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References for this lecture:

@ David Mumford, Jayant Shah, Optimal Approximations by
Piecewise Smooth Functions and Associated Variational

Problems, Commun. Pure Applied Math. Vol. XLII (1989)
577-685.
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e a three-dimensional scene observed by an eye or camera: at a
point P intensity of light g1(p) coming from direction p

e a lens at P focuses light on a retina R (a surface): intensity
g(x,y) of light signal received by R at a point of coordinates
(x, y); obtained from gi(p) through some transformation that
depends on the functioning of the optical system

e the resulting function g(x,y) is “an image”
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e there will be discontinuities in the function g(x,y): boundaries
(an object in front of another, objects with a common boundary,
discontinuities in illumination, in the object albedo, etc.)

e additional complications:
@ textured objects, fragmented objects (eg a canopy of leaves)
@ shadows, penumbra
@ surface markings
@ partially transparent objects

@ noisy measurements of g(x, y)
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Segmentation Problem

e goal: compute a decomposition
R=RiU---UR,

of the domain of g(x,y) such that
Q the function g(x, y) is smooth within each domain R;

@ the function g(x, y) varies discontinuously (and/or very
rapidly) across most of the boundary between different R;

e equivalently: problem of computing optimal approximations of a
function g(x, y) by piecewise smooth functions
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Mathematical Approach
e what constitutes an optimal segmentation?

e a functional measuring the degree of match between a function
and a segmentation, to be optimized

e R; connected open subsets of a given planar domain R, each
with piecewise smooth boundary OR;
[=RNU;OR;
R=TURiU---UR,

e discuss three different action functionals whose minimization
provides an optimal image segmentation: a functional E that
depends on two parameters p and v and two limiting cases Ey and
E., depending on v parameter
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The Mumford-Shah Functional
e f differentiable function on U;R;, can be discontinuous across I

e [ piecewise smooth arcs joined at a finite set of singular points;
[T'| total length of the arcs in I’

e action functional:

E(f,T) = ,ﬂ/

R2(f —g)%dxdy + / |VF||2dx dy + v T

RNT

@ first term: measures how good f is as an approximation of g
@ second term: f does not vary too much within each R;

@ third term: boundary that achieves decomposition as short as
possible
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e Note: need all these terms to have nontrivial minimum
@ without first term: f =0 and ' =) give E =0
@ without second term: f =g and ' =0 give E=0

© without third term: f average of g on a grid of N? squares
has limit to £E =0

e heuristic interpretation: a solution f of the minimization of E is
a “cartoon” version of the image g where contours are drawn
sharply and scene is simplified

e Question: is the minimization problem for E well posed?
Mumford and Shah conjectured: for all continuous g a minimum
of E exists with f differentiable on each R; and I made of Cl-arcs
joined at a finite number of singular points
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The functional Eg

e restriction of E to piecewise constant functions f|g, = a;
p2E(F,T) = Z/ (g — a;)?dxdy + 1o|T|
i JRi

with vg = v/ 2

e it is minimized (as a function of the a;) by the average
a ang,(g) ! / g dxd
i = meang,(g) = ——=~ xdy
A(Ri) Jr;

e so functional Eg defined by

Bo(1) = 3 | (g~ meane, () ey + 0]
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Relation to the Ising Model (continuous/discrete segmentation)

e suppose f locally constant with only values +1
e assume f and g “discretized”: defined on a lattice

e [ a path made of segments of horizontal and vertical lines
between pairs of adjacent lattice sites where f changes sign

e functional Eg (seen as function of f) becomes Ising Model Energy
Z(f i) — &) +vo Y (F(i)) = f(i" 1))
(14):(i"J")
first sum on Iattice site, second sum on pairs of neighboring sites

Matilde Marcolli and Doris Tsao Image Segmentation: the Mumford—Shah functional



The Functional E4,

e a functional of I

EOO(F):/r uoo—@i)z ds

Voo @ constant, ds arc length on I, unit normal 9/9n along I
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e minimizing E,, means finding I' so that
@ length of I is as short as possible
@ variation of g in the direction normal to I is as large as
possible
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Relation of Eo, to E
e smooth parts of I, curvilinear coordinates (s, r)
e take f = g outside a tubular neighborhood of I

e set ;1 = 1/€e and v = 2evy, and
- ~1rye98
f(r,s)=g(r,s)+ esign(r)e E(O’ s)

e then
E(f,T) — E(g,T) = 2eE5o(T) + O(¢?)

