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ABSTRACT. We continue an investigation initiated by Consani-Marcolli of the
relation between the algebraic geometry of p-adic Mumford curves and the non-
commutative geometry of graph C*-algebras associated to the action of the
uniformizing p-adic Schottky group on the Bruhat-Tits tree. We reconstruct
invariants of Mumford curves related to valuations of generators of the associ-
ated Schottky group by developing a graphical theory for KMS weights on the
associated graph C'*-algebra and using modular index theory for KMS weights.
We give explicit examples of the construction of graph weights for low genus
Mumford curves. We then show that the theta functions of Mumford curves,
and the induced currents on the Bruhat-Tits tree, define functions that gen-
eralize the graph weights. We show that such inhomogeneous graph weights
can be constructed from spectral flows, and that one can reconstruct theta
functions from such graphical data.

1. Introduction

Mumford curves generalize the Tate uniformization of elliptic curves and pro-
vide p-adic analogues of the uniformization of Riemann surfaces [Mum]|. The type
of p-adic uniformization considered for these curves is a close analogue of the Schot-
tky uniformization of complex Riemann surfaces, where instead of a Schottky group
I' ¢ PSL,(C) acting on the Riemann sphere P (C), one has a p-adic Schottky group
acting on the boundary of the Bruhat-Tits tree and on the Drinfeld p-adic upper
half plane.

The analogy between Mumford curves and Schottky uniformization of Riemann
surfaces was a key ingredient in the results of Manin on Green functions of Arakelov
geometry in terms of hyperbolic geometry [Man], motivated by the analogy with
earlier results of Drinfeld-Manin for the case of p-adic Schottky groups [DriMan).
Manin’s computation of the Green function for a Schottky-uniformized Riemann
surface in terms of geodesic lengths in the hyperbolic handlebody uniformized by
the same Schottky group provides a geometric interpretation of the missing “fiber
» in Arakelov geometry in terms the tangle of bounded geodesics inside
the hyperbolic 3-manifold. In order to make this result compatible with Deninger’s
description of the Gamma factors of L-functions as regularized determinants and
with Consani’s archimedean cohomology [Cons], this formulation of Manin was
reinterpreted in terms of noncommutative geometry by Consani-Marcolli [CM]. In
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particular, the model proposed in [CM] for the “fiber at infinity” uses a noncom-
mutative space which describes the action of the Schottky group I on its lim.1t set
Ar € P'(C) via the crossed product C*-algebra C(Ar) » T'. This is a particular
case of a Cuntz—Krieger algebra given by the graph C*-algebra of the finite graph
Ar/T, with Ar the Cayley graph of T’ ~ Z*9.

Following the same analogy between Schottky uniformization of Riemann sur-
faces and p-adic uniformization of Mumford curves, Consani and Marcolli extended
their construction [CM] to the case of Mumford curves, ([CM1], [CM2]). More
interesting graph C*-algebras appear in the p-adic case than in the archimedean
setting, namely the ones associated to the graph Ap /T, which is the dual graph of
the specialization of the Mumford curve and to Ap/T, which is the dual graph of
the closed fiber of the minimal smooth model of the curve. After these results of
Consani-Marcolli, the construction was further refined in [CMRV] and extended
to some classes of higher rank buildings generalizing the rank-one case of Schottky
groups acting on Bruhat-Tits trees. The relation between Schottky uniformiza-
tions, noncommutative geometry, and graph C*-algebras was further analyzed in
([CLM], [CorMal]|. More recently, it was shown in [deJong] that, for a free action
of a discrete group of isometries on a tree, one can make the algebra of functions
on the boundary of the quotient graph into a commutative spectral triple in such
a way that the family of zeta functions of this finitely summable spectral triple
determines the graph.

The main question in this approach is how much of the algebraic geometry of
Mumford curves can be recovered by means of the noncommutative geometry of
certain C™*-algebras associated to the action of the Schottky group on the Bruhat—
Tits tree, on its limit set, and on the Drinfeld upper half plane, and conversely how
much the noncommutative geometry is determined by algebro-geometric informa-
tion coming from the Mumford curve.

In this paper we analyze another aspect of this question, based on recent results
on circle actions on graph C *-algebras and associated KMS states and modular in-
dex theory [CNNR]. In particular, we first show how numerical information like
the Schottky invariants given by the translation lengths of a given set of generators
of the Schottky group can be recovered from the modular index invariants of the
graph C*-algebra determined by the action of the p-adic Schottky group on the
Bruhat-Tits tree. We then analyze the relation between graph weights (see Section
4) for this same graph C*-algebra and theta functions of the Mumford curve. Unlike
the previous results on Mumford curves and noncommutative geometry, which con-
centrated on the use of the graph C*-algebra associated to the finite graph AL/T or
Ar/T, here we use the full infinite graph Ag /T, where Ag is the Bruhat-Tits tree,
with boundary at infinity 0Ag /T = Xp(K), the K-points of the Mumford curve,
with K a finite extension of Qp. Working with an infinite graph requires a more
subtle analysis of the modular index theory and a setting for the graph weights
(which we recall in Section 4), where the main information is located inside the
finite graph AL /T" and is propagated along the infinite trees in A /I" attached to
the vertices of AL /T, towards the conformal boundary Xr(K). The graph weights
are solutions of a combinatorial equation at the vertices of the graph, which can
be thought of as governing a momentum flow through the graph. We prove that
for graphs such as Ag/T faithful graph weights are the same as gauge invariant,
norm lower semicontinuous faithful semifinite functionals on the graph C*-algebra.
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This is the basis for constructing KMS states associated to graph weights, which
are then used to compute modular index invariants for these type III geometries.
The main result, which we obtain in several steps in Sections 4 and 5 states
that one can recover the translation lengths of the generators of the Schottky group
from the modular index theorem for the graph C*-algebra endowed with a suitable
periodic time evolution. We formulate the result in terms of Mumford curves,
because that is our main motivating example, but in fact it can be stated purely
in terms of actions of discrete free subgroups of isometry groups of finite valence
trees. Namely, the main result we obtain in Sections 4 and 5 is the following.

THEOREM 1.1. LetT be a discrete free subgroup of isometries of a finite valence
tree A. If the graph AJT admits a faithful graph weight and has a finite subgraph
satisfying the conditions of Definition 2.3 (zhyvot), then the modular index theorem
for the graph C*-algebra C*(A/T), with the zhyvot circle action (see Definition 2.3)
determines the translation lengths of (generators of) the group.

What refers specifically to the case of Mumford curves in this result is the fact
that the zhyvot circle action used in the modular index theorem is adapted to the
structure of A/T consisting of a finite graph (the zhyvot of Definition 2.3) with
infinite trees attached to its vertices. This is the typical form of graphs obtained as
quotients of the Bruhat-Tits tree by a Schottky group in the theory of Mumford
curves. The circle action adapted to this particular structure of the graph ensures
that the necessary “spectral subspace condition” for the modular index theorem
is satisfied. However, it is important to notice that, in terms of the geometry
of Mumford curves, this construction captures only invariants up to conjugacy
by tree isometries, not by isometries in PGL(2), which is the rigidity group for
isomorphisms of Mumford curves. It is well known [Lubo] that the Schottky group
I has countably many conjugacy classes in the isometry group of the tree, but
uncountably many in PGL(2). In the specific case of translation lengths, one sees
that these are in fact invariant under the full isometry group of the tree and not
only under PGL(2).

About the existence of faithful graph weights, we prove in Theorem 4.5 that
these are equivalent to gauge invariant norm lower semicontinuous faithful semifinite
functionals on the graph C *-algebra. We concentrate in Section 4 on a particular
class of “special graph weights” and we give in Lemma 4.6 a general existence
result for such weights in terms of a condition on a matrix associated to the grap'h.
It is likely that restriction to “special graph weights” is artificial, .and in work 1'n
progress the modular index theory is being extended to KMS weights for quasi-
periodic actions of R. .

In Section 7 we work specifically in the setting of Mumford curves and. we
establish a relation between the construction of theta functions and a modlﬁe.d
version of the graph weight equation. The theta functions of Mumford curves in
described as in [vdP] in terms of [-invariant currents on the Bruhat-
Tits tree Ag and corresponding signed measures of total mass zero on the bound?:ry.
We show that this description of theta function:c; leads to an inhomogeneous vereflon
of the equation defining graph weights, or equw::.lienl.sly to a homogeneous Yemlo[?ci
but where the weights are allowed to have a sign instead of b_emg ‘posmvehz_asm
are also required to be integer valued. We also show that there is an 1somo(;11)_ nlear
between the abelian group of T-invariant currents on the Bl‘ul"lﬂ.t—TltS tree a:nA i e
K, of the graph C*-algebra of the quotient graph C*(Ax /T).

turn can be
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This implies that theta functions of the Mumford curve define functionals on the
K-theory of the graph algebra, with the only ambiguity given by the action of K*.

Finally, we discuss how to use the spectral flow to construct solutions of the
inhomogeneous graph weight equations and how to use these to construct theta
functions in the case where one has more than one (positive) graph weight on
Ag/T.

It would be interesting, in a similar manner, to explore how other invariants
associated to type III noncommutative geometries, such as the approach followed
by Connes-Moscovici in [CoMo]| and by Moscovici in [Mosc], may relate to the
algebraic geometry of Mumford curves in the specific case of the algebras C*(Ag /T).

2. Mumford Curves

We recall here some well-known facts from the theory of Mumford curves, which
we need in the rest of the paper. The results mentioned in this brief introduction

can be found for instance in [Muml]|, [Ma], [GvP] and were also reviewed in more
detail in [CM1].

2.1. The Bruhat-Tits tree

Let K denote a finite extension of Q, and let O = Og C K be its ring of
integers, with m C O the maximal ideal. The finite field k = O/m of cardinality
q = #QO/m is called the residue field.

Let Af; denote the set of equivalence classes of free rank 2 O-modules, with the
equivalence relation

My~ My, 3\ e K*, M, = AMs.

The group GLy(K) acts on AY by gM = {gm | m € M}. This descends to an
action of PGLy(KK), since My ~ M, for My and M5 in the same K*-orbit. Given
M, C My, one has M;/M; ~ O/m! & ©/mF, for some I,k € N. The action of K*
preserves the inclusion M, C M, hence one has a well-defined metric

(2.1) d(My, My) = |l — k|.

