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References for this lecture:

David Mumford, Jayant Shah, Optimal Approximations by
Piecewise Smooth Functions and Associated Variational
Problems, Commun. Pure Applied Math. Vol. XLII (1989)
577–685.

Matilde Marcolli and Doris Tsao Image Segmentation: the Mumford–Shah functional



• a three-dimensional scene observed by an eye or camera: at a
point P intensity of light g1(ρ) coming from direction ρ

• a lens at P focuses light on a retina R (a surface): intensity
g(x , y) of light signal received by R at a point of coordinates
(x , y); obtained from g1(ρ) through some transformation that
depends on the functioning of the optical system

• the resulting function g(x , y) is “an image”
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• there will be discontinuities in the function g(x , y): boundaries
(an object in front of another, objects with a common boundary,
discontinuities in illumination, in the object albedo, etc.)

• additional complications:

textured objects, fragmented objects (eg a canopy of leaves)

shadows, penumbra

surface markings

partially transparent objects

noisy measurements of g(x , y)
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Segmentation Problem

• goal: compute a decomposition

R = R1 ∪ · · · ∪ Rn

of the domain of g(x , y) such that

1 the function g(x , y) is smooth within each domain Ri

2 the function g(x , y) varies discontinuously (and/or very
rapidly) across most of the boundary between different Ri

• equivalently: problem of computing optimal approximations of a
function g(x , y) by piecewise smooth functions
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Mathematical Approach

• what constitutes an optimal segmentation?

• a functional measuring the degree of match between a function
and a segmentation, to be optimized

• Ri connected open subsets of a given planar domain R, each
with piecewise smooth boundary ∂Ri

Γ = R∩ ∪i∂Ri

R = Γ tR1 t · · · t Rn

• discuss three different action functionals whose minimization
provides an optimal image segmentation: a functional E that
depends on two parameters µ and ν and two limiting cases E0 and
E∞ depending on ν parameter
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The Mumford–Shah Functional

• f differentiable function on ∪iRi , can be discontinuous across Γ

• Γ piecewise smooth arcs joined at a finite set of singular points;
|Γ| total length of the arcs in Γ

• action functional:

E (f , Γ) = µ2

∫
R2

(f − g)2 dx dy +

∫
RrΓ
‖∇f ‖2 dx dy + ν |Γ|

first term: measures how good f is as an approximation of g

second term: f does not vary too much within each Ri

third term: boundary that achieves decomposition as short as
possible
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• Note: need all these terms to have nontrivial minimum

1 without first term: f = 0 and Γ = ∅ give E = 0

2 without second term: f = g and Γ = ∅ give E = 0

3 without third term: f average of g on a grid of N2 squares
has limit to E = 0

• heuristic interpretation: a solution f of the minimization of E is
a “cartoon” version of the image g where contours are drawn
sharply and scene is simplified

• Question: is the minimization problem for E well posed?
Mumford and Shah conjectured: for all continuous g a minimum
of E exists with f differentiable on each Ri and Γ made of C1-arcs
joined at a finite number of singular points
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The functional E0

• restriction of E to piecewise constant functions f |Ri
≡ ai

µ−2E (f , Γ) =
∑
i

∫
Ri

(g − ai )
2dxdy + ν0|Γ|

with ν0 = ν/µ2

• it is minimized (as a function of the ai ) by the average

ai = meanRi
(g) =

1

A(Ri )

∫
Ri

g dxdy

• so functional E0 defined by

E0(Γ) =
∑
i

∫
Ri

(g −meanRi
(g))2 dx dy + ν0 |Γ|
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Relation to the Ising Model (continuous/discrete segmentation)

• suppose f locally constant with only values ±1

• assume f and g “discretized”: defined on a lattice

• Γ a path made of segments of horizontal and vertical lines
between pairs of adjacent lattice sites where f changes sign

• functional E0 (seen as function of f ) becomes Ising Model Energy

E0(f ) =
∑
i ,j

(f (i , j)− g(i , j))2 + ν0

∑
(i ,j),(i ′,j ′)

(f (i , j)− f (i ′, j ′))2

first sum on lattice site, second sum on pairs of neighboring sites
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The Functional E∞