so can think of E,, as a pt — oo limit of E
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First Goal: Analyzing Variational Equation for E (Summary)

o for fixed I positive definite quadratic functional in £ with unique
minimum solution of elliptic boundary value problem on each R;

of
Af = 2(f—g),  olom, =0

e solution fr of previous elliptic problem, then E becomes function

of I, to minimize for I
E(fi-’ r)

e infinitesimal variation of [ by a normal vector field
X =a(x,y) % (vanishing in neighborhood of singular points of I")
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e then show that

—6 E(fr,T) :/a(e+—e_+ycurv(r))ds
oX r
dfE\ 2
20k N2 r
e:l:_/"[/(fr g)+<ds)

with £ boundary values of fr, and curv(T") curvature (function of
second derivative of curve I')

e then E(fr,I") is minimized by a I' that satisfies variational
equation
e —e_+vecurv(l) =0
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Complications due to singular points of I

e the minimizing function fr is bounded pointwise by
ing < f <
ming < fr(x,y) < maxg

... but gradient need not be bounded near singular points of '
e if [ made of C?-arcs joined at endpoints then can use theory of
elliptic boundary value problems in domains with corners to handle
this problem
e obtain that if minimum at I then singularities only

@ triple points: three C? arcs meet at 120°

@ crack tips: a single C? arc ends

@ boundary points: a C? arc of I meets perpendicularly a
smooth point of IR

e further complications: minimizer [ may have worst singularities
than meeting of C? arcs: cusp singularities at the end of arcs may
also occur
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More detailed discussion of the variational problem for E

e Holder spaces CK*(Q) with k € Zspand 0 < a <1

flloke = ||Fllox + max DPf| 0.0
IFllses = IFlles + max [D7Flc

fllox = max sup |DPf(x

IFlls = max sup [ D (x)
f(x)—f

[Fleo = sup IO
x#y€e |X _y|

e start by assuming I union of C! curves 7, joined at endpoints
and that f € C! on R ~. T, initially assume first derivative
continuous up to boundary points (will weaken later)
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e fix [: variational problem for f with variation §f
E{f+ 18f,T) —E(/.T)
::Ipszzaf-(;_f-g)dxdw sz(v(sn-w)dxdv}

+f2[p2ff(8f)ldxdy + ffllv(&f)]fdxdy]_
E(f+1t8f,T) - E(f,T)

3 (. T) = lim ,
=2 [[o-(f - g) axdy + [[ (9 (87) - vf) dxar]
T =i ffor (- asay— [f of-vaxay + [ orgh as

= [ 81(v - (s~ ) dxdr + [ 15k as

Last by integration by parts and applying Green's theorem, with B
whole boundary of R \. T given by R and each side v of
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e so resulting variational equation from imposing vanishing of
variation for all test functions §f

f
V2f = p%(f —g) and % =0on AR U, 7

e the operator u? — V2 is positive-definite self-adjoint, has a Green
function K(x,y; u, v) that is C* outside diagonal (x,y) = (u, v)
with singularity

K(xyiu,v) ~ % log(u\/(x —u)?+(y —u)?)

e unique solution f on each R; constructed by convolution with
the Green function

Fx,y) = 12 / K(x,: u, v)g(u, v) dudv
(u,v)ER;
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e Note: in the absence of singularities and no boundaries, K would
be Green function on all plane R? given by Fourier transform of
1

————— (massive propagator)
)U“2+£2+772

L(&n) =

evaluated at (x — u,y — v), given by

K(X7y; u, V) = %KO(:U’\/(X - U)2 + (y — V)2)

with Ko modified Bessel function of the second kind, solution of

Ky(r) + - Ky(r) — Kolr) = 0

with asymptotic behavior

1
Ko(r) ~log(=), for r =0, Ko(r) ~ \/Zer, for r — o0

r
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e Variation of E(fr,I") with respect to I'

e if move I near a simple point (not a point where several arcs
meet) the point is on one arc v, € C11

o the C1! regularity property of 7, is used to ensure it can be
written locally as the graph of a function, either y = h(x) or

