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Disclaimer: this is a largely speculative talk, meant for an informal
discussion session at the workshop “Novel approaches to the finite
simple groups” in Banff
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Multiplicative Genera of manifolds (Hirzeburch)
• multiplicative genus: closed oriented smooth manifolds M; values
in commutative unital Q-algebra Λ

φ(M q N) = φ(M) + φ(N)

φ(M × N) = φ(M)φ(N)

φ(∂M) = 0

⇒ depend on cobordism class [M]

• Oriented cobordism ring ΩSO
∗ ⊗Q = Q[CPn]n≥1 polynomial ring

⇒ genus determined by series

ψ(t) = t +
φ(CP2)

3
t3 +

φ(CP4)

5
t5 + · · · ∈ Λ[[t]]

• Thom: homomorphism φ : ΩSO
n → Λ combination of Pontrjagin

numbers
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Elliptic genus
• multiplicative genus φ is elliptic if vanishes on CP(E )
projectivized complex vector bundles E → M over a closed
oriented manifold ⇒

ψ(t) =

∫ t

0

du√
1− 2δu2 + εu4

, some ε, δ ∈ Λ

Λ = C: signature (ε = δ = 1) Â-genus (δ = −1/8, ε = 0)

• Jacobi quartics y 2 = x4 − 2δx2 + ε: as functions of τ modular
forms ε, δ of level Γ0(2) ⇒ φ(M) polynomial in ε, δ, modular
form, Λ = M∗(Γ0(2))
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Dirac operator on loop space (Witten)

• X with G action, F (g) = TrKer(D)(g)− TrCoker(D)(g) character
valued Dirac index: in terms of fixed points Xα component
N = ⊕`N` normal bundle g = eθP with P acting on N` as i`

Fα(θ) = εα〈Â(Mα)ch(
√

det(⊗`>0N`)
∏
`

e iθ`n`/2
⊗
`>0

1

1− e i`θN`
),Xα〉

(1− tV )−1 = 1⊕ tV ⊕ t2S2V ⊕ · · · ⊕ tkSkV ⊕ · · ·
sign εα (orientation)
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• X = L(M) loop space, M fixed points; normal bundle ⊕`N` each
N` = T = TM; n` = d = dim M;

√
det(⊗`>0N`) choice of spin

structure on M

F (q) = q−d/24〈Â(M)ch(⊗∞`=1Sq`T ),M〉

replacing
∏
`>0 e iθn`/2 with

(
∞∏
n=1

qn)d/2 = (q
∑

n n)d/2 = qζ(−1)d/2 = q−d/24

• F (q) = Φ(q)/η(q), with η(q) = q1/24
∏
`≥1(1− q`) Dedekind

eta function, and Φ(q) modular form = level one elliptic genus
(assuming p1(M) = 0)

• E. Witten, The index of the Dirac opeator in loop space, LNM,
Vol.1326 (1988) 161–181.
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24-dimensional manifolds and the Monster

• M spin manifold with p1(M) = 0 ⇒ Witten genus ΦM in
M∗ = Z[E − 4,E − 6,∆]/(E 3

4 − E 2
6 − 1728∆) ring of modular

forms, ∆ = q
∏

n(1− qn)24

• (Hirzebruch) M as above dim 24: ΦM = Â(M)∆̄ + Â(M,TC)∆
with ∆̄ = E 3

4 − 744∆

• Question (Hirzebruch): is there a M dim 24, spin, p1(M) = 0,
Â(M) = 1, Â(M,TC) = 0? (that is ΦM = ∆̄, or Witten genus j
after normalization by η24) Answer: Yes (Hopkins–Mahowald)

• Question (Hirzebruch): is there an action of the monster group
M on such manifold, so that Monster representations (dims related
to coeffs of mod form j) from tensor powers of tangent bundle?
Not known

• Question: what about a noncommutative manifold?
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Noncommutative spin manifolds = Spectral triples

involutive algebra A
representation π : A → L(H)

self adjoint operator D on H, dense domain

compact resolvent (1 + D2)−1/2 ∈ K
[a,D] bounded ∀a ∈ A
even if Z/2- grading γ on H

