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ABSTRACT Three general classes of algorithms have been
proposed for figure/ground segregation. One class attempts to
delineate figures by searching for edges, whereas another class
attempts to grow homogeneous regions; the third class consists
of hybrid algorithms, which combine both procedures in
various ways. The experiment reported here demonstrated that
humans use a hybrid algorithm that makes use of both kinds of
processes simultaneously and interactively. This conclusion
follows from the patterns of response times observed when
humans tried to recognize degraded polygons. By blurring the
edges, the edge-detection process was selectively impaired, and
by imposing noise over the figure and background, the region-
growing process was selectively impaired. By varying the
amounts of both sorts of degradation independently, the
interaction between the two processes was observed.

One of the fundamental purposes of vision is to allow us to
recognize objects. Recognition occurs when sensory input
accesses the appropriate memory representations, which
allows one to know more about the stimulus than is apparent
in the immediate input (e.g., its name). Before visual input
can be compared to previously stored information, the
regions of the image likely to correspond to a figure must be
segregated from those comprising the background. The initial
input from the eyes is in many ways like a bit-map image in
a computer, with only local properties being represented by
the activity of individual cells; only after the input is orga-
nized into larger groups, which are likely to correspond to
objects and parts thereof, can it be encoded into memory and
compared to stored representations of shape. Thus, under-
standing of the processes that segregate figure from ground is
of fundamental importance for understanding the nature of
perception.

Researchers in computer vision have been faced with the
problems of segregating figure from ground, and in this report
we explore whether the human brain uses some of the
algorithms they have developed. In computer vision, the
input is a large intensity array, with a number representing
the intensity of light at each point in the display. Two broad
classes of algorithms have been devised to organize this
welter of input into regions likely to correspond to objects.
One class contains edge-based algorithms (1-3). These algo-
rithms look first for sharp changes in intensity (i.e., maxima
in first derivatives or zero crossings in the second derivative
of the function relating intensity to position), which are
assumed to correspond to edges. In the Marr-Hildreth theory
(3), these changes are observed at multiple scales of resolu-
tion and, if present at each, are taken to indicate edges (and
not texture or the like). The local points of sharp change are
connected, resulting in a depiction of edges that are assem-
bled into the outlines of objects. The other class contains the

so-called region-based algorithms (4-7). These algorithms
construct regions by growing and splitting areas that are
maximally homogeneous; they compute not derivatives of
intensity but rather homogeneity measures, such as intensity
variance. In short, the first algorithm tries to delineate
regions by discovering edges, whereas the second delineates
edges by discovering regions.

Investigations of the neurophysiology of vision provide
strong evidence that mammalian brains use algorithms in the
first class. Hubel and Wiesel's (8) "simple cells" in striate
cortex seem to be part of an implementation of an edge-based
algorithm (compare ref. 9). These cells detect sharp changes
in intensity. However, both the linking of local points of
sharp change into larger edges and the growing of regions are
processes that require a more global organization of the
image. Recent work (10) suggests that some such global
processes are carried out in area V2, but the findings do not
indicate clearly which algorithm is implemented here.
The experiment reported here uses a psychological ap-

proach to investigate whether one or both of these algorithms
better models the way humans segregate figure from ground.
This experiment was designed to discriminate among six
alternative hypotheses: the human brain organizes visual
input solely by an edge-based algorithm; solely by a region-
based algorithm; by whichever algorithm is successful most
quickly; by neither algorithm; by both algorithms, with one
following the other; or by using both algorithms simulta-
neously and interactively. In addition, it provides numerical
evidence for evaluating various models of simultaneous
functioning of the two algorithms.

In this experiment, subjects were asked to judge whether
light polygons on a dark background were the same or
different from a target shape. Holding constant the average
intensities inside and outside the figures, the edges of the test
stimuli were blurred to a greater or lesser degree, and the
amount of variability in the intensity of the points composing
the figure and ground was varied by superimposing noise to
a greater or lesser degree. If the brain parses using edge
detection, then the sharpness of the gradient from ground to
figure should be critical, with greater blur resulting in more
time and errors. Similarly, if the brain uses region growing,
then the overlap in intensity variability between figure and
ground should be critical, with greater overlap resulting in
more time and errors. Finally, different forms of interactions
between the two variables will indicate whether the two
algorithms are used independently or interactively.