The Bruhat-Tits tree of PGLy(K) is the infinite graph with set of vertices AY, and
an edge connecting two vertices M, M; whenever d(M;, Mj) = 1. Tt is an infinite
tree with vertices of valence ¢ + 1 where ¢ = #0O/m. The group PGLy(K) acts on
Ag by isometries. The boundary 9Ay is naturally identified with P'(KK)

2.2. p-adic Schottky Groups and Mumford Curves

A Schottky group T is a finitely generated, discrete, torsion-free subgroup of
PGL3(K) whose nontrivial elements v # 1 are all hyperbolic, i.e. such that the
eigenvalues of v in K have different valuation. The group I' acts freely on the tree
Ax. Hyperbolic elements v have two fixed points 2*(7) on the boundary P! (K). For
an element v # 1 in I' the azis L(7) of + is the unique geodesic in the Bruhat ~Tits
tree Ax with endpoints consisting of the two fixed points 2% (y) e P! (K) = 8Ak

Let Ar C P'(K) be the closure in P! (K) of the set of fixed points of the demen.ts
7 € I'\{1}. This is called the limit set of I. Only in the case of I' = (v)% ~ Z, with a
single hyperbolic generator v, one has #Ar < oo. This special case, as we sec below
correponds to Mumford curves of genus one. In general, for lxiglier genus (highel:
rank Schottky groups), the limit set is uncountable (typically a fractal). The domair
of discontinuity for the Schottky group I' is the complement Qp(K) = PY(K) < A:-L
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The quotient Xp := Qr/T gives the analytic model (via uniformization) of an
algebraic curve X defined over K (cf. [Mum, p. 163]).

For a p-adic Schottky group I' € PGL(2, K) there is a smallest subtree A C Ag
that contains the axes L(7) of all the elements  # 1 of I. The set of ends of A} in
P!(K) is the limit set Ar of I'. The group I' acts on A with quotient Ap/T" a ﬁfxite
graph. There is also a smallest tree Ar on which I' acts, with vertices a subset of
vertices of the Bruhat-Tits tree. The tree Al contains extra vertices with respect
to Ar. These come from vertices of Ag that are not vertices of Ar, but which lie on
paths in Ap. (Ar is not a subtree of Ag, while Af. is.) The quotient Ar/T is also a
finite graph. Both the graphs Aj./I" and Ar/T" have algebro-geometric significance:
A}/T is the dual graph of the closed fiber of the minimal smooth model of the
algebraic curve X over K; Ap/T is the dual graph of the specialization of the curve
X. The latter is a k-split degenerate, stable curve, with k the residue field of K.

The set of K-points Xp(K) of the Mumford curve is identified with the ends of
the graph Ax/T. With a slight abuse of notation we sometimes say that Xr is the
boundary of Ag/T" and write

(2.2) 8Ak/T = Xr.

The graph Ag/T contains the finite subgraph A}/T. Infinite trees depart from
the vertices of the subgraph Af./T" with ends on the boundary at infinity Xr. We
assume that the base point v belongs to Af so that all these trees are oriented
outward from the finite graph Aj/T. All the nontrivial topology resides in the
graph Af./T" from which one can read off the genus of the curve.

So far, the use of methods of noncommutative geometry in the context of
Mumford curves and Schottky uniformization (cf. [CM], [CM1], [CM2], [CLM],
[CMRV]) concentrated on the finite graphs Af./T" and Ap/T" and noncommutative
spaces associated to the dynamics of the action of the Schottky group on its limit
set. Here we consider the full infinite graph Ag /T of (2.2). In fact, we will show that
it is precisely the presence in Ag/T of the infinite trees attached to the vertices of
the finite subgraph Ap./T that makes it possible to construct interesting KMS states
on the associated graph C*-algebra and hence to apply the techniques of modular
index theory to obtain new invariants of a K -theoretic nature for Mumford curves.

9.3, Directed Graphs and Their Algebras

There are different ways to introduce a structure o
graphs Ar/I, Af/T and on the infinite graph Ag/T.

One possibility, considered for instance in [CLM], is not to prescribe an orien-
tation on the graphs. This means that one keeps for each edge the choice of both
possible orientations. The associated directed graph has then double the number
of edges to account for the two possible orientations. This approach is very helpful
in the K-theoretic computations performed in [CLM], where it actually simplifies
while in the setting we describe here, where we will be concerned
ns of the graph weights equation, it has the prob-
lem that it makes the graph C'*-algebras more complicated and the combinatorics

wolved than strictly necessary, so we will not follow it here.

correspondingly more ir : ' :
Another way to make the graphs of Mumford curves into directed graphs is by

the choice of a projective coordinate z € P1(K) (cf. [CM1], [QMZ]). The Ch?if:e of
rdinate z determines uniquely a base point v € A}, given by the orlgm.of
h ends the points 0, 1 and oo in P!(K). The choice

f directed graph on the finite

the approach,
with constructing explicit solutio

the coo ; !
three non-overlapping paths wit
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of v gives an orientation to the tree Ak given by the outward direction from wv.
This gives an induced orientation to any fundamental domains of the I'-action in
Ax, A and Ar containing the base vertex v, which one can use to obtain all the
possible induced orientations on the quotient graphs.

There is still another possibility of orienting the tree Ak in a way that is adapted
to the action of I, and this is the one we adopt here. It is described in Lemma 2.1

Suppose we are given the choice of a projective coordinate 2 € P!'(K) and
assume that the corresponding vertex v is in fact a vertex of Ar. Let {v1,... ,7,}
be a set of generators for I'.  An orientation of I'\Ag is then obtained from a
[-invariant orientation of Ax as follows.

LEMMA 2.1. Consider the chain of edges in A connecting the base vertex v to
viv. Then there is a choice of orientation of these edges that induces an orientation
on the quotient graph and that extends to a T-invariant orientation of Ax.

PROOF. Consider the chain of edges between v and v;v. If all of them have
distinct images in the quotient graph, orient them all in the direction away from v
and towards ;v. If there is more than one edge in the path from v to viv that maps
to the same edge in the quotient graph, orient the first one that occurs from v to
yiv and the others consistently with the induced orientation of the corresponding
edge in the quotient graph. Similarly, orient the edges between v and ~;” L% in the
direction pointing towards v, with the same caveat for edges with the same image
in the quotient. Propagate this orientation across the tree AL by repeating the
same procedure with the edges between 7,-*11; and 'yj'ﬁ’: 'v and between ’y;tlv and
% lwflv and so on. Continuing in this way, one obtains an orientation of the tree
Al compatible with the induced orientation on the quotient graph AL /T. One then
orients the rest of the tree Ax away from the subtree Ap.

An example of the orientations obtained in this way on the tree Ar and on the
quotient graph for the genus two case is given in Figures 7, 8, 9 below.

2.4. Graph Algebras for Mumford Curves

For a more detailed introduction to graph C*-algebras we refer the reader to
[BPRS], [kpr], [R] and the references therein. A directed graph E' = (E° B r )
consists of countable sets E° of vertices and E! of edges, and maps r, s : F1 —,—» 1EO
identifying the range and source of each edge. We will always assume that the
graph is row-finite, which means that each vertex emits at most finitely many
edges. Later we will also assume that the graph is locally finite which means it is
row-finite and each vertex receives at most finitely many edges. We write En for
the set of paths p = pyps--- p,, of length |u| := n; that is, sequences of edges .
such that r(u;) = s(pis1) for 1 < i < n. The maps r, s extend to E* := | J E#’:
in an obvious way. A loop in E is a path L € E* with s(L) = r(L), we S;;%hat
a loop L has an exit if there is v = 8(L;) for some i which emits more than
edge. If V' C E° then we write V > w if there is a path pu € E* with s(u) € v ong
r(pi) = w (we also sometimes say that w is downstream from V). A sinkis a v in
v € E° with s~'(v) = 0, a source is a vertex € E° with r—1(w) = 0. e

A Cuntz-Krieger E-family in a C*-algebra B consists of mutuall

ey ¥ orth
projections {p, : v € E°} and partial isometries {S, ogonal

te € E'} satisfying the
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Cuntz—-Krieger relations

S5.8¢ = pr(e) for e € E' and p, = Z S.S. whenever v is not a sink.
{e:s(e)=v}

It is proved in Theorem 1.2 of [kpr] that there exists a universal C'*-algebra
C*(E) generated by a non-zero Cuntz—Krieger E-family {Se,p,}. A product S, :=
S,,Su, - .- Sy, is non-zero precisely when p = py gz - - - jin, is a path in E™. Since the
Cuntz-Krieger relations imply that the projections 5.5 are also mutually orthog-
onal, we have S?S; = 0 unless e = f, and words in {S., S}} collapse to products
of the form S,S; for p,v € E* satisfying 7(p) = r(v) (cf. Lemma 1.1 of [kpr])
Indeed, because the family {S,S;} is closed under multiplication and involution,
we have

(2.3) C*(E) = span{S,S; : p,v € E* and r(u) = r(v)}.

The algebraic relations and the density of span{S,S;} in C*(E) play a critical role
throughout the paper. We adopt the conventions that vertices are paths of length 0,
that S, := p, for v € E”, and that all paths y, v appearing in (2.3) are non-empty;
we recover S, for example, by taking v = r(u), so that 5,57 = Supr(u) = Sy-

If z € T = S, then the family {zS.,p,} is another Cuntz-Krieger E-family
which generates C*(E), and the universal property gives a homomorphism 7, :
C*(E) — C*(E) such that v;(Se) = 2S¢ and v, (py) = pp. The homomorphism 7z
is an inverse for 7;, so v; € AutC*(E), and a routine €/3 argument using (2.3)
shows that ~ is a strongly continuous action of T on C*(E). Tt is called the gauge
action. Because T = S' is compact, averaging over 7y with respect to normalized
Haar measure gives an expectation ® of C*(E) onto the fixed-point algebra C*(E)":

P(a) = if v:(a)dd for a € C*(E), z= g
2 S1

The map @ is positive, has norm 1, and is faithful in the sense that ®(a*a) =0
implies a = 0. ; o i .
From (2.3), it is easy to see that a graph C*-algebra is unital if and only‘ if
the underlying graph is finite. When we consider infinite graphs, formulas which
involve sums of projections may contain infinite sums. To interpret these, we use

strict convergence in the multiplier algebra of C*(E).

LEMMA 2.2 ([kpr]). Let E be a row-finite graph, let A be a C*-algebm' gener-
ated by a Cuntz—Krieger E-family {T.,q.}, and let {p.} be a sequence ofpmjectzom
in A. If pa T, T, converges for every p,v € E*, then {pn} converges strictly to a
projection p € M(A).

The directed graph Ag /T we obtain from a Mumford curve, with the or'ientati_on
a 2.1, is locally finite, has no sources and contains a subgra?h AL /T with
no sources and with the following two properties. If_ v is any ,vertex in Ag/T the:s
exists a path in Ay /T with range v and source contained in Ap /T, and for a(rilyﬁpa ¥
with source outside M, the range is outside M . For such a graph w’r;:hcan e n:es
new circle action by restricting the gauge action to the subgraph. e propertl
of this action turn out to be crucial for us.

The reason may be found in [CNNR], where the existence ofa Kas!)inrov A-A°
for a circle action o on A was found to be equivalent to a condition on the

of Lemm

module
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spectral subspaces Ay = {a € A : 0.(a) = 2*a}. The condition, called the spectral
subspace condition in [CNNRYJ, states that for all k € Z, AxAj, always an ideal in
A?, is in fact a complemented ideal in A?. Thus we must have A7 = ALAL & G
for some other ideal G. It turns out that the graphs arising from Mumford curves
allow us to define a circle action for which the spectral subspaces satisfy the spectral
subspace condition.