x = h(y) (implicit function theorem); then can deform the path by
deforming the function

a(t) = {y = h(x) + t5h(x)}
variation d0h(x) = 0 outside small neighborhood U/ of point, so new
curve does not meet other arcs 7y, outside endpoints
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e Note: varying I forces f to vary too because f € C' of R\ T
and discontinuous across I

o Ut ={(x,y) 1y >h()}NU and U™ {(x,y) : y > h(x)} NU
and f* = f|,;+ extend both f* to all U with a C* extension f*

fix,y) (xy)¢U
fix,y) =< Ft(x,y) (x,y) €U, above y,(t)
F- (x,¥) (x,y) €U, below ~,(t)

e then compute explicitly variation E(ff,T(t)) — E(f,T) where
F(t) = va(t) Ubza b

Matilde Marcolli and Doris Tsao

Image Segmentation: the Mumford—Shah functional



E(7. 1) - E(LD) =2 [ (7~ 8 = (/- 9] axas

+ff1 " V2 dxdy — j‘f{ A1 dxdy

+9[|a(0) | = vl

= f( LN - 8 - (- o)) ax

h(x)

+f(.fm\-.-asmumvf,”l = va'l‘l] d.i") dx

h{x)

A +x:f[i‘17+ih+rﬁfl]’: —V1+h':]d_\':

® so get the variational equation for the path variation &~

g—faff[(ffg):f(f‘—g):] 8h dx

y=h(x)

+flief 12 -1er?l|  shdx

y=h(x)

(8h) dx.

o
drers
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e curvature: since v, € C*! well defined curvature almost
everywhere

B ' (x)
curv(va)(x, h(x)) = A+ H(x)2)3"

e integrating by parts in the last term of the variational equation

8h
V1 + A2

8 = L1209 +1917) = (205 8 + I9r1F)] ds

—veurv(y,)

so along each ~,

(W2(FF =g V2 = (P (F —g)* + |V |?)+v curv(ys) = 0
o energy density e(f; x,y) = p?(f(x,y) — g(x.y))* + [ VF(x.y)|?
e(ft)—e(f ) +vecurv(y,) =0 on 7,

for fixed f* second order ODE for h(x)
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Special points of I': more complicated analysis of the variational
problem (restrictions at these points imposed by stationary
condition for the functional E)
e Cases:

@ points where [ meets OR

@ corners where two v, arcs meet

© vertices where three or more ~, meet

@ crack-tips where a 7, ends without meeting another arc
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e Problem with corners: can have a function V?f = 0 in open
region, % = 0 on boundary, with singularity at corner point
F(z) = S(w) = r™/*sin(=0)
e

for z = re’® and w = z™/® (conformal map that flattens corner)

then
of x
Tra sin(EG) — o0 whenr—0, ifa>n7

Q

S

e
R
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Elliptic boundary value problems on domains with corners
(Kondratiev)
e previous example is typical behavior of solutions of elliptic
boundary value problems in domains with corners: solutions f
satisfy

e f bounded everywhere

o fis C! at corners with angle 0 < av <

@ at corners with m < o < 27 (case 27 is crack-tip)

f=crr/e sin(g(ﬁ — b))+ f

with f € C!
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e use this to show that Mumford—Shah minimizers cannot have
kinks (two-arcs corners with angle # 7)

Divide neighbor into sectors with angle larger/smaller than 7; take
smooth cutoff function 7y on a ball near corner

Matilde Marcolli and Doris Tsao Image Segmentation: the Mumford—Shah functional



e cut the corner at small distance, shrinking U™ enlarging U~

e new f on smaller U™ by restriction; new f on larger U~
extended by cutoff function £~(0) + ny(f~ — f—(0))

e measure corresponding change in E(f,I): find that if « # 7 the
functional E(f,I") decreases when cutting corner as above, so
original kink path cannot be a minimizer

e similar argument shows a minimizer " will meet OR orthogonally
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e also similar argument shows triple points must have angles 27 /3
otherwise can cut a sector and lower value of E(f,I)
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e also if [ has points where four or more arcs meet not a minimizer:
can separate into triple points and lower the value of E(f,I)

s L
A b
% \
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e can also eliminate cusp corners and lower value of E(f,T)
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Summary of Further Results

e fr minimizing E(f, ) for fixed I', estimate proximity to locally
constant average of g on each R;

