Multiplicative genera for noncommutative manifolds?

Matilde Marcolli

Banff, April 2012

Matilde Marcolli Multiplicative genera for noncommutative manifolds?

向下 イヨト イヨト

Disclaimer: this is a largely speculative talk, meant for an informal discussion session at the workshop "Novel approaches to the finite simple groups" in Banff

向下 イヨト イヨト

Multiplicative Genera of manifolds (Hirzeburch)

• multiplicative genus: closed oriented smooth manifolds M; values in commutative unital \mathbb{Q} -algebra Λ

$$\phi(M \amalg N) = \phi(M) + \phi(N)$$

 $\phi(M \times N) = \phi(M)\phi(N)$
 $\phi(\partial M) = 0$

- \Rightarrow depend on *cobordism* class [M]
- Oriented cobordism ring $\Omega^{SO}_* \otimes \mathbb{Q} = \mathbb{Q}[\mathbb{CP}^n]_{n \ge 1}$ polynomial ring \Rightarrow genus determined by series

$$\psi(t) = t + rac{\phi(\mathbb{CP}^2)}{3}t^3 + rac{\phi(\mathbb{CP}^4)}{5}t^5 + \cdots \in \Lambda[[t]]$$

• Thom: homomorphism $\phi: \Omega_n^{SO} \to \Lambda$ combination of Pontrjagin numbers

Elliptic genus

• multiplicative genus ϕ is *elliptic* if vanishes on $\mathbb{CP}(E)$ projectivized complex vector bundles $E \to M$ over a closed oriented manifold \Rightarrow

$$\psi(t) = \int_0^t \frac{du}{\sqrt{1 - 2\delta u^2 + \epsilon u^4}}, \quad \text{ some } \epsilon, \delta \in \Lambda$$

 $\Lambda=\mathbb{C}$: signature ($\epsilon=\delta=1$) Â-genus ($\delta=-1/8$, $\epsilon=0$)

• Jacobi quartics $y^2 = x^4 - 2\delta x^2 + \epsilon$: as functions of τ modular forms ϵ , δ of level $\Gamma_0(2) \Rightarrow \phi(M)$ polynomial in ϵ , δ , modular form, $\Lambda = M_*(\Gamma_0(2))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dirac operator on loop space (Witten)

• X with G action, $F(g) = \operatorname{Tr}_{Ker(D)}(g) - \operatorname{Tr}_{Coker(D)}(g)$ character valued Dirac index: in terms of fixed points X_{α} component $N = \bigoplus_{\ell} N_{\ell}$ normal bundle $g = e^{\theta P}$ with P acting on N_{ℓ} as $i\ell$

$$F_{lpha}(heta) = \epsilon_{lpha} \langle \hat{A}(M_{lpha}) \mathrm{ch}(\sqrt{\det(\otimes_{\ell > 0} N_{\ell})} \prod_{\ell} e^{i heta \ell n_{\ell}/2} \bigotimes_{\ell > 0} rac{1}{1 - e^{i \ell heta} N_{\ell}}), X_{lpha}
angle$$

$$(1 - tV)^{-1} = 1 \oplus tV \oplus t^2 S^2 V \oplus \cdots \oplus t^k S^k V \oplus \cdots$$

sign ϵ_{α} (orientation)

-

向下 イヨト イヨト

• $X = \mathcal{L}(M)$ loop space, M fixed points; normal bundle $\bigoplus_{\ell} N_{\ell}$ each $N_{\ell} = T = TM$; $n_{\ell} = d = \dim M$; $\sqrt{\det(\bigotimes_{\ell>0} N_{\ell})}$ choice of spin structure on M

$${\mathcal F}(q) = q^{-d/24} \langle \hat{A}(M) {
m ch}(\otimes_{\ell=1}^\infty S_{q^\ell} T), M
angle$$

replacing $\prod_{\ell>0} e^{i\theta n_\ell/2}$ with

$$(\prod_{n=1}^{\infty} q^n)^{d/2} = (q^{\sum_n n})^{d/2} = q^{\zeta(-1)d/2} = q^{-d/24}$$

• $F(q) = \Phi(q)/\eta(q)$, with $\eta(q) = q^{1/24} \prod_{\ell \ge 1} (1 - q^{\ell})$ Dedekind eta function, and $\Phi(q)$ modular form = level one elliptic genus (assuming $p_1(M) = 0$)

• E. Witten, *The index of the Dirac opeator in loop space*, LNM, Vol.1326 (1988) 161–181.