In the following, we consider a circle action o, which is closely related to the
gauge action . described above, but which accounts for the specific structure of the
graphs of Mumford curves, consisting of a central finite graph (the zhyvot defined
below) and infinite trees emanating from its vertices.

DEFINITION 2.3. Let E be a locally finite directed graph with no sources,
M C E a subgraph with no sources and such that

(1) for any v € EY there is a path p with s(u) € M and r(p) =v

(2) for all paths p with s(p) M we have r(p) & M.
Then we say that E has zhyvot M, and that M is a zhyvot of E.

The zhyvot action o : T — Aut(C*(E)) is defined by

7:(Se) e€ M!

S, é ¢ Ml Jz(pz:) =Dy, VE EO:

7.(5) = {

where v, is the usnal gauge action. If p is a path in E, let |t£|o be the non-negative

integer such that o.(S,) = 245,

REMARK. The zhyvot of a graph need not be unique.

EXAMPLE. In the case of Mumford curves, the finite graph AL /T gives a zhyvot
for the infinite graph Ag/I. There are other possible choices of a zhyvot for the
same graph Ag/T", which are interesting from the point of view of the geometry
of Mumford curves. In particular, in the theory of Mumford curves, one considers
the reduction modulo powers m” of the maximal ideal m C Ok, which provides
infinitesimal neighborhoods of order n of the closed fiber. For each n > 0, we
consider a subgraph A ,, of the Bruhat-Tits tree Ak defined by setting

AR n = {v € AL : d(v,A}) < n},
with respect to the distance (2.1), with d(v, A}) := inf{d(v,?) : o € (AR)°}, and
Ak, ={we Ay : s(w),r(w) € AR .}

Thus, we have Agy = A} and Ag = UnQx,,. For all n € N, the graph Ay,
is invariant under the action of the Schottky group I' on A, and the finite graﬁl]
Qg n/T gives the dual graph of the reduction Xk ® O/m™*1. Thus, we refer to
the Ak, as reduction graphs. They form a directed family with inclusions T
Agn < Agm, for all m > n, with all the inclusions compatible with the a("éri:n;
of I'. -Each of the quotient graphs Ak /T also gives a zhyvot for Ax/T". In the
followm‘g we will concentrate on the case where M = A{./T but one can equivalently
work with the reduction graphs. ’

Given a graph E with zhyvot M and k > 0 define

Fy. :=span{S,.S} : |ul, = |v|, > k},
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and
0 < |ule = v|e <k,
Gy :=5Span{ 5,5 : and
either r(u)=r(v) €M or r(p)=r(r) isasinkin M
Observe that in the definition of G, the sinks need not be sinks of the full
graph E, just sinks of the subgraph M.

NOTATION. Given a path p € E*, we let p denote the initial segment of p and
let 5 denote the final segment; in all cases the length of these segments will be clear
from context. We always have p = pp.

LEMMA 2.4. Let E be a locally finite directed graph with no sources and zhyvot
M C E. Let F = C*(E)® be the fixed point algebra for the zhyvot action. Then

F = F, & G, ki= 1,2 30

PROOF. We first check using generators that FxGx = GxFyx = {0}; once we
have shown that Fj + G = F' this will also show that F) and Gy are both ideals
(that they are subalgebras follows from similar, but simpler, calculations to those
below).

Fix k > 1. Let 5,5% € Gy so that 0 < ||, = [v|s < k and either r(p)=r(v) &
M or is a sink of M. Let S,S% € Fi so that |p|o = |7|s = k. Then
{ Su55538u, W <10l

SuSyStbyp V| 2 ol
where |-| denotes the usual length of paths. When |v| > |p|, the product is non-zero
if and only if ¥ = p but

S,8:8,8: =

lZicr < IVlcr < |p|m
so this can not happen. When |v| < |p|, the product is non-zero if and only if
v = p, but the range of v M or is a sink of M while |v|, = |p|, implies that
lple < |plo, and so r(p) € M and is not a sink of M. Hence the product is zero, and
G Fr = {0}. The computation F Gy = {0} is entirely analogous, so we omit it.
To see that Fy + G = F, we need only show that the generators 5,5, with
0< |ple =Vle <k and 7(u) = r(v) € M not a sink, are sums of elements from F

and G}, all other generators having been accounted for.
So let 0 < n = |pls = |v|s < k. The notation |p| < k means that |p| =k or

\p| < k and r(p) is a sink. Then
SuSy = 3. S.9.3%,
peE*, s(p)=r(p), lp|Zk—n+l
If0 < |ple < k—n, then we must have r(p) & M or r(p) a sink of M. This is because

Iple < |pl, and if r(p) is not a sink, we have strict inequality since |pJ =k-n+1l
Hence if 7(p) is not a sink, r(p) ¢ M. On the other hand if r(p) is a sink of E, then

either r(p) € M or r(p) is a sink of M. iy
Thus for 0 < |plo < k —n, we have 5,5,55S; € G, while ifk—n<|ple <
k —n + 1, we have S,5,5,5; € Fy.

Finally, to see that F = F @& Gy, for each k > 0, observe that we can split the

sequence ]
0 — Fk —l—' F - Gk — 0



40 ALAN CAREY, MATILDE MARCOLLI, AND ADAM RENNIE

using the homomorphism ¢y, : F — Fj, defined by

ok(f) = PufPe,  Po= ) S,

|le=k

Checking that ¢y is a homomorphism and has range Fj is an exercise with the
generators.

PROPOSITION 2.5. Let E be a locally finite directed graph without sources and
with zhyvot M. For k € Z let Ay = {a € C*(E) : 0.(a) = zka} denote the spectral
subspaces for the zhyvot action. Then

. (Fx k>0
A’“A’“:{F k<0

REMARK. In particular, the spectral subspace assumptions of [CNNR] are
satisfied for the zhyvot action on a graph with a zhyvot.

PROOF. With |u| denoting the ordinary length of paths in E, we have the
product formula

SpSES;ﬁu,E |V, S |p|

2.4 5uS3)(S68})" = S,558,8% = ’
(2.4) (SuS)(8455)" = 5,538, {SMS;S;@,,, lv] = o]

where p is the initial segment of p of appropriate length, and 7 is the final segment.
If 5,82, SC,S; are in Ag, k > 0, then

lele — Ve =k = 1Yo — plos

so that |y|, > k and |u|, > k. Together with (2.4), this shows that for k >0 we
have Ax A} € Fy. Conversely, if SaSj € Fi, s0 |al, = |Bls = k, we can factor

SaSp = SaSsSp = S54(835%)* € A A;.
For k < 0 we of course have ArA; € F, and so we need only show that for any
SaSj3 € F, 5,55 € AxA;.

Here we use the final property of zhyvot graphs, namely that we can find a
path A € E* with s(\) € M and r(A) =r(a) = r(3). Moreover, because M has no

sources, we can take |A|, as large as we like. Thus we can write

585 = SaS38285 = (5a53)(S5S3)".

Choosing ||, = |a|, + |k| shows that SaSj € AcAj.
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C‘IOROLI.JARY 2.6. Let E be a locally finite directed graph without sources. Then
the fized point algebra for the usual gauge action decomposes as

F=F&6Gw k=1,2,3,...,
where
Fy, = 8pan{ 8,5, : |u| = |v| = &},
Gy = span{S,S. : 0 < |u| = |v| < k, r(p) =7(v) is a sink}.

PRrOOF. This follows from Proposition 2.5 since E is a graph with zhyvot E.

3. Schottky Invariants of Mumford Curves and Field Extensions

3.1. Schottky Lengths and Valuation

Let I' ¢ PGLy(K) be a p-adic Schottky group acting by isometries on the
Bruhat-Tits tree Ag. As recalled in Section 2.2 a hyperbolic element v € I deter-
mines a unique axis L(7) in Ag, which is the infinite path of edges connecting the
two fixed points z%(y) € Ar € P}(K) = dAk. The element v acts on L() by a
translation of length £(7).

To a given set of generators {71, -+ ,7,} of I' one can associate the translation
lengths #(v;). We refer to the collection of values {£(;)} as the Schottky invariants
of (T, {vi}). For example, in the case of genus one, one can assume the generator
of I' is given by a matrix for the form

(5 2)

with |g| < 1 so that the fixed points are 2t(v) = 0 and 27 (v) = oco. The element
~ acts on the axis L(7) as a translation by a length £(7) = log|q|™" = vm(g) equal
to the number of vertices in the closed graph (topologically a circle) A/T. We
see clearly that, even in the simple genus one case, knowledge of the Schottky
invariant £(~) does not suffice to recover the curve. This is clear from the fact that
the Schottky length only sees the valuation of g € K*. Nonetheless, the Schottky
lengths give useful computable invariants.

It is important to stress that, when we consider translation lengths as invariants,
we are in fact working with marked Schottky space S,, where we consider pairs ofa
Schottky group I' of genus g and a marking given by the choice of a set of generators
{7,..-,7g}- In fact, the set of translation lengths of a minimal set of generators
of a free group of tree isometries is not an invariant of the group action, but it
depends on the specific choice of generators.

3.2. Field Extensions

In the following section, where we derive explicit KMS states associated to

the infinite graphs given by the quotients Ag/T, we also discuss the issue of how
the invariants we construct in this way for Mumford curves behave under field
extensions of K. For this purpose, we recall here briefly how the graphs Ax and
1. are affected when passing to a field extension (¢f. [Mal]). This was also recalled
in more detail in [CM1].
Let L O K be a field extension with finite degree, [L : K] < oo, and let ey /K

n index. Let Op and Ok denote the respective rings of integers.

be its ramificatio ; ege
ices AY — Af obtained by assigning

There is an embedding of the sets of vert
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to a free Og-module M of rank 2 the free Op-module of the same rank given
by M ©o, Op. This operation preserves the equivalence relation. However, the
embedding A} — AP obtained in this way is not isometric, as one can see from the
isomorphism (O /m") ® Op ~ @ /m"./%. This can be corrected by modifying the
metric on the graphs Ay, for all extensions L O K: if one uses the K-normalized
distance

1
(3.1) dg(My, Ms) := ——dp(My, M>)
€L/K

on AY, one obtains an isometric embedding A — AP.

Geometrically, the relation between the Bruhat-Tits trees Ag and Ay, is de-
scribed by the following procedure that constructs Ap, from Ag given the values of
erx and [L : K]. The rule for inserting new vertices and edges when passing to a
field extension . O K is the following.

(1) eL/k — 1 new vertices {vy,... ,vem‘_l} are inserted between each pair of

adjacent vertices in Aj. Let A . denote the set of all these additional
vertices. ’

(2) ¢°+ 1 edges depart from each vertex in A% U Af g, with ¢ = [,Llfx L : K].

Each such edge has length ﬁ

(3) Each new edge attached to a vertex in Aj U A{ g is the base of a number
of homogeneous trees of valence ¢¢ + 1. The number is determined by the
property that in the resulting graph the vertex from which the trees stem
also has to have valence ¢¢ + 1. The Bruhat-Tits tree Ay, is the union of Ag
with the additional inserted vertices AE‘K and the added trees stemming
from each vertex.