[γ, a] = 0, ∀a ∈ A, Dγ = −γD

Main example (C∞(M), L2(M, S), /∂M) with chirality γ5 in 4-dim

• Alain Connes, Geometry from the spectral point of view, Lett.
Math. Phys. 34 (1995), no. 3, 203–238.
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Real structure KO-dimension n ∈ Z/8Z
antilinear isometry J : H → H

J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

Commutation: [a, b0] = 0 ∀ a, b ∈ A
where b0 = Jb∗J−1 ∀b ∈ A
Order one condition:

[[D, a], b0] = 0 ∀ a, b ∈ A
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Spectral triples in NCG need not be manifolds:

Quantum groups

Fractals

NC tori

• Large classes of NC manifold are deformations of commutative
manifolds: Connes–Landi isospectral deformations; quantum
groups

• Other classes include “almost commutative” geometries
(roughly: bundles of matrix algebras over commutative)
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The notion of dimension
For NC spaces: different notions of dimension for a spectral triple
(A,H,D)

Metric dimension: growth of eigenvalues of Dirac operator

KO-dimension (mod 8): sign commutation relations of J, γ, D

Dimension spectrum: poles of zeta functions
ζa,D(s) = Tr(a|D|−s)

For manifolds first two agree and third contains usual dim; for NC
spaces not same: DimSp ⊂ C can have non-integer and non-real
points, KO not always metric dim mod 8
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Disjoint unions and products
• disjoint union X = X1 q X2 of two n-dimensional manifolds
becomes direct sum: algebra A = A1 ⊕A2, Hilbert space
H = H1 ⊕H2, Dirac operator

D =

(
D1 0
0 D2

)

• Product X1 × X2 (even case)

A = A1 ⊗A2 H = H1 ⊗H2

D = D1 ⊗ 1 + γ1 ⊗ D2

γ = γ1 ⊗ γ2 J = J1 ⊗ J2
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Local index formula: Pontrjagin classes in NCG

(A,H,D) even spectral triple: Chern character local formula

φn(a0, . . . , an) =
∑

cn,kResTr(a0[D, a1](k1) · · · [D, an](kn)|D|−n−2|k|)

cn,k =
(−1)|k|Γ(|k|+ n/2)

k!((k1 + 1) · · · (k1 + k2 + · · ·+ kn + n))

Notation: ∇(a) = [D2, a] and a(k) = ∇k(a)
pairing of cyclic cohomology HC ∗(A) and K-theory K∗(A)

• A. Connes, H. Moscovici, The local index formula in
noncommutative geometry, Geom. Funct. Anal. 5 (1995),
174–243.
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Noncommutative manifolds with boundary (Chamseddine–Connes)

• boundary even: Z/2Z-grading γ on H with [a, γ] = 0 for all
a ∈ A and Dom(D) ∩ γDom(D) dense in H
• boundary algebra: ∂A quotient A/(J ∩ J∗), two-sided ideal
J = {a ∈ A|aDom(D) ⊂ γDom(D)}
• boundary Hilbert space: ∂H closure in H of D−1KerD∗0 , with D0

symmetric operator restricting D to Dom(D) ∩ γDom(D)

• action of ∂A by a− D−2[D2, a]

• boundary Dirac: ∂D def on D−1KerD∗0 with 〈ξ, ∂Dη〉 = 〈ξ,Dη〉
for ξ ∈ ∂H and η ∈ D−1KerD∗0 ; bounded commutators with ∂A
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Multiplicative genera for noncommutative manifolds

Λ unital commutative algebra; φ(A,H,D) values in Λ:

• on disjoint unions:

φ((A1,H1,D1)⊕ (A2,H2,D2)) = φ(A1,H1,D1) + φ(A2,H2,D2)

• on products:

φ((A1,H1,D1)⊗ (A2,H2,D2)) = φ(A1,H1,D1)φ(A2,H2,D2)

• on boundaries:

φ(A,H,D) = 0 if (A,H,D) = ∂(A′,H′,D ′)

Defined for (finitely summable) spectral triples (up to cobordism)
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Question1: what is the right notion of elliptic?