- 本部 とくき とくき とうき

24-dimensional manifolds and the Monster

• *M* spin manifold with $p_1(M) = 0 \Rightarrow$ Witten genus Φ_M in $\mathcal{M}_* = \mathbb{Z}[E - 4, E - 6, \Delta]/(E_4^3 - E_6^2 - 1728\Delta)$ ring of modular forms, $\Delta = q \prod_n (1 - q^n)^{24}$

• (Hirzebruch) M as above dim 24: $\Phi_M = \hat{A}(M)\bar{\Delta} + \hat{A}(M, T_{\mathbb{C}})\Delta$ with $\bar{\Delta} = E_4^3 - 744\Delta$

• Question (Hirzebruch): is there a $M \dim 24$, spin, $p_1(M) = 0$, $\hat{A}(M) = 1$, $\hat{A}(M, T_{\mathbb{C}}) = 0$? (that is $\Phi_M = \overline{\Delta}$, or Witten genus j after normalization by η^{24}) Answer: Yes (Hopkins–Mahowald)

• Question (Hirzebruch): is there an action of the monster group \mathbb{M} on such manifold, so that Monster representations (dims related to coeffs of mod form j) from tensor powers of tangent bundle? Not known

• Question: what about a noncommutative manifold?

Noncommutative spin manifolds = Spectral triples

- involutive algebra ${\cal A}$
- representation $\pi:\mathcal{A}\to\mathcal{L}(\mathcal{H})$
- self adjoint operator D on \mathcal{H} , dense domain
- compact resolvent $(1+D^2)^{-1/2}\in \mathcal{K}$
- [a, D] bounded $\forall a \in A$
- even if $\mathbb{Z}/2$ grading γ on \mathcal{H}

$$[\gamma, \mathbf{a}] = \mathbf{0}, \ \forall \mathbf{a} \in \mathcal{A}, \quad D\gamma = -\gamma D$$

Main example $(C^{\infty}(M), L^2(M, S), \partial_M)$ with chirality γ_5 in 4-dim • Alain Connes, Geometry from the spectral point of view, Lett.

Math. Phys. 34 (1995), no. 3, 203–238.

イロト イポト イヨト イヨト 二日

Real structure KO-dimension $n \in \mathbb{Z}/8\mathbb{Z}$ antilinear isometry $J : \mathcal{H} \to \mathcal{H}$

$$J^2 = arepsilon, \quad JD = arepsilon' DJ, \;\; {
m and} \;\; J\gamma = arepsilon'' \gamma J$$

n	0	1	2	3	4	5	6	7
ε	1	1	-1	-1	-1	-1	1	1
ε'	1	-1	1	1	1	-1	1	1
ε''	1		-1		1		1 1 -1	

Commutation: $[a, b^0] = 0 \quad \forall \, a, b \in \mathcal{A}$ where $b^0 = Jb^*J^{-1} \quad \forall b \in \mathcal{A}$ Order one condition:

$$[[D, a], b^0] = 0 \qquad \forall a, b \in \mathcal{A}$$

- 4 周 と 4 ほ と 4 ほ と … ほ

Spectral triples in NCG need not be manifolds:

- Quantum groups
- Fractals
- NC tori

• Large classes of NC manifold are deformations of commutative manifolds: Connes–Landi isospectral deformations; quantum groups

• Other classes include "almost commutative" geometries (roughly: bundles of matrix algebras over commutative)

向下 イヨト イヨト

The notion of dimension

For NC spaces: different notions of dimension for a spectral triple $(\mathcal{A}, \mathcal{H}, D)$

- Metric dimension: growth of eigenvalues of Dirac operator
- KO-dimension (mod 8): sign commutation relations of J, γ , D
- Dimension spectrum: poles of zeta functions $\zeta_{a,D}(s) = \operatorname{Tr}(a|D|^{-s})$

For manifolds first two agree and third contains usual dim; for NC spaces not same: DimSp $\subset \mathbb{C}$ can have non-integer and non-real points, *KO* not always metric dim mod 8

Disjoint unions and products

• disjoint union $X = X_1 \amalg X_2$ of two *n*-dimensional manifolds becomes direct sum: algebra $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2$, Hilbert space $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, Dirac operator

$$D = \left(\begin{array}{cc} D_1 & 0\\ 0 & D_2 \end{array}\right)$$

• Product $X_1 \times X_2$ (even case)

$$\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_2 \qquad \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$
$$D = D_1 \otimes 1 + \gamma_1 \otimes D_2$$
$$\gamma = \gamma_1 \otimes \gamma_2 \qquad J = J_1 \otimes J_2$$