This procedure is illustrated in Figure 1 which we report here from [CM1].

FIGURE 1 The tree Ag for K = Q2 and Ay for a field extension
with f =2 and e 5 = 2.

. Suppose we are given a p-adic Schottky group I' € PGLy(K). Since all nontriv-
ial elements of I' are hyperbolic (the eigenvalues have different valuation), one can

see that the two fixed points of any nontrivial element of T are in P}Y(K) = 9A
Thus, the limit set Ar is contained in PI(K). -

When one considers a finite extension L 5 K and the
curve Xp(L) = Qr(IL)/'F ?vith Q- (L) = P'(L)~\ Ar, one can see this as the boundary
of the graph Al:/ I'. Notice that the subtree Al of Ay and the subtree A’
Ax, both of which have boundary Ar only differ by the presence of the addigforlal

eL/k — 1 new vertices in between any two adjacent vertices of A/

L/K en . r.x» While no new
direction has been added (the limit points are the same). In particular, this means

corresponding Mumford

KOf
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that the finite graph At /T is obtained from Af x /T by adding ey /x — 1 vertices
on each edge. The infinite graph Ag/T' is obtained by adding to each vertex of
the finite graph Afp /I a finite number (possibly zero) of infinite homogeneous
trees of valence g + 1 with base at that vertex. Given the finite graph Af /T, the
number of such trees to be added at each vertex is determined by the requirement
that the valence of each vertex of Ag/T" equals g + 1. The infinite graph Ap /I’
is obtained from the graph Ag/T by replacing the homogeneous trees of valence
q+ 1 starting from the vertices of A} i /T" with homogeneous trees of valence ¢¢ +1
stemming from the vertices of ALy /T, so that each resulting vertex of Ap/T" has
valence g¢ + 1.

We analyze the effect of field extensions from the point of view of KMS weights
and modular index theory in Section 4.1.

4. Graph KMS Weights on Directed Graphs
Let E be a row-finite graph and C*(E) the associated graph C~-algebra.
DEFINITION 4.1. A graph weight on E is a pair of functions g : E° — [0, 00)
and A : E' — [0, 00) such that for all vertices v

gv) = Y Aeg(r(e)).

s(e)=v
A graph weight is called faithful if g(v) # 0 for all v € EC. Y ,cpog(v) =1, we
call (g, A\) a graph state.
REMARK. If A(e) = 1 for all e € E', we obtain the definition of a graph
trace [T.

EXAMPLE. Suppose e is a simple loop in a graph, with exit f at the vertex v,
and that there are no other loops and no other exits from v, as in Figure 2. Then
the condition of Definition 4.1 becomes

g(v) = Ae)g(v) + A()g(r(f)),

so we find g(v) = li(l\f()e)g(r(f))

e o_-i—:—.
' N r(f)

FIGURE 2 Loop with exit.

REMARK. A graph weight is in fact specified by a single function h:E*—
[0,00). For paths v of length zero, i.e. vertices, h(v) = g(v) and for paths g of
length k > 1, h(p) = M)A (p2) - Apk)- We retain the (g, A) notation but extend

the definition of A by A() = [Ty Ass)-
k or |p| < k and 7(p) is a sink.

Recall that a path || has length || = K if |p] = : (
We then have the following result, which can be proved by induction.
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LEMMA 4.2. If (g, ) is a graph weight on E, then
gw)= D Awe(r(w),
s(pu)=v, |p|=k
where for a path p=e;---ej, j <k, Au) = [I A(e;).
We then define a functional ¢, » associated to a graph weight (g, A) as follows.

DEFINITION 4.3. Given (g,A) on E a graph weight, define ¢, » : span{S,S; :
v e E*} - Cby

¢g,,\(S;LS;) = 6;1,1/)‘(”)(259,)\(171-(:1)) s A(V)'su,vg(r(u))'

This yields the following useful results.

PROPOSITION 4.4. Let A, = span{S,S} : u,v € E*}, and let (g, A) be a
faithful graph weight on E. Then A, with the inner product

(a,b) := ¢g »(a*b)
is a modular Hilbert algebra (or Tomita algebra).

PrOOF. To complete the definition of modular Hilbert algebra, we must supply
a complex one parameter group of algebra automorphisms o, and verify a number
of conditions set out in [Ta). So for z € C define

755 = (34) s.s:.

Extending by linearity we can define o, on all of A.. To verify the algebra auto-
morphism property, it suffices to show that
0:(5.5,5,5%) = 0:(5,5,)0:(8,Sy).
First we compute the product on the left hand side.
6u,p8,555% - |v| <
S#S:S,,S:={ 2P u0p l f_.|P|-
v pSuSESy v > |p|
So

Alup) zéy. S, S-S |y| < pl
M&xa&*{(xﬂ) eoupoe W<l
(3

) 00088352 1v] > o]
On the right hand side we have

7+(SuS2)04(S,52) = (A(u)A(p ) { 8v.pSuSpSy  [v] < ol
gt 2 il A(v)A(K) EHWS“SES,: [v] > |p|

={ﬂ%¥%3w&%x W< o
(x3%5) 8erSuS3S: 11> fol

and this is easily seen to be the same as the left hand side w
non-zero. Observe we have used the fact that

Ap) = A(PA®D).

henever the product is
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We need to show that (a,b) = ¢4 1(a*b) does define an inner product. Let
a € A, and let p € A, be a finite sum of vertex projections such that pa = ap = a
(p is a local unit for a). Then, since g(v) > 0 for all v € E°,

By PgA (pbp)
¢’g.)\ (p)

is a state on pC™(E)p and so is positive. Hence
¢g,a(a*a) > 0.

To show that the inner product is definite requires more care. First observe that
if U : A. — span{P, = 5,5} is the expectation on to the diagonal subalgebra, then
Pgr = Gg.x © ¥. So we consider a € A, and write ¥(a*a) = 2” culPy— 3, by
Here the ¢,, ¢, > 0 and none of the paths y is repeated in the sum. The average
U(a*a) is a positive operator, so if ¥(a*a) is non-zero, all the P, in the negative
part must be subprojections of 3, P, (otherwise ¥ (a*a) would have some negative
spectrum). Since we are in a graph algebra, the Cuntz-Krieger relations tell us we

can write
D Pu=3"> Pu
u B P

for some paths p extending the various p, and that moreover all the P, appear as
some P,,. Thus

V(ata) =Y cuPu—Y cPo= cu) Pup— > P =3 dupFup
Iz v Iz P v p

M

where the d,,, are necessarily positive. Now we can compute
b (@) = g r (30 S dupPup) = DD dupA(p)g(r(up) > 0.
wop nop

So now we come to verifying the various conditions defining a modular Hilbert
algebra. First, we need to consider the action of A. on itself by left multiplication.

This action is multiplicative,

(ba,a) := ¢y r(a"b"a) = (a,b"a),

and continuous,

(ba,ba) = ¢y x(a*b"ba) < |I6*b||{a, a),
the C*-norm coming from C*(E). As A2 = A, the densitty of A2
Ifilled. Also for all real t, (1+0¢)(5,5)) = (14 (A () /A(@))") S, s
heck to see that (1+ a¢)(A.) is dense in A, for all real t. Also

where ||« || denotes
in A, is trivially fu
and so it is an easy €

* * A(-""‘) ¥ * *
(0x(5,520,5,5 = (303 ) (5052, 550
he reason for s is that our inner product is conjugate

i i nalytic in z (t L b :
sy d ). Since a finite sum of analytic functions is analytic,

linear in the first variable
(o:(a),b) is analytic for all a,b € Ae.
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The remaining items to check are the compatibility of o, with the inner product
and involution, and all of these we can check for monomials S,,S}. The first item

to check is

(02(8,50)") = (%)ESVS;

" (%)_23,,5;
=0_3((5.57)%)-

Next we require (0. (a),b) = (a,o3:(b)). So we compute

(0+(552).5,5%) = (%)290’(“)){ 5 i gl
(r(x)) (3(“’)26#, v W) 11 > Il

(22 bustis, 1l < ol

s (TE)) bumA(KE)  |u| = |p|

(%) bup (k) |p| < |p|

b (JE;;_) oS AE) 2 1)

'bl

) Oy, péup xA(K) |p| < ol

> e
yy)—

() A
= (5.5, 0:(5,5%)),

=l

vﬁ

Fhe laslt line following (when || < |p|), since the final segments of p and k must agree
1(!('3 th; inner product is non-zero. The final condition to check is that (o1(a*), b*) =
,a).

First we compute

(01(5452).5,5%) = M{ Iughimr (990 () ] < o
(V) 6E.p6v.x17/\(ml_l)g(r(#)) “‘J = ’pl
g { AP (k)8 pbmm 1] < ol
’\(F')g(r(ﬂ))‘sg‘p‘su.nﬁ |il| 2 |
Next we have
(S. s:.5, st = { Ok, ur A (UE) )g(r(x)) |&| = |v|
Oxwbpm u A)g(r(p)) |5 < ||
- { (p)g(r(’{))ﬁﬁ,v‘ﬁp.ﬂﬁ |KI 2 ryl
( ) (T‘([_L)) 6,0!7,1: Iﬁl S IV[ '

Now for the inner product to be non- ~2ero, we must have |p| + |v| =
and so |u| < |p| & |v| < |%|. Comparing the Kronecker deltas i

5] + |p),
n the corr esponding
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cases then yields the desired equality for monomials, and the general case follows
by linearity.

THEOREM 4.5. Let E be a locally finite directed graph. Then there is a one-
to-one correspondence between gauge invariant norm lower semicontinuous faithful
semifinite functionals on C*(E) and faithful graph weights on E.

Proor. This is proved similarly to Proposition 3.9 in [PRen| where the tracial
case is considered.

First suppose that (g, A) is a faithful graph weight on E. Then (A, ¢g.) is
a modular Hilbert algebra. Since the left representation of A. on itself is faithful,
cach p,, v € E°, is represented by a non-zero projection. Let the representation
be 7.

The gauge invariance of ¢4\ shows that for all z € T, the map 7. : Ae — Ae
extends to a unitary U, : H — H, where H is the completion of A, in the Hilbert
space norm. It is easy to show that U.m(a)Uz(b) = m(v:(a))(b) for a, b € A.. Hence
U.n(a)Us = m(y:(a)), and so a;(w(a)) := U.m(a)U: gives a point norm continuous
action of T on w(A.) implementing the gauge action.

We may thus invoke the gauge invariant uniqueness theorem [BPRS] to deduce
that the representation extends to a faithful representation of C*(E).

Now w(C*(E)) C w(Ac)" = m(A) ™" the ultra-weak closure. Then Theorem
2.5 in [Ta] shows that the functional ¢g x extends to a faithful, normal semifinite
weight 1, on the left von Neumann algebra of 4., m(A.)".