• a functional of Γ

E∞(Γ) =

∫
Γ

(
ν∞ −

(
∂g

∂n

)2
)

ds

ν∞ a constant, ds arc length on Γ, unit normal ∂/∂n along Γ

• minimizing E∞ means finding Γ so that

length of Γ is as short as possible
variation of g in the direction normal to Γ is as large as
possible
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Relation of E∞ to E

• smooth parts of Γ, curvilinear coordinates (s, r)

• take f = g outside a tubular neighborhood of Γ

• set µ = 1/ε and ν = 2εν∞ and

f (r , s) = g(r , s) + ε sign(r) e−|r |/ε
∂g

∂r
(0, s)

• then
E (f , Γ)− E (g , Γ) = 2εE∞(Γ) + O(ε2)

so can think of E∞ as a µ→∞ limit of E
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First Goal: Analyzing Variational Equation for E (Summary)

• for fixed Γ positive definite quadratic functional in f with unique
minimum solution of elliptic boundary value problem on each Ri

∆f = µ2(f − g),
∂f

∂n
|∂Ri
≡ 0

• solution fΓ of previous elliptic problem, then E becomes function
of Γ, to minimize for Γ

E (fΓ, Γ)

• infinitesimal variation of Γ by a normal vector field
X = a(x , y) ∂

∂n (vanishing in neighborhood of singular points of Γ)
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• then show that

δ

δX
E (fΓ, Γ) =

∫
Γ
a (e+ − e− + ν curv(Γ)) ds

e± = µ2(f ±Γ − g)2 +

(
df ±Γ
ds

)2

with f ±Γ boundary values of fΓ, and curv(Γ) curvature (function of
second derivative of curve Γ)

• then E (fΓ, Γ) is minimized by a Γ that satisfies variational
equation

e+ − e− + ν curv(Γ) ≡ 0
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Complications due to singular points of Γ:

• the minimizing function fΓ is bounded pointwise by

min
R

g ≤ fΓ(x , y) ≤ max
R

g

... but gradient need not be bounded near singular points of Γ

• if Γ made of C2-arcs joined at endpoints then can use theory of
elliptic boundary value problems in domains with corners to handle
this problem

• obtain that if minimum at Γ then singularities only

1 triple points: three C2 arcs meet at 120◦

2 crack tips: a single C2 arc ends

3 boundary points: a C2 arc of Γ meets perpendicularly a
smooth point of ∂R

• further complications: minimizer Γ may have worst singularities
than meeting of C2 arcs: cusp singularities at the end of arcs may
also occur
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More detailed discussion of the variational problem for E

• Hölder spaces Ck,α(Ω) with k ∈ Z≥0 and 0 < α ≤ 1

‖f ‖Ck,α = ‖f ‖Ck + max
|β|=k

|Dβf |C0,α

‖f ‖Ck = max
|β|≤k

sup
x∈Ω
|Dβf (x)|

‖f ‖C0,α = sup
x 6=y∈Ω

|f (x)− f (y)|
|x − y |α

• start by assuming Γ union of C1,1 curves γa joined at endpoints
and that f ∈ C1 on Rr Γ, initially assume first derivative
continuous up to boundary points (will weaken later)
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• fix Γ: variational problem for f with variation δf

Last by integration by parts and applying Green’s theorem, with B
whole boundary of Rr Γ given by ∂R and each side γ±a of Γ
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• so resulting variational equation from imposing vanishing of
variation for all test functions δf

∇2f = µ2(f − g) and
∂f

∂n
= 0 on ∂R∪a γ±a

• the operator µ2 −∇2 is positive-definite self-adjoint, has a Green
function K (x , y ; u, v) that is C∞ outside diagonal (x , y) = (u, v)
with singularity

K (x , y ; u, v) ∼ 1

2π
log(µ

√
(x − u)2 + (y − u)2)

• unique solution f on each Ri constructed by convolution with
the Green function

f (x , y) = µ2

∫
(u,v)∈Ri

K (x , y ; u, v)g(u, v) dudv
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• Note: in the absence of singularities and no boundaries, K would
be Green function on all plane R2 given by Fourier transform of