In the design of this experiment, we were aware that very
large amounts of superimposed variability begin to introduce
spurious irregular edges all over the stimulus, and very large
amounts of blur wipe out the shape of the region. However,
these are second-order effects: provided that the noise and
blur is not too extreme, properly aligned simple-cell-type
edge detectors will respond equally strongly to a sharp edge
with or without superimposed noise and weakly to the noise
alone. Similarly, with a blurred edge of limited width w,
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region-growing algorithms will immediately group the parts
of the figure and ground away from the edge by distance w.
The stimuli consisted of nine simple geometric shapes,

such as a triangle and a diamond. The stimuli were initially
computed as 512 x 512 images on a VAX computer and
displayed on a AED color graphics monitor. The polygons
were normalized to a perimeter of 950 pixels (hence varying
in area) and centered on the screen. Letting 0 represent black,
and 1 represent the brightest output of the monitor, the mean
intensity of the interior of the figures was always 0.7, whereas
the mean intensity of the ground was always 0.3. The edges
were blurred by convolving the image with four Gaussian
filters, g(i), with spatial standard deviations of 0, 4, 8, and 12
pixels. A noise signal n was computed by using a Fourier
series with independent normally distributed random coeffi-
cients a(i, J) such that

E(a(i, I)) = 0
and

E(Ia(i, j)12) = (i2 + j2)-l if

where E is the expectation.
The stimuli were made by adding a multiple l(J) n of the

noise to the blurred polygon signal g(i)*p (where p stands for
polygon) and passing this through a sigmoidal function to
keep the blacks and whites within the range (0 to 1) of the
screen.§ The multiples were chosen so that

11(j) nll = 0, 0.5, 1.0, 1.5.

IIP - PlI

Here p is the mean (0.5) of the signal p, and IlfJI represents the
strength of the signal f:

IIfII = (yEf(i, j)2)1/2

Because the mean intensity of figure and ground was kept
constant in all conditions, increasing the range of variability
had the effect of increasing the amount of overlap in intensity
values for figure and ground. All combinations of blur and
variability were used, resulting in 16 versions of each of the
9 stimuli. Thus, a total of 144 stimuli were generated.
Examples of the stimuli are presented in Fig. 1.
The stimuli were photographed to produce slides.

Ektachrome 100 slide film was used at a distance 0.84 m from
the computer screen in a darkened room using an exposure
and aperture of 0.5 sec and fl.0, respectively. The AEEP
screen was black and white, but color film was used to
capture the gray shades produced by the noise and blurriness.
Pilot work was done to approximate a linear increase in the
subjective impression of the increase in successive levels of
blur and variability.

Eighteen adults volunteered to participate as subjects.
Written instructions describing the experimental procedure
were given to the subjects and then were reviewed orally by
the experimenter. The subjects sat about 1 m from a trans-
lucent screen, with the slides of the figures being back-
projected onto the screen so that the polygons subtended
approximately 5° from the vantage point of the subject.
(Extending the stimuli into the near periphery was necessary
if subjects were to be able to see the figures clearly enough
to recognize them even in the highly degraded conditions.

§We sought a self-scaling noise that obscured large- and small-scale
features to an "equal" degree. White noise concentrates its power
in high frequencies and is largely eliminated by low-pass filtering;
"1/f" noise creates large-scale features that would compete with
the shape of a polygon in figure/ground separation, even at low
noise levels. The above power law is halfway between these two.

Given the question being asked here, it is not necessary that
the stimuli be confined to the fovea.) The room was darkened
to facilitate slide viewing. The experiment was divided into
nine blocks of trials, with a different polygon being used as
the target in each block. At the beginning of each block the
subjects were asked to remember the shape of a target
polygon, which was presented with no blur and no variability.
The subjects were told to examine the target polygon until
they could make and maintain an accurate mental image of it;
this procedure was employed to aid memory. They then were
shown a series of slides, with each being exposed for 2000
msec or until the subject responded, whichever came first.
The subjects were told in advance that some of the polygons
would be blurred and/or have visual noise over them.

In each block the subjects were shown a series of 32 slides,
16 of which were the target polygon and 16 of which were
different polygons. One target and one distractor was shown
at each combination of each level of blurriness and variabil-
ity; each nontarget polygon appeared twice with each target.
Each version of each polygon was shown once as a target and
once as a distractor throughout the experiment. The order of
presentation of the stimuli within each block was random-
ized, subject to the constraint that no more than two targets
or two distractors occurred in a row. The order of the blocks
was different for each subject.
The subjects were asked to press the button labeled