• Vanishing on CP(E ) projective bundles of complex vector
bundles E → M in commutative case

• Noncommutative generalizations: (Hilbert modules)
E → M vector bundle ⇔ E finite projective module over A
• E 7→ CP(E ) projective bundle: projective bundle on M =
principal PU(H)-bundle (Banach–Steinhaus); isomorphism classes
H1(M,PU(H)M) sheaf cohomology. Projective bundle P = CP(E )
of a vector bundle E iff Dixmier–Douady class δ(P) ∈ H3(M,Z) is
δ(P) = 0

• NCG generalization: continuous trace C ∗-algebras have a
Dixmier–Douady class

• Is there any room for modularity? see next question...
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Question 2: cobordism ring and generators?

• Is there a description of cobordism in terms of (φn)
(noncommutative Pontrjagin classes)???

• Note: not by the original Thom argument, which uses
embeddings and normal bundles for manifolds

• but... one has bundles (projective modules, Hilbert modules),
and morphisms of spectral triples (bimodules with connections)
among which some qualify as “embeddings”... parts of the Thom
argument go through

• Is there a power series description of genera in NCG???
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NCG view of elliptic genus (Jaffe)

• θ-summable spectral triple (A,H,D):
Tr(|D|−s) not finite but Tr(e−tD

2
) <∞ for all t > 0

• JLO cocycle pairs with K -theory K0(A)

τ JLOn (a0, . . . , an; g) =

∫
Σn

Tr(γU(g)a0e−s0D2
da1e−s1D2 · · · dane−snD

2
)dv

da = [D, a], a ∈ A; simplex Σn = {
∑

j sj = 1}, dv = ds0 · · · dsn

• JLO cocycle is a super-KMS-functional generalizing the notion of
a Gibbs state
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• Elliptic genus as partition function (Jaffe)

TrH(γe−iθJ−iσP−βH)

with Hamiltonian H = Q2 − P, supercharge Q, twisting angle J,
translation P

• Supercharge operator Q as Dirac operator of a θ-summable
spectral triple (Jaffe, Connes)

• Equivariant index of Dirac operator Q on loop space computed
by evaluation of JLO cocycle

• A. Jaffe, Twist fields, the elliptic genus, and hidden symmetry,
PNAS 97 (2000) 1418–1422.
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The loop space of a noncommutative manifold
• Maps(S1,X ) or χ : C (X )→ C (S1) hom C ∗-algebras

• Kapranov–Vasserot for schemes (infinitesimal loops)
Hom(A,R[[t]])

• Points in NCG: not enough characters χ : C (X )→ C, but lots of
states (linear) φ : C (X )→ C with positivity φ(a∗a) ≥ 0 and
φ(1) = 1 (extremal = point measures = points)

• A similar approach for loops? L(X ) = {` : C (X )→ C (S1)}
linear with some positivity and normalization

• Given spectral triple (C∞(X ), L2(X , S), /DX ) use L(X ) to
construct a Hilbert bimodule that modifies this spectral triple
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Dirac operator on the loop space
• Idea: normal bundle N = ⊕` 6=0T` of M in L(M) with T` ' TM

• T = TL(M) pullback of TM to loops γ : S1 → M; E notrivial
real line bundle on S1 and T̂ = E ⊗ TL(M)

T̂ |M = ⊕m∈Z+1/2qmTm

Tm ' TM and qm for S1-action

• spectral triple for L(M) with H = ⊕mqmHm, Hm = L2(M, S)

• twisted Dirac operator on X

/DX ⊗⊗n≥1Sqn(TXC)⊗ S ⊗⊗n>0Λqn(TXC)

• Dirac should give right thing for LG loop groups (Landweber)

• string structures on manifolds and spin connections on the loop
space

Matilde Marcolli Multiplicative genera for noncommutative manifolds?



Question 3: a noncommutative space for moonshine?

Why looking for a noncommutative answer?

Relations between NC spaces from Quantum Statistical
Mechanics (GL2-system) and moonshine: see ongoing work of
Jorge Plazas

Operator algebra approach to CFT (Wassermann, Jones,
Longo, Kawahigashi...)

QSM systems for number fields with phase transitions: CFTs
at phase transition? any possible relation to RCFTs with CM
of Gukov–Vafa?
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