(日) (日) (日)

Local index formula: Pontrjagin classes in NCG (A, H, D) even spectral triple: Chern character local formula

$$\phi_n(a_0, \dots, a_n) = \sum c_{n,k} \operatorname{ResTr}(a^0[D, a_1]^{(k_1)} \cdots [D, a_n]^{(k_n)} |D|^{-n-2|k|})$$
$$c_{n,k} = \frac{(-1)^{|k|} \Gamma(|k| + n/2)}{k! ((k_1 + 1) \cdots (k_1 + k_2 + \dots + k_n + n))}$$

Notation: $\nabla(a) = [D^2, a]$ and $a^{(k)} = \nabla^k(a)$ pairing of cyclic cohomology $HC^*(A)$ and K-theory $K_*(A)$

• A. Connes, H. Moscovici, *The local index formula in noncommutative geometry*, Geom. Funct. Anal. 5 (1995), 174–243.

伺下 イヨト イヨト

Noncommutative manifolds with boundary (Chamseddine–Connes)

- boundary even: $\mathbb{Z}/2\mathbb{Z}$ -grading γ on \mathcal{H} with $[a, \gamma] = 0$ for all $a \in \mathcal{A}$ and $Dom(D) \cap \gamma Dom(D)$ dense in \mathcal{H}
- boundary algebra: ∂A quotient $A/(J \cap J^*)$, two-sided ideal $J = \{a \in A | aDom(D) \subset \gamma Dom(D)\}$
- boundary Hilbert space: $\partial \mathcal{H}$ closure in \mathcal{H} of $D^{-1}KerD_0^*$, with D_0 symmetric operator restricting D to $Dom(D) \cap \gamma Dom(D)$
- action of $\partial \mathcal{A}$ by $a D^{-2}[D^2, a]$
- boundary Dirac: ∂D def on $D^{-1}KerD_0^*$ with $\langle \xi, \partial D\eta \rangle = \langle \xi, D\eta \rangle$ for $\xi \in \partial \mathcal{H}$ and $\eta \in D^{-1}KerD_0^*$; bounded commutators with $\partial \mathcal{A}$

Multiplicative genera for noncommutative manifolds

Λ unital commutative algebra; $\phi(A, H, D)$ values in Λ:

• on disjoint unions:

 $\phi((\mathcal{A}_1, \mathcal{H}_1, D_1) \oplus (\mathcal{A}_2, \mathcal{H}_2, D_2)) = \phi(\mathcal{A}_1, \mathcal{H}_1, D_1) + \phi(\mathcal{A}_2, \mathcal{H}_2, D_2)$

• on products:

 $\phi((\mathcal{A}_1, \mathcal{H}_1, D_1) \otimes (\mathcal{A}_2, \mathcal{H}_2, D_2)) = \phi(\mathcal{A}_1, \mathcal{H}_1, D_1)\phi(\mathcal{A}_2, \mathcal{H}_2, D_2)$

• on boundaries:

 $\phi(\mathcal{A}, \mathcal{H}, D) = 0$ if $(\mathcal{A}, \mathcal{H}, D) = \partial(\mathcal{A}', \mathcal{H}', D')$

Defined for (finitely summable) spectral triples (up to cobordism)

Question1: what is the right notion of *elliptic*?

• Vanishing on $\mathbb{CP}(E)$ projective bundles of complex vector bundles $E \to M$ in commutative case

• Noncommutative generalizations: (Hilbert modules) $E \rightarrow M$ vector bundle $\Leftrightarrow \mathcal{E}$ finite projective module over \mathcal{A}

• $E \mapsto \mathbb{CP}(E)$ projective bundle: projective bundle on M =principal $PU(\mathcal{H})$ -bundle (Banach–Steinhaus); isomorphism classes $H^1(M, PU(\mathcal{H})_M)$ sheaf cohomology. Projective bundle $P = \mathbb{CP}(E)$ of a vector bundle E iff Dixmier–Douady class $\delta(P) \in H^3(M, \mathbb{Z})$ is $\delta(P) = 0$

 \bullet NCG generalization: continuous trace $C^*\mbox{-algebras}$ have a Dixmier–Douady class

• Is there any room for *modularity*? see next question...

(四) (日) (日)

Question 2: cobordism ring and generators?