L(ξ, η) =
1

µ2 + ξ2 + η2
(massive propagator)

evaluated at (x − u, y − v), given by

K (x , y ; u, v) =
1

2π
K0(µ

√
(x − u)2 + (y − v)2)

with K0 modified Bessel function of the second kind, solution of

K ′′0 (r) +
1

r
K ′0(r)− K0(r) = 0

with asymptotic behavior

K0(r) ∼ log(
1

r
), for r → 0, K0(r) ∼

√
π

2r
e−r , for r →∞
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• Variation of E (fΓ, Γ) with respect to Γ

• if move Γ near a simple point (not a point where several arcs
meet) the point is on one arc γa ∈ C1,1

• the C1,1 regularity property of γa is used to ensure it can be
written locally as the graph of a function, either y = h(x) or
x = h(y) (implicit function theorem); then can deform the path by
deforming the function

γa(t) = {y = h(x) + t δh(x)}
variation δh(x) ≡ 0 outside small neighborhood U of point, so new
curve does not meet other arcs γb outside endpoints
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• Note: varying Γ forces f to vary too because f ∈ C1 of Rr Γ
and discontinuous across Γ

• U+ = {(x , y) : y > h(x)} ∩ U and U−{(x , y) : y > h(x)} ∩ U
and f ± = f |U± extend both f ± to all U with a C1 extension f̃ ±

f t(x , y) =


f (x , y) (x , y) /∈ U

f̃ +(x , y) (x , y) ∈ U , above γa(t)

f̃ −(x , y) (x , y) ∈ U , below γa(t)

• then compute explicitly variation E (f t , Γ(t))− E (f , Γ) where
Γ(t) = γa(t) ∪b 6=a γb
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• so get the variational equation for the path variation δγ
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• curvature: since γa ∈ C1,1 well defined curvature almost
everywhere

curv(γa)(x , h(x)) =
h′′(x)

(1 + h′(x)2)3/2

• integrating by parts in the last term of the variational equation

so along each γa

(µ2(f +−g)2+‖∇f +‖2)−(µ2(f −−g)2+‖∇f −‖2)+ν curv(γa) = 0

• energy density e(f ; x , y) = µ2(f (x , y)− g(x , y))2 + ‖∇f (x , y)‖2

e(f +)− e(f −) + ν curv(γa) = 0 on γa

for fixed f ± second order ODE for h(x)
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Special points of Γ: more complicated analysis of the variational
problem (restrictions at these points imposed by stationary
condition for the functional E )

• Cases:

1 points where Γ meets ∂R
2 corners where two γa arcs meet

3 vertices where three or more γa meet

4 crack-tips where a γa ends without meeting another arc

Matilde Marcolli and Doris Tsao Image Segmentation: the Mumford–Shah functional



• Problem with corners: can have a function ∇2f = 0 in open
region, ∂f

∂n = 0 on boundary, with singularity at corner point

f (z) = =(w) = rπ/α sin(
π

α
θ)

for z = re iθ and w = zπ/α (conformal map that flattens corner)

then

∂f

∂r
=
π

α
r
π
α
−1 sin(

π

α
θ)→∞ when r → 0, if α > π
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Elliptic boundary value problems on domains with corners
(Kondratiev)

• previous example is typical behavior of solutions of elliptic
boundary value problems in domains with corners: solutions f
satisfy

f bounded everywhere

f is C1 at corners with angle 0 < α < π

at corners with π < α ≤ 2π (case 2π is crack-tip)

f = crπ/α sin(
π

α
(θ − θ0)) + f̃

with f̃ ∈ C1
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• use this to show that Mumford–Shah minimizers cannot have
kinks (two-arcs corners with angle 6= π)

Divide neighbor into sectors with angle larger/smaller than π; take
smooth cutoff function ηU on a ball near corner
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• cut the corner at small distance, shrinking U+ enlarging U−

• new f on smaller U+ by restriction; new f on larger U−

extended by cutoff function f −(0) + ηU(f − − f −(0))

• measure corresponding change in E (f , Γ): find that if α 6= π the
functional E (f , Γ) decreases when cutting corner as above, so
original kink path cannot be a minimizer