Restricting the extension 1, to C*(E) gives a faithful weight. It is norm
semifinite, since it is defined on A, which is dense in C*(E). Finally, if a; — a
in norm, then the a; converge ultra-weakly as well, so liminf ¥y x(a;) > ¥ga(a),
which shows that the restriction of ¢, » to C*(E) is norm lower semicontinuous.

To get the gauge invariance of ¢, x we recall that T € m(A¢)” is in the domain
of 1, if and only if T = n(€)w(n)* for left bounded elements £, n € H. Then
Vg a(T) = Paa(m(E)m(n)*) := (€,m). As U,£ and U.n are also left bounded we have

Vg A(U:TUz) = Yy (Usm(€)m(n)"Uz) = Pgr(Um(€)(U=m(n))")
= Pga(m(v:(E))m(:=(m)") = (U=, Uzm)
= (&, ) = Yga(T)-
So g is @z invariant, and a — ¥, x(7(a))

semicontinuous gauge invariant weight on C*(E). . _
Conversely, suppose that ¢ is a faithful semifinite norm lower semicontimuous

weight on C*(E) which is gauge invariant. Define

S.S:
g(v) = o(pu), Ale) = iES;SB;

defines a faithful semifinite norm lower

It is readily checked that (g, )) is a faithful graph weight.

| the index theory for KMS weights set out in
aph weight to be a circle action
A should be comple-

In order to make contact with
[CNNR]. we require the action as.socia.tled to our gr
satisfying the spectral subspace condition, namely that A
mented in the fixed point algebra F'.

A sufficient condition to obtain a circ

e € E', where now n : E!' - Z,and A €

le action is that A(e) = A™e for every edge
(0,1). In fact we will simplify matters
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further and deal here just with a function of the form n, € {0,1} for all e € E.
While this is rather restrictive, it suffices for the examples we consider here. We
call such functions special graph weights. In order for our special graph weight to
accurately reflect the properties of the zhyvot action on our graph, we will also
require that n. = 1 if and only if e € M.

Also all the graphs we wish to consider are graphs with finite zhyvots, with the
rest of the graph being composed of trees. It is easy to construct faithful graph
traces, i.e. special graph weights with n. = 0, on (unions of) trees, given just the
values of the trace on the root(s) [PRen|. Thus, it seems that we need only worry
about constructing a graph state on the zhyvot.

However, there is a subtlety: neglecting the trees can affect the existence of
special graph weights.

In fact, we show in the following genus two example that appending trees to
the finite graph is necessary for solutions to the graph weight equations by showing
that there are no solutions on the finite graph itself. Later we show that adding
trees to this example does indeed allow solutions of the graph weight equations.

EXAMPLE. Graph states on SU,(2). Recall that for 0 < g < 1 the C*-algebra
SUq4(2) is (isomorphic to) the graph C*-algebra of the graph in Figure 3 [HS].

FIGURE 3 Graph of SU,(2).

We want to solve
9(v) = A" g(v) + Ag(w), g(w) = A"g(w).
First A™ = 1, so for ) # 1 (which we are not interested in), ng = 0. Then

Anz
glv) = o Y 9(w)-

Imposing the requirement that we have a graph state, g(v) + g(w) = 1, we get
An2 1—)\m

V)= — = —
9(v) i g T

I —Am 4 \na?
Observe that if n, = na we have

9(¥) =1-2™, g(w) =A™,
In this case we get the Haar state by setting A = ¢g2/m [CRT).

Observe that for A = 1 the only non-zero graph trace vanishes on 1. and we
get the usual trace on the top circle with the kernel of #g = C(S))® K. For A>1
we get the same family as before by replacing (n,, nz) by (—n,, —ng). For a Speciai
graph s‘tate we must have n; = 1 and ng = 0. For ny we may choose either valye.
- So it seems we cann(_Jt obtain a special graph weight with n, = | for all edges
in the zhyvot. However, if we add trees to the graph, the loop on the vertex w will

acqu_ire exits, and then it is easy to construct special graph weights with 7. — 1
precisely when e is an edge in the zhyvot. ’



MODULAR INDEX INVARIANTS OF MUMFORD CURVES 49

LEMMA 4.6. Let M be a finite graph and label the vertices vy, ...,v, so that
the sinks, if any, are vy41,...,v,. Let pjrx € NU {0} be the number of edges from
v; to vp. Then M has a faithful special graph state (g, A,n) for A € (0,1) and
n: E' — {1} C N if and only if the matriz

(()\ij)rxr (/\pjk)rxn—r>

Oﬂ—fx?' Idn—rxn—r
has an eigenvector (z1,...,2,)7 with eigenvalue 1 and z; > 0 for j =1,...,n.

ProoOF. The equations defining a special graph weight for A € (0,1) are

n n
9(v;) =3 Apjrg(ve) F=1,...,r,  g(v;) =D buglwe) j=r+1,....n

k=1 k=1
This gives the necessary and sufficient condition for the existence of a special graph
weight § with g(v;) = x;. To get a state we normalize the eigenvector.

The lemma can obviously be generalized to deal with general graph states on
finite graphs. Moreover we note that work in progress is extending the modular
index theory to quasi-periodic actions of R, and a modified version of the above
lemma will give existence criteria in the quasi-periodic case also.

COROLLARY 4.7. Let E be a locally finite directed graph without sources and
with finite zhyvot M C E. Let (g,A,n) be a special graph weight on E for A €
(0,1), nlanr = 1 and n|pna = 0. Then ¢g 5 extends to a positive norm lower
semicontinuous gauge invariant (usual gauge action) functional on C*(E). The
functional ¢g x is faithful iff (g,A) is faithful. We have the formula

P9 (ab) = gga(o(b)a), abe A,

where o(S,S}) = :J(%SPS; is a densely defined reqular automorphism of C*(E).
In particular, ¢4, is a KMS weight on C*(E) for the (modified) zhyvot action

* A " * —|v|e)i *
Ut(S.uSu) = ('5\%) S.U«Sv i ’\(lﬂln ekl tSMSu'

ProOF. The formula ¢y x(ab) = ¢4 a(c(b)a) follows from Proposition 4.4. To-
gether with the norm lower semicontinuity and the gauge invariance coming from

Theorem 4.5, we see that ¢g x is a KMS weight on C*(E).

4.1. The Effect of Field Extensions

Suppose that we start with the infinite graph Ag/T" and we pass Fo the graph
Ay /T, for L a finite extension of K, by the procedure described.m Section 3. As we
have seen, this procedure consists of inserting ey /x — 1 new vertices alt?ng edges and
attaching infinite trees to the old and new vertices, so that the resulting valence of
all vertices is the desired ¢¢ + 1, with (= [L : K]/eL/k-

Here we show that, if we have constructed a special graph weight fqr Ax/T, t_hen
we obtain corresponding special graph weights c?n all t}}e Ay /T for finite extensions
L 5 K. The special graph weight for Ay /I is obtained from that of Ag/I" by

solving explicit equations.
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PROPOSITION 4.8. Let E be a locally finite directed graph with no sources and
with finite zhyvot M. Suppose that (g, A,n) is a faithful special graph weight on E
with nar = 1 and n|g\ar = 0, and A € (0,1). Let F be the graph obtained from E
by inserting some new vertices along edges of M and attaching any positive number
of trees to the new vertices and any number of trees to the vertices of E. Then F
has finite zhyvot M, with M® = {v € F° :v € MY orv =r(e), e € F!, s(e) € M°}
and M' = {e € F' : r(e) € M°}, and a faithful special graph weight (g, A, 1) with
the same value of X and 0|y =1, 71| gy = 0.

PROOF. It is clear that F is a graph and that M is a zhyvot for F, since we
cannot introduce sources when vertices are only introduced by splitting an existing
edge into two, since one of them has the range of the new vertex. Since extending
a faithful graph state on the zhyvot M to any graph obtained by adding trees to
vertices is possible, we need only be concerned with building a new special graph
state on the zhyvot.

The problem turns out to be local, and we refer to Figure 4 for the notation
we shall use.

h S

*—— o L
v e w v € t eg

=%

FIGURE 4 Inserting a vertex.

We suppose we are given an edge e with s(e) = v and r(e) = w in a graph
with special graph weight (g, A\,n). So we have 9(v) = Ae)g(w) + R, where R —
Z,-.(;,):,-, éste ’\(")Q(T(é))

We now introduce a new vertex ¢ splitting e into two edges e;, €5 with s(ey) =
v, r(e1) = t, s(ez) = t, r(ez) = w. We also introduce a new edge f with s(f) = ¢
r(f) = s for some other vertex s. We observe that we could add :

r ' several edges
4 L frn with source ¢, and we indicate the modifications require

d in this case

We want to construct a special graph weight § without changing our parameter

A or the values of the graph weight where it is already defined. Thus we would like
to solve '

9(v) =Ag(t) + R,  §(t) = Ag(w) + Ag(s), §(v) = 9(v), g(w)

A solution to the above equations is as follows. D
existing vertices, and on the vertex s — r(f) set g(s) = L2 g(w
: : *t 9(8) = *32g(w). Then the aboy
equations are satlsﬁe(.i. and we obtain §(t) = g(w). If )‘we have multiple id(;:;
fiy 5. fy then replacing g(s) by ZJ. g(r(f;)) we have a solution provided
1-A

2_9(r(f3) = = g(w),

= g(w).

efine § = g on all previously
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and thus we may just set the value of g(r(f;)) to be - -5=g(w).

Finally, define 1 by making it identically one on edges in M and identically
zero on other edges. Observe that f is not an edge in the zhyvot.

5. Modular Index Invariants of Mumford Curves

We have seen that we can associate directed graphs to Mumford curves. These
graphs consist of a finite graph along with trees emanating out from some or all
of its vertices. Though we do not have a general existence result, we have shown
in Lemma 4.6 that generically we can construct “special” graph weights on such
graphs. We will assume in this section that the conditions of Lemma 4.6 hold.
Again we remark that this restriction is likely to prove artificial.

From this we can construct both an equivariant Kasparov module (X, D) and
a modular spectral triple (A, H, D) as in [CNNR]. Here the equivariance is with
respect to the modified zhyvot action introduced in Corollary 4.7 To compute the
index pairing using the results of [CNNR], we need only be able to compute traces
of operators of the form p®;, where p € F' is a projection and the @, are spectral
projections of the T action (or of D or of A).

In the specific case of Mumford curves, the modular index pairings we would like
to compute are with the modular partial isometries arising from loops in the central
graph corresponding to the action on Ax of each one of a chosen set of generators
{91,... 74} of the Schottky group I. These correspond to the fundamental closed
geodesics in Ag/T', by analogy with the fundamental closed geodesics in the hyper-
bolic 3-dimensional handlebody H/T' considered in [Man], [CM]. The lengths of
these fundamental closed geodesics are the Schottky invariants of (T, {1,--- 1Y}
introduced above.

We introduce some notation so that we may effectively describe these projec-
tions. The zhyvot of the graph we denote by M. Since outside of M our graph is a
union of trees, we may and do suppose that the restriction of our graph weight to
the exterior of M is a graph trace. That is, for all v ¢ M we have

gv)= Y g(r(e)),

s(e)=v

and so for e € M, 0¢(Se) = Se- )
In [CNNR| we showed how to construct a Kasparov module for A = C*(E)

and F = A?. Welet ®: A — F be the expectation given by averaging over the
circle action and define an inner product on A with values in F' by setting

(a|b) := ®(a™b).