"same" if the figure shown was the same shape as the target,
and the button labeled "different" if it was not. The subjects
were told to respond as quickly as possible while remaining
as accurate as possible. Each hand rested on a response
button, and half of the subjects used the dominant hand to
respond "same" and the nondominant hand to respond
"different," and vice versa for the other half; thus, hand of
response was counterbalanced with response, removing the
possible effects of handedness from the results. The stimuli
were presented by two random-access projectors, which
were controlled by an Apple II+ computer; this computer
also recorded the subjects' response times and decisions.
The data were analyzed as follows. First, the mean of the

response times was computed for each subject, considering
only trials on which the correct judgment was made. These
means ranged from 490 to 1009 msec, with a grand mean of
678 msec. Each subject's times were then scaled to make
their mean equal to the grand mean. Following this, response
times that were greater than 2.5 times the mean for the
remaining times in that cell (i.e., combination of level of blur,
noise, and response) were discarded as outliers. This proce-
dure resulted in 1.4% of the response times being trimmed.
The mean times for each combination of blur and noise level
were then considered in an analysis of variance.
The results allow us to discriminate unequivocably among

the various alternative classes of algorithms. As is illustrated
in Fig. 2, response times increased progressively as edge blur
[F(3,51) = 56.51, P < 0.0001] and variability [F(3,51) = 50.42,
P < 0.0001] increased. Note that the points in Fig. 2 generally
are upwardly concave; however, the variability and blur
scales were not designed to be precisely psychophysically
linear. But more interestingly, the two variables interacted:
the effects of increased blur were exacerbated by increased
variability [F(9,153) = 12.38, P < 0.00001, for the interaction
of blur and variability]. These results are what we would
expect if both algorithms are at work and mutually interact
during processing. In addition, there was a marginal tendency
for subjects to respond more quickly for "same" figures than
"different" ones [F(1,17) = 3.17, P < 0.1] and the effects of
variability were more pronounced for "same" judgments
[F(3,51) = 4.30, P < 0.01]. Finally, there was a three-way
interaction between variability, blur, and response type,
indicating that the interaction between variability and blur
was more pronounced for "same" judgments [F(9,153) =
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FIG. 1. Examples of test stimuli that had to be compared to a memorized standard. Values of blur and variability are 0,0 (Lower Left), 0,2
(Lower Right), 2,2 (Upper Right), and 2,0 (Upper Left). Four levels of blur and variability were used, with the additional two levels roughly
dividing the scale between 0 and 3 into two subjectively equal increments. Note that the addition of noise seems to blur the edge, which is due
to masking of high spatial frequencies; if the slides are blurred, thereby filtering out high spatial frequencies, the edges appear equally sharp
in the 0,0 and 0,2 cases. The subjective impression ofa blurred edge in the 0,2 case can be taken as further evidence that region-growing processes
are used in figure/ground segregation.

2.44, P < 0.02]; this interaction probably reflects the fact that
it was relatively easy to evaluate "different" stimuli that
were very dissimilar to the target, hence they need not be
processed as thoroughly.

Error rates are another reflection of processing, and we
also submitted these data to an analysis of variance. The
percent errors for each cell are presented in Fig. 3. Errors
increased with increases in edge blur [F(3,51) = 12.76, P <
0.0001] and variability [F(3,51) = 19.66, P < 0.0001]; how-
ever, as is evident, most of these effects are captured by the
upper right four cells of Fig. 3. As before, the two variables
interacted: the effects of increased blur were exacerbated by
increased variability [F(9,153) = 11.86, P < 0.0001, for the
interaction of blur and variability]. In addition, subjects
committed more errors for "same" figures than "different"
ones [F(1,17) = 5.95, P < 0.05], and the effects of blur and
of variability were more pronounced for "same" judgments
[F(3,51) = 5.46, P < 0.01, and F(3,51) = 5.57, P < 0.01,
respectively, for the interaction of each variable with re-
sponse type]. Finally, the interaction between variability and
blur was more pronounced for "same" judgments [F(9,153)

5.49, P < 0.001]. These results, then, dovetail nicely with

those from the response times, with increases in times and
errors both reflecting increases in underlying difficulty of
processing; from inspection of Figs. 2 and 3, there is no hint
of speed/accuracy trade-offs.
We also attempted to fit each class of model to the 4 x 4

table of mean response times (in these analyses, times from
the two responses were pooled to decrease the noise before
eliminating outliers). We modeled each type of algorithm in
the following way.¶

First, the simplest algorithms, positing only an edge-based
process or only a region-based process, were modeled by
arbitrary functions of one of the variables, with four param-
eters in each model. The best function of blur accounted for
only 35% of the variance, and the best function of variability
accounted for 37% of the variance.