® isoperimetric constant: measures smallest necks in each
component R;

y is a curve dividing W
into 2 disjoint open
sets W, and W,

T ’ Iyl _
H) = 100 g

|7| = length, |W;| = area and take A\r = min; h(R;)
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domain with isoperimetric constant h(R;) =0

e small x limit: prove estimate

4 2
2 I 2 2
H (EO(I') - 7)\% _|_4M2HgHo,2,7z> < E(fr,T) < pEo(T)
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Existence of Eg-minimizers

if R rectangle, g continuous on R U JR, for paths I of CH1 ares
meeting at endpoints and locally constant functions f on R\ T
there is a minimum (7, T) of

Eo(f,T) = /R (f — g)% + vy length(IN)

Method of Proof: Geometric Measure Theory

Main ldea: first show existence of “weak solution” with a ‘“very
singular” T, then show that week solution must in fact be
sufficiently regular as required by original problem

Weak solutions: Caccioppoli sets (measurable and with
characteristic function of bounded variation), topological boundary
may have infinite Hausdorff measure in dim=1 but a “reduced
boundary” is 1-rectifiable
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What is Geometric Measure Theory?

e use of measure theory methods to study geometric objects
(curves, surfaces) that are highly non-smooth

e historically developed to study the Plateau Problem (the
geometry of soap bubble film: area minimizing surfaces with given
boundary curves)

e Introduction to Geometric Measure Theory:

@ Frank Morgan, Geometric measure theory: A beginner's guide
(Fourth ed.), Academic Press, 2009.

o Frederick J. Almgren, Jr., Plateau’s Problem: An Invitation to
Varifold Geometry, Revised Edition, American Mathematical
Society, 2001.

@ Herbert Federer, Colloquium lectures on geometric measure
theory, Bull. Amer. Math. Soc. 84 (1978), 291-338
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& @

Plateau Problem (images by John M. Sullivan)
in “Plateau’s Problem” by Frederick J. Almgren, Jr
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The large p case

e When p — oo the effect of [ on the energy is localized into a
narrow strip around I

o first using Green's theorem reduce E to an integration only along
I, in terms of solutions g, and fr of

Ag, = 12(g. — g), Afr =2 (fr—g)

gy
—== =0 —_— =0
an ‘872 ) an ORI

the functional E satisfies
0
E(fr,T) = E(g,.0) —1—/ <y — i:(fﬁr —_ fr)> ds
r

with frjE boundary values of fr along two sides of I and n-vector
points to + side of I
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e when p is large prove

_  20g 1
fr —ff ZET:+O(?

)

and uniformly in R have fr — g = O(u™1)

e this gives, in terms of E functional (with v, = pv/2)

2 |
E(f,T) = E(gy0) + (1) + O °§2“>

e first variation of E(fr,I") converges for large p to first variation
of Ex(I)

e explicitly compute vanishing first variation equation for E.(I):
find second order differential equation for I
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e Hg = matrix of second derivatives of g; tr and nr unit tangent
and normal vector; variational equation for E(I):

(np+vg) Ag+ (tp-vg) - (tp- Hy - ny)

2

+curv(T) « [4n,, + ¥(np - vg)’ = (tr-vg)’] =0

e this equation can be interpreted as the geodesic equation in a
Lorentzian metric: space-like solutions locally minimizing E,, and
time-like solutions locally maximizing it; general solutions flip
between these two types through cusps singularities at the
transition
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A lot of more recent results on Mumford-Shah minimizers and
segmentation: rich current area of research; a large number of
papers available on the topic

Suggested References:

@ Laurent Younes, Peter W. Michor, Jayant Shah, David
Mumford, A metric on shape space with explicit geodesics,
Rend. Lincei Mat. Appl. 19 (2008) 25-57

@ Mumford, D.; Kosslyn, S. M.; Hillger, L. A.; Herrnstein, R. J.
Discriminating figure from ground: the role of edge detection
and region growing, Proc. Nat. Acad. Sci. U.S.A. 84 (1987),
no. 20, 7354-7358.

@ Leah Bar et al. Mumford and Shah Model and its
Applications to Image Segmentation and Image Restoration,

in “Handbook of Mathematical Methods in Imaging”,
Springer 2011, 1095-1157
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