• similar argument shows a minimizer Γ will meet ∂R orthogonally
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• also similar argument shows triple points must have angles 2π/3
otherwise can cut a sector and lower value of E (f , Γ)
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• also if Γ has points where four or more arcs meet not a minimizer:
can separate into triple points and lower the value of E (f , Γ)
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• can also eliminate cusp corners and lower value of E (f , Γ)

Matilde Marcolli and Doris Tsao Image Segmentation: the Mumford–Shah functional



Summary of Further Results

• fΓ minimizing E (f , Γ) for fixed Γ, estimate proximity to locally
constant average of g on each Ri

• isoperimetric constant: measures smallest necks in each
component Ri

|γ| = length, |Wi | = area and take λΓ = mini h(Ri )
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domain with isoperimetric constant h(Ri ) = 0

• small µ limit: prove estimate

µ2

(
E0(Γ)− 4µ2

λ2
Γ + 4µ2

‖g‖2
0,2,R

)
≤ E (fΓ, Γ) ≤ µ2E0(Γ)
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Existence of E0-minimizers

if R rectangle, g continuous on R∪ ∂R, for paths Γ of C1,1 arcs
meeting at endpoints and locally constant functions f on Rr Γ
there is a minimum (f , Γ) of

E0(f , Γ) =

∫
R

(f − g)2 + ν0 length(Γ)

Method of Proof: Geometric Measure Theory

Main Idea: first show existence of “weak solution” with a “very
singular” Γ, then show that week solution must in fact be
sufficiently regular as required by original problem

Weak solutions: Caccioppoli sets (measurable and with
characteristic function of bounded variation), topological boundary
may have infinite Hausdorff measure in dim=1 but a “reduced
boundary” is 1-rectifiable
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What is Geometric Measure Theory?

• use of measure theory methods to study geometric objects
(curves, surfaces) that are highly non-smooth

• historically developed to study the Plateau Problem (the
geometry of soap bubble film: area minimizing surfaces with given
boundary curves)

• Introduction to Geometric Measure Theory:

Frank Morgan, Geometric measure theory: A beginner’s guide
(Fourth ed.), Academic Press, 2009.

Frederick J. Almgren, Jr., Plateau’s Problem: An Invitation to
Varifold Geometry, Revised Edition, American Mathematical
Society, 2001.

Herbert Federer, Colloquium lectures on geometric measure
theory, Bull. Amer. Math. Soc. 84 (1978), 291–338
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Plateau Problem (images by John M. Sullivan)

in “Plateau’s Problem” by Frederick J. Almgren, Jr
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The large µ case

• When µ→∞ the effect of Γ on the energy is localized into a
narrow strip around Γ

• first using Green’s theorem reduce E to an integration only along
Γ, in terms of solutions gµ and fΓ of

∆gµ = µ2(gµ − g), ∆fΓ = µ2(fΓ − g)

∂gµ
∂n
|∂R ≡ 0,

∂fΓ
∂n
|∂R∪Γ ≡ 0

the functional E satisfies

E (fΓ, Γ) = E (gµ, ∅) +

∫
Γ

(
ν − ∂gµ

∂n
(f +

Γ − f −Γ )

)
ds

with f ±Γ boundary values of fΓ along two sides of Γ and n-vector
points to + side of Γ
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• when µ is large prove

f +
Γ − f −Γ =

2

µ

∂gµ
∂n

+ O(
1

µ2
)

and uniformly in R have fΓ − g = O(µ−1)

• this gives, in terms of E∞ functional (with ν∞ = µν/2)

E (fΓ, Γ) = E (gµ, ∅) +
2

µ
E∞(Γ) + O(

logµ

µ2
)

• first variation of E (fΓ, Γ) converges for large µ to first variation
of E∞(Γ)

• explicitly compute vanishing first variation equation for E∞(Γ):
find second order differential equation for Γ
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• Hg = matrix of second derivatives of g ; tΓ and nΓ unit tangent
and normal vector; variational equation for E∞(Γ):

• this equation can be interpreted as the geodesic equation in a
Lorentzian metric: space-like solutions locally minimizing E∞ and
time-like solutions locally maximizing it; general solutions flip
between these two types through cusps singularities at the
transition
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A lot of more recent results on Mumford-Shah minimizers and
segmentation: rich current area of research; a large number of
papers available on the topic
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