_{N_1,N_2}=c_{N_1,N_2}\circ(e_{N_1}\otimes e_{N_2}) \quad ext{with } e_N=2 \underline{\pi}_N^+-\textit{id}_N$$

• get *F*-linear symmetric monoidal functor
$$\mathscr{C}^{\dagger} \xrightarrow{H} s \operatorname{Vect}(\mathcal{K}) \to \operatorname{Vect}(\mathcal{K})$$

• if $P : \mathscr{C} \to \mathscr{D}$, *F*-linear symmetric monoidal (essentially) surjective, then $P : \mathscr{C}^{\dagger} \to \mathscr{D}^{\dagger}$ (use image of e_N to modify \mathscr{D} compatibly)

• apply to functors \overline{HP}_* : $(NChow_F(k)/Ker(\overline{HP}_*))^{\natural} \rightarrow sVect(K)$ and $(NChow_F(k)/Ker(\overline{HP}_*))^{\natural} \rightarrow NNum_F(k)$

 \Rightarrow obtain $\operatorname{NNum}_{F}^{\dagger}(k)$ satisfying Deligne's intrinsic characterization for Tannakian: with \tilde{N} lift to $(\operatorname{NChow}_{F}(k)/\operatorname{Ker}(\overline{HP}_{*}))^{\natural,\dagger}$ have

$$\operatorname{rk}(N) = \operatorname{rk}(\overline{HP}_*(\tilde{N})) = \operatorname{dim}(\overline{HP}^+_*(\tilde{N})) + \operatorname{dim}(\overline{HP}^-_*(\tilde{N})) \ge 0$$

Thm 4: Noncommutative homological motives

$$\overline{HP}_*$$
: NChow_F(k) \rightarrow sVect(K)

 $\mathcal{K}_{0}(\mathscr{A})_{\mathcal{F}} = \operatorname{Hom}_{\operatorname{NChow}_{\mathcal{F}}(k)}(k, \mathscr{A}) \xrightarrow{\overline{HP}_{*}} \operatorname{Hom}_{\mathcal{S}\operatorname{Vect}(\mathcal{K})}(\overline{HP}_{*}(k), \overline{HP}_{*}(\mathscr{A}))$

kernel gives homological equivalence $K_0(\mathscr{A})_F \mod \sim_{hom}$

D_{NC}(A) standard conjecture:

$${\it K}_0({\mathscr A})_{\it F}/\sim_{\it hom}={\it K}_0({\mathscr A})_{\it F}/\sim_{\it num}$$

• on $\operatorname{Chow}_F(k)/_{-\otimes \mathbb{Q}(1)}$ induces homological equivalence with sH_{dR} (de Rham even/odd) $\Rightarrow \mathscr{Z}^*_{hom}(Z)_F \twoheadrightarrow K_0(\mathscr{D}^{dg}_{perf}(Z))_F/\sim_{hom}$

• classical cycles $\mathscr{Z}^*_{hom}(Z)_F \simeq \mathscr{Z}^*_{num}(Z)_F$; for numerical $\mathscr{Z}^*_{num}(Z)_F \xrightarrow{\sim} \mathcal{K}_0(\mathscr{D}^{dg}_{perf}(Z))_F / \sim_{num}$; then get

$$D(Z) \Rightarrow D_{NC}(\mathscr{D}_{perf}^{dg}(Z))$$

イロト イヨト イヨト 一日

Thm 5: assume C_{NC} and D_{NC} then

$$\overline{HP}_*$$
: NNum[†]_F(k) \rightarrow Vect(F)

exact faithful \otimes -functor: fiber functor \Rightarrow *neutral* Tannakian category NNum[†]_F(k)

Thm 6: Motivic Galois groups

• Galois group of neutral Tannakian category $\operatorname{Gal}(\operatorname{NNum}_{F}^{\dagger}(k))$ want to compare with commutative case $\operatorname{Gal}(\operatorname{Num}_{F}^{\dagger}(k))$

• super-Galois group of super-Tannakian category sGal(NNum_F(k)) compare with commutative motives case sGal(Num_F(k))

• related question: what are truly noncommutative motives?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Tate triples (Deligne–Milne)

• For $A = \mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z}$ and $B = \mathbb{G}_m$ or μ_2 , Tannakian cat \mathscr{C} with *A*-grading: *A*-grading on objects with $(X \otimes Y)^a = \bigoplus_{a=b+c} X^b \otimes Y^c$; homom $w : B \to \underline{\operatorname{Aut}}^{\otimes}(id_{\mathscr{C}})$ (weight); central hom $B \to \underline{\operatorname{Aut}}^{\otimes}(\omega)$

• Tate triple (\mathscr{C} , w, T): \mathbb{Z} -graded Tannakian \mathscr{C} with weight w, invertible object T (Tate object) weight -2

• Tate triple \Rightarrow central homom $w : \mathbb{G}_m \to \text{Gal}(\mathscr{C})$ and homom $t : \text{Gal}(\mathscr{C}) \to \mathbb{G}_m$ with $t \circ w = -2$.