We also use the notation €, for the rank one endomorphisms ed_,‘y.= z(yl-)- -
We denote the C*-module completion by X and note that it is a f}ﬂl rlght
F-module. There is an obvious action of A by left multiplication, and this action

is adjointable.
On the dense s . :
it on generators and extending by linearity. We set
DS,S; = (lpulo — [V]o) SuSs,
, D is the generator of the zhyvot action. Observe
e exterior of M we have |p|s = 0. The closure

ubspace A, C X we define an unbounded operator D by defining

so that up to a factor of log(A)
that for a path g contained in th
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of D is self-adjoint, regular, and for all a € A, the endomorphism of X given by
a(1+ D?)~! is a compact endomorphism.

It is proved in [CNNR] that (4 Xp, D) is an equivariant Kasparov monu]e for
A-F' (with respect to the zhyvot action), and so it defines a class in KK (A, F).

Similarly, if we set H := H,_, to be the GNS space of A associated to the
weight ¢, », we obtain an unbounded operator D (with the same definition on
Ac CH). The triple (A, H, D) is not quite a spectral triple.

The compact endomorphisms of the C*-module X, EndY.(X), act on H in a nat-
ural fashion [CNNR], and we define a von Neumann algebra by A’ = (End%.(X))".
There is a natural trace Try, , on A satisfying

(5.1) Trg, s (Ozy) = dg,a((y]z))
for all z, y € X. We define a weight ¢p on N by

¢p(T) := Try, ,(APT), T e N.

Then the modular group of ¢p is inner, and we let M c A/ denote the fixed point
algebra of the modular action. Then ¢p restricts to a trace on M, and it is shown
in [CNNR] that

fA+D%)72 e LOoU(M,¢p), FeF.

Using this information it is shown in [CNNR] that there is a pairing between
(Ac, M, D) and homogeneous (for the zhyvot action) partial isometries v € A, with
source and range projections in F. The pairing is given by the spectral flow

8fop (V0" D, vDv*) € R,

this being well defined, since vDv* € M. The numerical spectral flow pairing and
the equivariant KK pairing are compatible.

In order to compute the spectral flow, we need explicit formulae for the spectral
projections of D both as an operator on X and as an operator on H.

To this end, if v € E® and m > 0 we set |v|,, = the number of paths p with

[l = m and 7(p) = v. It is important that our graph is locally finite and has no
sources, so that 0 < |v|,, < oo for all v € E° and m > 1.

PROPOSITION 5.1. The spectral projections of D can be represented as follows.

(1) Form>0
P = Z ©s,.5.
lt|a=m
ﬂ‘(p)Eﬁf
r(u)eM
(2) Form=0

P = Z ©..p, -

vEED
(3) Form<0, ve E°

1
pvd) = E 83' ..
i “"\mi |2 ol

lo=|m|

r(p)=v
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I_n all cases, for (a subprojection of) a vertex projection p,, the operator p,®,, is a
finite rank endomorphism of the Kasparov module X and in the domain of ¢p as
an operator in M C N.

PrOOF. We first recall that the C*-module inner product is given by
(zly)r = ®(z"y).
Now let 5,57 € X and with |ptle > 0 consider
eSmSuSPS: = SM(SHISPS;)R

= Lo lplo — 1710 SuSuSp Sy

s Elnlmimo—lvla‘sﬂ.gsos-:'
Hence this is non-zero only when |p|, = |7|s + |¢|s = |l and p = p. Thus when
lple = 17le =m >0

D 5,.5.55y = 0,555 = 5,55,

|pt]o=m
s(p)eM
r(n)eM

and }° g, g, is zero on all other elements of X. Hence the claim for the positive
spectral projections is proved, since finite sums of generators 5,85 are dense in X
A similar argument proves the claim for the zero spectral projection.

For the negative spectral projections, we observe that

Os:.5: 555} = Spbr(u),s(0)Olula+ola vl SuSpSy
= br(u),8(0) Ol +lololrle S5
Summing over all paths p with |ul, =m >0 and r(u) = s(p) gives

Z 95;,5;503; 5 6ipia-Ivloa*mls(p)lmsﬂs‘:'

il—"lﬂ:m
r()=s(p)

Hence for a vertex v € E°

1

2liml |y Sy
r(p)=v

Os:,5: 5055 = Blpls —I1les—mBa(p). w5055

wp

= 5l By

In all cases p,®j is a finite sum of rank one endomorphisms, and so has finite rank.
In particular they are expressed as finite rank endomorphisms of dom(¢)'/? - X,
since for a graph weight g, A all the 5, and S}, lie in the domain of t?le ?ssomated
weight ¢. This ensures that these endomorphisms extend by continuity to the
Hilbert space completion of dom(¢)'/2, and by the construction of ¢p, ez?ch po®i €
M C N has finite trace. Similar comments evidently apply to projections of the
form S, S;,, since this is a subprojection of Ps(u)-

For large positive k, the computation of ¢p (S5, Pk) is extfremely difficult, and
needs to be handled on a “graph-by-graph” basis. However it turns out that we
need only compute for [k| < |1t]o, and this is completely tractable.
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|
LEMMA 5.2. Let v be a path in E with s(y), r(v) € M and |y|, > 0. Then for
all k € Z with ||, > |k| we have

OD(8,S3Px) = $g,1(8,55) = Ao g(r(y)).
For a path of length zero (i.e. a vertex v) in M and k < 0 we have

¢ (po®Pr) = ¢g,z\(pv) = g(v).

PROOF. We begin with |y|, > k > 0. In this case the definitions yield

%(Sws;‘pk)

Y ¢p(5,8;0s,.5,)
|ulo =k
s(p)eM
r(p)eM

D N6ea(8:5,8:5,)  (by (5.1))
lulo=k
s(u)eM
r(n)eM
ey ’\k¢9.z\(S?S"$) |
= Al 6,7 (8385) = A= g 5 (pr(y)
= ﬁbg,A(S'yS;)-
So now consider |y|, > 0 or 4 = v for some vertex v € M and k > 0. In the latter
case, SWS,; = PuPv =Py = S38,. Then

* 1 s d * *
¢D(8,S7®_k) = TR Y. A 0na(5.5,518
|ule=k

r(u)=s(7)

1
= 3 Al o)
SO | 2=,
r(u)=s(v)
== )\'”’l"qﬁg‘,\(p,h])
= $4(5,53).

This completes the proof.

We now have the necessary ingredients
with S, where v here denotes a loop contai
corresponding to an element in the chosen
We suppose that k = ||, is Non-zero, so
B := —logA.

We then have the following result, which gives Theorem 1.1.

to compute the modular index pairing
ned in the finite graph M — AL/T and
set of generators of the Schottky group.
that the loop is nontrivial, and denote

THEOREM 5.3. Consider the graph C*-algebra C*(
action, under the assumption of Lemma 4.6. The modu

7 a generator of I', determines the translation length ¢(
by it.

Ax/T) with the zhyvot circle
lar index pairing with Sy, for
Y) and is in turn determined
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PrOOF. By Lemma 4.10 of [CNNR] and Lemma 5.2 we have

k—1
8f45(5,53D,8,DS}) = = Y _ e P Try(5,5;9;)
1
.y Z QSD(S'yS:(I’j)
j=0
i —kqﬁg,,\(S,,S;)
—kX*g(r(7)) = —ke P g(r (7).

Since we assume that (g, \) are given as part of the data of our special graph weight,
we can extract the integer k. Moreover, k determines the value of the index pairing.

Thus, we see that the Schottky invariants of the data (T, {m,... ,Yg}) can
be recovered from the modular index pairing and in fact determine it, for a given
graph weight (g, A). This confirms the fact that the noncommutative geometry of
the graph algebra C*(E) = C*(Ag/T") maintains the geometric information related
to the action of the Schottky group on the Bruhat-Tits tree Ag. This is still less
information than being able to reconstruct the curve, since the Schottky invariants
only depend on the valuation. We show explicitly in the next section how the
construction of graph weights works in some simple examples of Mumford curves.

6. Low Genus Examples

We consider here the cases of the elliptic curve with Tate uniformization (genus
one case) and the three genus two cases considered in [CM1]. In each of these ex-
amples we give an explicit construction of graph weights and compute the relevant
modular index pairings, showing that one recovers from them the Schottky invari-
ants. Notice that, for the genus two cases, the finite zhyvot graphs Ar/I" are the
same considered in [CM1], which we report here, though in the present setting we
work with the infinite graphs Ag/T". We discuss here the graph weight equation on
the zhyvot graph and on the infinite graph Ag/T.

ExAMPLE: GENUS ONE. As a first application to Mumford curves we consider
the simplest case of genus one. In this case, the Schottky uniformization is the Tate
uniformization of p-adic elliptic curves. The p-adic Schottky group is just a copy
of 7 generated by a single hyperbolic element in PGL3(K). In this case the graph
Ay /T will be always of the form illustrated in Figure 5, with a central polygon with
n vertices and trees departing from its vertices.

In fact, in this case, the subtree AR C Ak spanned by the axes of the elements
of I" consists of a single infinite geodesic in Ag, which is the axis L() of a generator
of T' ~ ~%, with endpoints consisting of the fixed points 2%(y) € P}(K). The group
I" acts on this axis by translations of lengths multiple of () = n; hence one obtains
in the quotient a closed ring Af/T of length £(7), from whose vertices infinite trees
are attached, which form the remaining part of Ax/T.
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FIGURE 5 The genus one case.

With our convention on the orientations, the edges are oriented in such a way
as to go around the central polygon, while the rest of the graph, i.e. the trees
stemming from the vertices of the polygon, are oriented away from it and towards
the boundary X = 0Ag/T.

Label the vertices on the polygon by v;, i = 1,...,n. To get a special graph
weight we need 0 < A < 1 and a function g on the vertices such that

9(vi) = Ag(vit1) + B; Bi= ) g(w).

vip1#w=r(e),
s(e)=v;

To simplify we suppose all the g(v;) are equal, 3" g(v;) = 1 and all the B; are equal.
Then we obtain a special graph weight for any A < 1 by setting

1
g(v;) = =y B; =

For each i we can now define the various g(w) appearing in the sum defining B; by
g(w) = m%g(w) where m; is the number of such g(w). This graph weight can be
extended to the rest of the trees as a graph trace, and the associated T action is
nontrivial on each S,, e € M! where M is Just the central polygon. Hence choosing

7 to be the (directed) path which goes once around the polygon (the choice of
() = s(v) is irrelevant) gives

([‘T]-fi’g.)\) = ="

EXAMPLE: GENUS Two. In the case of genus two,
and the corresponding special fibers of the algebraic cur
6, which we reproduce from [CM1]; see also [Mar].