• Is there a description of cobordism in terms of (ϕ_n) (noncommutative Pontrjagin classes)???

• Note: not by the original Thom argument, which uses embeddings and normal bundles for manifolds

• but... one has bundles (projective modules, Hilbert modules), and morphisms of spectral triples (bimodules with connections) among which some qualify as "embeddings"... parts of the Thom argument go through

• Is there a power series description of genera in NCG???

(4月) (1日) (日)

NCG view of elliptic genus (Jaffe)

- θ -summable spectral triple $(\mathcal{A}, \mathcal{H}, D)$: Tr $(|D|^{-s})$ not finite but Tr $(e^{-tD^2}) < \infty$ for all t > 0
- JLO cocycle pairs with K-theory $K_0(\mathcal{A})$

$$\tau_n^{JLO}(a_0,\ldots,a_n;g) = \int_{\Sigma_n} \operatorname{Tr}(\gamma U(g)a_0 e^{-s_0 D^2} da_1 e^{-s_1 D^2} \cdots da_n e^{-s_n D^2}) dv$$

- da = [D, a], $a \in A$; simplex $\Sigma_n = \{\sum_j s_j = 1\}$, $dv = ds_0 \cdots ds_n$
- JLO cocycle is a super-KMS-functional generalizing the notion of a Gibbs state

・ 同 ト ・ ヨ ト ・ ヨ ト

• Elliptic genus as partition function (Jaffe)

$$\operatorname{Tr}_{\mathcal{H}}(\gamma e^{-i\theta J - i\sigma P - \beta H})$$

with Hamiltonian $H = Q^2 - P$, supercharge Q, twisting angle J, translation P

• Supercharge operator Q as Dirac operator of a θ -summable spectral triple (Jaffe, Connes)

 \bullet Equivariant index of Dirac operator Q on loop space computed by evaluation of JLO cocycle

• A. Jaffe, *Twist fields, the elliptic genus, and hidden symmetry*, PNAS 97 (2000) 1418–1422.

イロト イポト イヨト イヨト

The loop space of a noncommutative manifold

• $Maps(S^1, X)$ or $\chi : C(X) \rightarrow C(S^1)$ hom C^* -algebras

• Kapranov–Vasserot for schemes (infinitesimal loops) Hom(A, R[[t]])

• Points in NCG: not enough characters $\chi : C(X) \to \mathbb{C}$, but lots of states (linear) $\phi : C(X) \to \mathbb{C}$ with positivity $\phi(a^*a) \ge 0$ and $\phi(1) = 1$ (extremal = point measures = points)

• A similar approach for loops? $\mathcal{L}(X) = \{\ell : C(X) \to C(S^1)\}$ linear with some positivity and normalization

• Given spectral triple $(C^{\infty}(X), L^2(X, S), \mathcal{D}_X)$ use $\mathcal{L}(X)$ to construct a Hilbert bimodule that modifies this spectral triple

Dirac operator on the loop space

• Idea: normal bundle $N = \bigoplus_{\ell \neq 0} T_{\ell}$ of M in $\mathcal{L}(M)$ with $T_{\ell} \simeq TM$

• $\mathcal{T} = \mathcal{TL}(M)$ pullback of TM to loops $\gamma : S^1 \to M$; \mathcal{E} notrivial real line bundle on S^1 and $\hat{\mathcal{T}} = \mathcal{E} \otimes \mathcal{TL}(M)$

$$\hat{\mathcal{T}}|_{M} = \oplus_{m \in \mathbb{Z} + 1/2} q^{m} T_{m}$$

 $T_m \simeq TM$ and q^m for S^1 -action

- spectral triple for $\mathcal{L}(M)$ with $\mathcal{H} = \oplus_m q^m \mathcal{H}_m$, $\mathcal{H}_m = L^2(M, S)$
- twisted Dirac operator on X

- Dirac should give right thing for *LG* loop groups (Landweber)
- *string structures* on manifolds and spin connections on the loop space

Question 3: a noncommutative space for moonshine?

Why looking for a noncommutative answer?

- Relations between NC spaces from Quantum Statistical Mechanics (GL₂-system) and moonshine: see ongoing work of Jorge Plazas
- Operator algebra approach to CFT (Wassermann, Jones, Longo, Kawahigashi...)
- QSM systems for number fields with phase transitions: CFTs at phase transition? any possible relation to RCFTs with CM of Gukov–Vafa?

・ 同 ト ・ ヨ ト ・ ヨ ト