Second, the algorithm in which there are two completely

$These numerical models are not to be taken strictly like laws of
physics, but rather as formulae that make concrete the possible
qualitatively different interactions of the variables. Numerous
specific formulations are possible within each qualitative class; we
have taken the most straightforward examples we could find.
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FIG. 2. The time to make "same" or "different" judgments to
geometric forms that were degraded in two possible ways, by
blurring the edge or by adding variability to the values of the figure
and ground. Linear functions that best fit the points were computed
using the least-squares method and are illustrated here. Precise
values of the levels of blur and variability are provided in the text.

independent processes, with only the output from the fastest
process being used, was modeled by min(a + b * blur, c + d
* variability). This model accounted for only 76% of the
variance with four parameters.

Third, the algorithm in which both processes are used, but
one follows the other, was modeled by the sum of a + (b *
blur) + (c * variability). A model of this kind would follow,
for instance, by the most narrow interpretation of the
neurophysiological architecture, with area 17 acting as a
edge-detection module and later visual areas acting as region
growers. This model accounted for only 66% of the variance.
Note also that the interaction between blur and variability
observed in the analysis of variance serves to rule out this
class of models, which predicts strictly additive functions of
the two variables (11).

Fourth, the class of algorithm in which both processes are
used simultaneously and interactively was divided into two
subclasses. The most common subclass is a "feature plus
blackboard" algorithm (e.g., ref. 12). In this process, an
edge-based module and a region-based module independently
post features on a single "blackboard"; the rate at which
features are posted decreases linearly with increases in blur
or variability (depending on the module). A decision is
reached whenever the total number of features reaches a
threshold. This algorithm was modeled by a harmonic mean
of two linear functions, a + [(b + c * blur)-' + (d + e *

variability)-y1-1. (We restricted this model, and the previous
ones, to the linear case in order to equate roughly the number
of parameters in each of the models.) This five-parameter
model accounted for only 72% of the variance in the data.

Finally, we considered a second subclass of the simulta-
neous interactive algorithms, which posits active processing
in the "blackboard," not simple accumulation of features. In
this model, a low-level feature-detection module operates in
parallel on the whole image; this module reports, in constant
time, local features, such as edge elements, blobs and bars,
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FIG. 3. Percent errors for the 16 presentation conditions, sepa-
rately for "same" and "different" trials.

to a buffer [i.e., the structure in which Marr's primal sketch
occurs (9)]. The problem is to organize these features into
figure and ground. We assume that the local segments of a
polygon's edges are reported with a strength decreasing with
blur [strength of edge = (a + b * blur)-'] and that the
variability produces extraneous features, such as small blobs
and bars, that do not correspond to edge segments. The
strength of extraneous features can be represented as c *
variability. Then we assume that a combined edge-region
algorithm finds the optimal figure/ground segregation in the
buffer. This algorithm relies upon (i) the relative absence of
distinguishing features in the interior and (ii) the coherence of
the local edge elements surrounding the figure. Both sorts of
information are used simultaneously, and the optimal
figure/ground segregation is achieved by satisfying both sorts
of constraints simultaneously. The time this process takes
increases from some minimal time with the number of
extraneous features but decreases with increasing strength of
the edge elements. The simplest possible representation of
this is [(d + c * variability)/(a + b * blur)-']. This gives us
a model ofresponse time with a bilinear function a' + b' * blur
+ c' * variability + d' * blur * variability. This four-parameter
model accounts for 85% of the variance in the data.
Our conclusion is that the algorithm humans use to segre-

gate figure from ground involves an interplay between the
one-dimensional information given by edge-based processes
and the two-dimensional information given by region-based
processes. Some such hybrid algorithms have been proposed
recently (e.g., refs. 13-17), but it is not clear whether these
algorithms would predict the bilinear pattern observed here.

It is of interest to compare our results to those of Uttal (18),
who has examined the detection of dot figures in the presence
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of spurious dots. His results show that the presence of
collinear dots that suggest extended lines in a figure was the
principal factor that enabled observers to discern a figure in
spite of noise. Athough Uttal interpreted this result as an
argument for the use of the autocorrelation function in visual
processing, it can also be interpreted as indicating that When
region-based algorithms are disrupted by noise, edge detec-
tion-based algorithms become crucial, and these algorithms
pick out collinear dots (e.g., even a simple cell with a central
excitatory strip and inhibiting flanks would pick out such
dots).
The present results lead to a clear prediction that can be

tested by single-cell recordings-namely, that areas such a
V2 should contain cells that respond to nonlocal configura-
tions underlying region-growing and edge-grouping pro-
cesses. The response of a cell involved in region growing
should be influenced by the extent and shape of the region to
which it belongs following segmentation, an area likely to
extend outside the classical "receptive field" of the cell. For
instance, one might seek cells that respond only when a curve
outside the receptor field completely or nearly surrounds the
field. It would be surprising if there were not direct neural
correlates to the behavioral results found here.
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