• $H = Ker(t : Gal(\mathscr{C}) \to \mathbb{G}_m)$ defines Tannakian category $\simeq \operatorname{Rep}(H)$. It is the "quotient Tannakian category" (Milne) of inclusion of subcategory gen by Tate object into \mathscr{C}

Galois group and orbit category

• $\mathscr{T} = (\mathscr{C}, w, T)$ Tate triple, $\mathscr{S} \subset \mathscr{C}$ gen by T, pseudo-ab envelope $(\mathscr{C}/_{-\otimes T})^{\natural}$ of orbit cat $\mathscr{C}/_{-\otimes T}$ is neutral Tannakian with

$$\operatorname{Gal}((\mathscr{C}/_{-\otimes T})^{\natural}) \simeq \operatorname{Ker}(t : \operatorname{Gal}(\mathscr{C}) \twoheadrightarrow \mathbb{G}_m)$$

• Quotient Tannakian categories with resp to a fiber functor (Milne): $\omega_0 : \mathscr{S} \to \operatorname{Vect}(F)$ then \mathscr{C}/ω_0 pseudo-ab envelope of \mathscr{C}' with same objects as \mathscr{C} and morphisms $\operatorname{Hom}_{\mathscr{C}'}(X, Y) = \omega_0(\underline{Hom}_{\mathscr{C}}(X, Y)^H)$ with X^H largest subobject where H acts trivially

• fiber functor $\omega_0 : X \mapsto \operatorname{colim}_n \operatorname{Hom}_{\mathscr{C}}(\oplus_{r=-n}^n \mathbf{1}(r), X) \in \operatorname{Vect}(F)$ $\Rightarrow \operatorname{get} \mathscr{C}' = \mathscr{C}/_{-\otimes T}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

super-Tannakian case: super Tate triples

Need a super-Tannakian version of Tate triples

• super Tate triple: $\mathscr{ST} = (\mathscr{C}, \omega, \underline{\pi}^{\pm}, \mathscr{T}^{\dagger})$ with \mathscr{C} = neutral super-Tannakian; $\omega : \mathscr{C} \to s \operatorname{Vect}(F)$ super-fiber functor; idempotent endos: $\omega(\underline{\pi}_X^{\pm}) = \pi_X^{\pm}$ Künneth proj.; neutral Tate triple $\mathscr{T}^{\dagger} = (\mathscr{C}^{\dagger}, w, T)$ with \mathscr{C}^{\dagger} modified symmetry constraint from \mathscr{C} using $\underline{\pi}^{\pm}$

• assuming C and D: a super Tate triple for (comm) num motives

$$(\operatorname{Num}_k(k), \overline{sH}^*_{dR}, \underline{\pi}^{\pm}_X, (\operatorname{Num}^{\dagger}_k(k), w, \mathbb{Q}(1)))$$

イロト イポト イラト イラト 一戸

super-Tannakian case: orbit category

• $\mathscr{ST} = (\mathscr{C}, \omega, \underline{\pi}^{\pm}, \mathscr{T}^{\dagger})$ super Tate triple; $\mathscr{S} \subset \mathscr{C}$ full neutral super-Tannakian subcat gen by *T*

• Assume: $\underline{\pi}_{T}^{-}(T) = 0$; for $K = \operatorname{Ker}(t : \operatorname{Gal}(\mathscr{C}^{\dagger}) \to \mathbb{G}_{m})$ of Tate triple \mathscr{T}^{\dagger} , if $\epsilon : \mu_{2} \to H$ induced $\mathbb{Z}/2\mathbb{Z}$ grading from $t \circ w = -2$; then (H, ϵ) super-affine group scheme is Ker of $s\operatorname{Gal}(\mathscr{C}) \to s\operatorname{Gal}(\mathscr{S})$ and $\operatorname{Rep}_{F}(H, \epsilon) = \operatorname{Rep}_{F}^{\dagger}(H)$.

• Conclusion: pseudoabelian envelope of $\mathscr{C}/_{-\otimes T}$ is neutral super-Tannakian and seq of exact \otimes -functors $\mathscr{S} \subset \mathscr{C} \to (\mathscr{C}/_{-\otimes T})^{\natural}$ gives

$$s$$
Gal $((\mathscr{C}/_{-\otimes T})^{\natural}) \xrightarrow{\sim} \text{Ker}(t : s$ Gal $(\mathscr{C}) \to \mathbb{G}_m)$

• have also $(\mathscr{C}^{\dagger}/_{-\otimes T})^{\natural} \simeq (\mathscr{C}/_{-\otimes T})^{\natural,\dagger} \simeq \operatorname{Rep}_{F}^{\dagger}(H,\epsilon) \simeq \operatorname{Rep}_{F}(H)$

イロト イポト イラト イラト 一日

Then for Galois groups:

• then surjective Gal(NNum[†]_k(k)) \rightarrow Gal((Num[†]_k(k)/_ $\otimes \mathbb{Q}(1)$)^{\natural}) from embedding of subcategory and Gal((Num[†]_k(k)/_ $\otimes \mathbb{Q}(1)$)^{\natural}) = Ker(t : Num[†]_k(k) $\rightarrow \mathbb{G}_m$)

• for super-Tannakian: surjective (from subcategory) $sGal(NNum_k(k)) \twoheadrightarrow sGal((Num_k(k)/_{-\otimes \mathbb{Q}(1)})^{\natural})$ and $sGal((Num_k(k)/_{-\otimes \mathbb{Q}(1)})^{\natural}) \simeq Ker(t : sGal(Num_k(k)) \twoheadrightarrow \mathbb{G}_m)$

• What is kernel? Ker = "truly noncommutative motives"

$$\operatorname{Gal}(\operatorname{NNum}_{k}^{\dagger}(k)) \twoheadrightarrow \operatorname{Ker}(t : \operatorname{Num}_{k}^{\dagger}(k) \to \mathbb{G}_{m})$$

sGal(NNum_k(k)) \twoheadrightarrow Ker(t : sGal(Num_k(k)) \twoheadrightarrow \mathbb{G}_m)

what do they look line? examples (nc tori, ...)? general properties?