We look in more detail at
in [CM1].

the possible graphs Ar/T
ve are illustrated in Figure

the various cases. These are the same cases considered
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E‘E)GURE 6 The graphs Ar /T for genus g = 2 and the corresponding
ers.

CASE 1. In the first case, the tree Ap is just a copy of the Cayley graph of the
free group I' on two generators as in Figure 7.

s
-
b+1

o

&

el

CXD +#

Sl
Q
o
o

} :
o | b
e

Tt let
_l_

S

a

Figure 7 Genus two: first case.

f this graph is the Cuntz algebra O,. The only possible
) = 1 for the single vertex and A = 1/2. This corresponds
d its unique KMS state [CPR2]. Once we add trees
bilities for the KMS weights appear.

The graph algebra o
special graph state is g(v
to the usual gauge action an
to this example, many more possi

ond case, the finite directed graph Ap/T is of the form

Casg 2. In the sec
b = e; and ¢ = e3 the oriented edges in

illustrated in Figure 8. We label by a = e,
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the graph Ap/T, so that we have a corresponding set of labels E = {a,b,c,a,b,c}
for the edges in the covering Ap. A choice of generators for the group I' = Z * Z
acting on Ar is obtained by identifying the generators v, and 72 of I' with the
chains of edges ab and aé, hence the orientation on the tree Ar and on the quotient
graph is as illustrated in the figure.

a

FIGURE 8 Genus two: second case.

There are four special graph states on this graph algebra (up to swapping the
roles of the edges a and ¢). Let v = s(b) and w = r(b). Let n; = n(b), no = n(a)
and ng = n(c) with each n; € {0,1}. Then the various states are described in
Table 1. To fit with our requirement that the zhyvot action “sees” every edge in
the zhyvot, we should adopt only the last choice of state. Of course, we are again
neglecting the trees, and including them would give us many more options.

ny|{ny| ng A g(v) | g(w)
0|0 ]|0orl — — —
01 1 3 % 4
1[0 0 3 z %
110] 1 (=4 2 | o
o1 1 V2
1)1y 1 v, 20 eyl ey,

TABLE 1 Graph states for Case 2.

CASE 3. In the third case the obtained oriented graph is the same as the graph
of SU,(2) of Figure 3. We have already described the graph states for SUq(2). In
this case, the inclusion of trees is necessary to obtain a special graph weight adapted
to the zhyvot action. In fact, a choice of generators for the group I' ~ Z x Z acting
on Ar is given by aba and ¢, so that the obtained orientation is as in Figure 9.

FIGURE 9 Genus two: third case.
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When we consider the tree Al instead of Ap we are typically adding extra
vertices. The way the tree AL sits inside the Bruhat-Tits tree Ag and in particular
how many extra vertices of Ag are present on the graph Ap/T" with respect to the
vertices of Ap/I" gives some information on the uniformization, i.e. it depends on
where the Schottky group I' lies in PGL2(K), unlike the information on the graph
Ap/T which is purely combinatorial. For example, in the genus two case of Figure
6 one can have graphs AL/I" and Ag/T of the form as in Figure 10. This case is
obtained by embedding a valence three tree, with additional valence two vertices
inserted as in the middle panel of Figure 10, inside the valence four Bruhat-Tits
tree Ag,, as in the right hand panel of Figure 10. The group I' that uniformizes
the Mumford curve is generated by the translations of Ak along the two axes of the
tree Af in the middle panel of Figure 10, which give as quotient AL/T the finite
graph in the left panel of Figure 10.

* o @

—-

FiGURE 10 An example of a graph A[/T, the tree A and its
embedding in Ag for K = Q3.

REMARK: HIGHER GENUS. In the higher genus case one knows by ([Gvp],
p.124) that any stable graph can occur as the graph Arp/T of a Mumford curve. By
stable graph we mean a finite graph which is connected and such that each vertex
that is not connected to itself by an edge is the source of at least three _edges.

Thus, the combinatorial complexity of the graph is pretty much arbitrary. One
can also assume, possibly after passing to a finite extension of the field K, that
there are infinite homogeneous trees attached to each vertex of' the _grap'h Ar /I’..

We make the final remark that the restriction to circle actions in this paper is
ficial one. In work in progress, KMS index theory is extended to quasi-
periodic actions of the reals. As the action associated to any Sraph weight w1l‘1 t})e
quasi-periodic, this will hopefully allov?' us to prove general existence theorems for
(quasi_periodic) graph weights compatible with the zhyvot action.

likely an arti

7. Jacobian and Theta Functions

fly the relation between the Jacobian and theta functions of

: ts on the infinite graph Ax/T.
: ford curve and the group of curren : ‘ | /T _
) Mllls;call first that a current on a locally finite graph G is an mt.e'ger—\rdlued func
tion of the oriented edges of G that satisfies the following properties.

(1) Orientation reversal:

We recall here brie

u(e) = —p(e),

(7.1)
where € 18 the edge e with the reverse orientation.
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(2) Momentum conservation:

(7.2) > u(e)=o.

s(e)=v

One denotes by C(G) the abelian group of currents on the graph G.

Suppose we are given a tree 7. Then the group C(7) can be equivalently
described as the group of finitely additive measures of total mass zero on the space
OT of ends of the tree by setting m(U(e)) = pu(e), where U(e) C 8T is the clopen
set of ends of the infinite half lines starting at the vertex s(e) along the direction
e. For G = T/T, the group of currents C(G) = C(T)T can be identified with the
group of I'-invariant measures on 97, i.e. finitely additive measures of total mass
zero on 97 /T,

As above, we let X = Xr be a Mumford curve, uniformized by the p-adic
Schottky group I'. We consider the above applied to the tree Ag with the action
of the Schottky group I' and the infinite, locally finite quotient graph Ak /T with
dAg/T = Xr(K).

It is known (see [vdP, Lemma 6.3, Theorem 6.4]) that the Jacobian of a Mum-
ford curve can be described, as an analytic variety, via the isomorphism

(7.3) Pic’(X) = Hom(T, K*)/¢(T,s),

where 'y, = I'/[T',T'] denotes the abelianization, 'y, & Z9, with g the genus, and
the homomorphism

(7.4) ¢: Tap — Hom([yp, K*)

is defined by the first map in the homology exact sequence

(7.5) 0—C(Ag)" 5 Hom(I', K*) — HY(T,0(Qr)*) — H* (I',C(Ak)) — 0,
associated to the short exact sequence

(7.6) 0—-K*— OQp) — C(Ag) -0

of Theorem 2.1 of [vdP], where O(Qr)* is the group of invertible holomorphic
functions on Qp c P!,

In the sequence (7.5), one uses the fact that HY(T') = 0 for i > 2 and the
identification

(7.7) C(Ax)" = H(T,C(Ak)) = Loy = T1(Ax/T)ap
(see [vdP], Lemma 6.1 and Lemma 6.3). One can then use the short exact sequence
(7.8) 0= C(Ax) — A(Ak) 4 H(Ag) — 0,

where C(Ag) is the group of currents on the Bruhat-Tits tree Ak, A(Ak) is the
group of integer-valued functions on the set of edges of Ak satisfying h(&) = —h(e)
under orientation reversal e s & and H(Ag) is the group of integer-valued fi

: nections
on the set of vertices of Axk. The map d in (7.8) is given by

(7.9) 4 ABx) = H(Ak),  dh)(v) = 3 h(e).

s(e)=v
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The long exact homology sequence associated to (7.8) is given by
(7.10) 0 — C(Ax/F) ~ A(Ax/T) 5 H(Ax/T) 2 HA(T, C(Ax)) — 0,

where one has H'(I',C(Ag)) = Z and, under this identification, the last map in the
exact sequence is given by

(7.11) ®: H(Ag/T) - H'([,C(Ak) =2Z, ®(f)= > f().
vE(Ag/T)?

Moreover, one has an identification
H(T,0(0r)") = H'(X, 0%) = Pie(X),

the group of equivalence classes of holomorphic (hence by GAGA algebraic) line
bundles on the curve X, and the last map in the exact sequence (7.5) is then given
by the degree map deg : Pic(X) — Z, whose kernel is the Jacobian J(X) = Pic’(X)
(see [vdP, Lemma 6.3]).

A theta function for the Mumford curve X = Xy is an invertible holomorphic
function f € @(r)* such that

Y lmcbnl, Yrel,

with ¢ € Hom(I', K*) the automorphic factor. The group O(I") of theta functions of
the curve X is then obtained from the exact sequences (7.6) and (7.5) as ([vdP])

(7.12) 0 — K* — 6(T) — C(Ak)" — 0.

More precisely, let Hx = P} ~ P!(K) be Drinfeld’s p-adic upper half plane. It is
well known (see for instance the detailed discussion given in [BouCar, §L.1, §1.2])
that Hy is a rigid analytic space endowed with a surjective map

(7.13) A:Hg — Ax

to the Bruhat-Tits tree Ak such that, for vertices v,w € A% with v = s(e) and
w = r(e), for an edge € € AL, the preimages A~'(v) and A~'(w) are open subsets
of A= (e). The picture of the relation between Hx and Ag through the map A is
siven in Figure 11.

o eré;ir]en g theta function f € O(T), the associated current iy € C (_Ax)r obtfa.ined
as in (7.12) is given explicitly by the growth .of the spectral norm in the D_rmfeld
upper half plane when moving along an edge in the Bruhat-Tits tree, that is,

(7.14) pu(e) = 10g, | flla-1(r(e)) — 108q 1 FllA-1(s(en):

with ¢ = #O/m, and || f||a-1(v is the spectral norm

Iflla-1wy = sup |f(2);

z€A—1(v)

with | - | the absolute value with |7| = ¢! and 7 a uniformizer, that is, m = (7).
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A (e)

AT

l1\1\"'(3 -{v, w\})l‘

FIGURE 11 The p-adic upper half plane and the Bruhat-Tits tree.

The case of function fields over a finite field F, of characteristic p is similar to
the p-adic case, with Hx and Ag the Drinfeld upper half plane and the Bruhat—Tits
tree in characteristic p (see for instance [GekW]).

7.1 Graph Weights, Currents, and Theta Functions

We now show how to relate theta functions on the Mumford curve to graph
weights. The type of graph weights we consider here will in general not be special
graph weights such as those we considered in the previous sections. In fact, we will
see that, when constructing currents from graph weights, we need to work with
functions A(e) of the special form A(e) = N; !, where N, is defined as in (7.15)
below. Along the outer trees of the graph Ag /T, these are homogeneous trees of
valence g+ 1 (or ¢¢ + 1 for field extensions) and the orientation of these trees away
from the zhyvot graph Af./T" gives that Me)=A"forA=q"l e (0,1) (or A =g f
for field extensions) and n, = 1. Thus, the expression for N, inside AL/T depends
on the orientation on A}, described in Lemma 2.1. Similarly, as we see below, when
we construct (inhomogeneous or signed) graph weights from currents, we use the
function A(e) = N;!, which is again of the form ¢! (or g=7) on the outer trees
of Ag/T’, but which also depends on the given orientation inside Ap/T. It will be
interesting to consider the quasi-periodic actions associated to these types of graph
weights.

We first show that the same methods that produce

graph weights can be used
to construct real-valued currents on the graph Ag/T.

LEMMA 7.1. Let (g,\) be a graph weight on the infinite, locall
Ag/T. For an oriented edge e € (Ag/T)! let

(7.15) Ne := #{e’ € (Ak/T)" | s(¢) = s(e)}.
Then the function

y finite graph

(7.16) le) = Ne)g(r(e)) ~ 1-g(s(e))
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satisfies the momentum conservation equation (7.2). Moreover, if g : (Ag/T) —
[0.0¢) is a function on the vertices of the graph such that (g, A) is a graph weight
for Me) = Nz, then the function p: (Ag/T)' — R given by (7.16) is a real-valued
current on Ag /T.

Proor. The first result is a direct consequence of the equation for graph
weights

(7.17) g(v) = D Ae)g(r(v)),

s(e)=v
which gives (7.2) for (7.16). The second statement also follows from (7.17), where

in this case the resulting function u : (Ag/T')! — R given by (7.16) also satisfies
the orientation-reversed equation

(7.18) > ule) =o.

r(e)=v

Il] particular, it also Sa.tisﬁes
(e) = e (s(e)) — LA (r(e)) = —ple)
pE) = gl N9 i

hence it defines a real-valued current on Ag /T,

€ C(Ag/T) ®z R.

Conversely, one can use theta functions on the Mumford curve to construct
graph weights on the tree, which however do not have the positivity property. We
introduce the following notions generalizing that of positive graph weight given in
Definition 4.1.

DEFINITION 7.2. Given a graph E, we define an inhomogeneous graph weight
to be a triple (g, A, x) of non-negative functions g : E% 5 Ry = [0,00), A\, x : E! =
[0, >c) satisfying

(7.19) g(v) +dx(v) = Y Aeg(r(e)),

s(e)=v

= Zs(e}:‘u x(e). A rational virtual graph weight is a pair

where, as above, dx(v) = :
(g, A\) of functions g : E® — Qand A: E' — Q4 = QN[0,00) such that there exist

rational-valued inhomogeneous graph weights (g%, A, x) with g(v) = gt(v)—g (v)
for all v € E'.

A virtual graph weight satisfies (7.17). 2
(g%, A, x) that give the decomposition g(v) = g*(v) —g~ (v)

(T') be a theta function for the Mumford curve X =
nes an associated pair of rational-valued
= N-! and with g : Ay — Q satisfying

The choice of the inhomogeneous

i is non-unique.
weights q

LEMMA 7.3. Let f € ©

Xr, with ©(T) as in (7.12). Then f defi
functions (g,A) on the tree Ox, with A(e)

(7.17).
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PROOF. By (7.12) we know that the theta function f € ©(I') determines an
associated integer-valued current py on the graph Ag/T, that is, an element in
C(Ak)" = C(Ag/T). We view puy as a current on the tree Ak that is I-invariant.
We also know that the current g = py is given by (7.14) in terms of the spectral
norm on the Drinfeld p-adic upper half plane.

If we set

(7'20) g('U) = Iqu ”f”A_‘(U):

we see easily that (7.2) for the current p(e) = g(r(e)) — g(s(e)) implies that the
function g : A}, — Z satisfies the weight equation (7.17) with A(e) = N."!. In fact,

we have
Z g(r(e)) = Nug(v), |

s(e)=v

with V,, = #{e’ : s(¢’) = v} = N, for all e with s(e) = v.

LEMMA 7.4. The function g : A} — Z associated to a theta function in f €
O(I') is an integer-valued rational virtual graph weight.

PROOF. The measure y = py can be written (non-uniquely) as a difference

(7.21) ple) = x"(e) - x~(e),

with non-negative y* : AL — N U {0} satisfying

(7.22) XF@=x%() and Y xTe)= > x(e),
s(e)=v s(e)=v

for all e € Af. One then considers the equations
(7.23) g*(r(e)) — g*(s(e)) = x*(e).

We first see that (7.23) determines unique solutions g% : A% — Q4 with gt(v) =0
.::1& the F)asepoint. In fact, suppose we are given a vertex w # v in the tree. There
Is a unique path P(v,w) in Ak connecting the base vertex v to w. It is given by

a sequence P(v,w) = ey,... ,e, of oriented edges. Let v = vp,... ,v, = w be the
corresponding sequence of vertices. Then (7.23) implies
n
(7:24) g (w) = 3" x*(ey).
j=1

This_ determines uniquely the values of g% at each vertex in Ag. The solutions
f)btamed in this way satisfy g% (v) — g~ (v) = g(v), where g(v) = 1
in Lemma 7.3. The g* satisfy by construction the inhomogeneou

g (W) +dx* () = 3" Ae)gt(r(e)),

s(e)=w

qu ”an_l(v) as
s weight equation

for A(e) = N.'. Thus, the pair (g, A) of Lemma 7.3 is a rational virtual weight

Noticle that, even though the current py is T-invariant by construction d
tl:)e fu.[.lCtlol’l Ale) = N1 is also I-invariant, the function g: A%k - Q obtain,ec{; 3
above is not in general I'-invariant. h i 5 &
274 » hence it need not descend to a graph weight on
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In fact, for g(v) = log, || flla-1(v), one sees that
g(yv) = log, || flla-1(yv) = logg [If @ ¥lla-1(w)
= log, le(y)] +log, || flla-1(v) = 9(v) + logg le(7)],

where f(vz) = c()f(2).
More generally, one has the following result.

LEMMA 7.5. Let (g,)) be a rational virtual weight on the tree Ag, with g :
AY — Q and with AM(e) = N7 '. Then the function g satisfies

(7.25) g(yv) — g(v) = dfy(v),

where dBy(v) = 3" e)=0 P~(€) and

(7.26) B,(e) = Me)(g(rr(e)) — gls(e)))-
This satisfies 3,(€) = —By-1(ve) and the 1-cocycle equation
(7.27) dByy vz (V) = dBy, (Y20) + dBa, (V).

Proor. First notice that, by (7.17) the function g satisfies

(7.27) g9(v) — g(v) = day (v),
where da, (v) = 3-,(¢y=y @y (€) With
(7.29) a,(e) = Ae) (g(rr(e)) — 9(r(e) -

Notice moreover that we have
ay(e) = By(e) — ple),

for 3, as in (7.26) and p = py the I-invariant current (7.14). Since du(v) = 0
we have da.,(v) = dB,(v), which gives (7.25). One checks the expression for 3+(€)
directly from (7.26), using the I'-invariance of N. and A(e). The 1-cocycle equation
is also easily verified by

g(1172v) — 9(v) — g(M12v) + g(72v) — 9(r2v) + g(v) =0.

In general, the condition for a (virtual) graph weight on the tree Ak to descend
to a (virtual) graph weight on the quotient Ag/T is that the functions (g, ) satisfy

(7.30) gw) = D Me)g(r(e)),
s(e)=~yv

for all v € I'. This is clearly equivalent to the vanishing of dB,(v) and to the
invariance g(yv) = 9(v)- .

Another possible way of describing (rational) virtual graph weights, ms.tela.d of
using the inhomogeneous equations, is by allowing the function A to ha\:e posmv.e or
negative sign, namely we consider A : E! — @ and look for non-negative solutions
g: E° = Q4 of the original graph weight equation (7.17). 3

A rational virtual weight (g, A) defines a solution (§, A) as above, with A : E! -
Q and § : E® — Qy, by setting A to be A(e) = A(e) sign(g(s(e))) sign(g(r(e))) and
j(v) = sign(g(v))g(v) = |g(v)|. This definition has an ambiguity when g(v) =0, in
which case we can take either sign(g(v)) = £1.
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7.2 Theta Functions and K-theory Classes

Another useful observation regarding the relation of theta functions of the
Mumford curve Xt to properties of the graph algebra of the infinite graph Ag/T’
is the fact that one can associate to the theta functions elements in the K-theory
of the boundary C*-algebra C(9Ax) x T.

This is not a new observation: it was described explicitly in [Rob] and also use.d
in [CLM], though only in the case of finite graphs. The finite graph hypothesis
is used in [Rob] to obtain the further identification of the I-invariant Z-valued
currents on the covering tree with the first homology group of the graph.

In our setting, the graph Ak /T consists of a finite graph Ap/T together with
infinite trees stemming from its vertices. We still have the same result on the
identification with the K-theory group Ko(C(0Ak) » ') of the boundary algebra,
as well as with the first homology of the graph Ay /T, which is the same as the first
homology of the finite graph A} /T

PROPOSITION 7.6. There are isomorphisms

(7.31) C(Ak,Z)" =~ Hy(Ag/T, Z) = Hom(Ko(C(0Ag) x I),Z).

ProoF. The first isomorphism follows directly from (7.7).
To prove the second identification

C(Ax, Z)" = Hom(Ko(C(8Ak) x T),Z),

first notice that dAg is a totally disconnected compact Hausdorff space, hence
K (C(0Ak)) = 0 and in the exact sequence of [PV] for the K-theory of the crossed

product by the free group I' one obtains an isomorphism of Ko(C(dAg) x I') with
the coinvariants

C(0Ax, Z)r = C(OAK, Z)/{f oy - f| f € C(dAk, Z)},

where C(0Ak,Z) is the abelian group of locally constant Z-valued functions on
OAg, i.e. finite linear combinations with integer coefficients of characteristic func-
tions of clopen subsets. We then show that the abelian group C(Ag,Z)" of I'-
invariant currents on the tree Ag can be identified with

(7.32) C(Ak,Z)" = Hom(Ko(C(8Ax) % T), Z) = H,y(Ag/T,Z).

To see that a current u € C(Ag, Z)' defines a homomorphism ¢ : C(0Ak,Z)r — Z,
we use the fact that we can view the current i on the tree as a measure m of total
mass zero on the boundary dAg by setting m(V (e)) = u(e), where V(e) is the
subset of the boundary determined by all infinite paths starting with the oriented
edge e. We then define the functional

(7.33) o(f) = fdm,
A

wher('a the integration is d_"‘ﬁ“ed by ¢(3, AiXv(e,)) = 3, aip(e;) on characteristic
functions. To see that ¢ is defined on the coinvariants it suffices to check that it

vanishes on elements of the form fovy— f, for some 7 € I'. This follows by change
of variables and the invariance of the current e

ffo'ydm:_/fdmo*y‘]:/fdm.
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Conversely, suppose we are given a homomorphism ¢ : C(0Ag, Z)r — Z. We define
a map p: Ay — Z by setting p(e) = ¢(xv(e)), Where xv () is the characteristic
function of the set V' (e) C 0Ag. We need to show that this defines a I'-invariant
current on the tree. We need to check that the equation

Y ule)=0

s(e)=v

and the orientation reversal condition u(€) = —pu(e) are satisfied.
Notice that we have, for any given vertex v € Ay, Use)=oV(e) = 0Ak. If

we set
h(v) = > d(xv(e)

s(e)=v
we obtain a I-invariant Z-valued function on the set of vertices A%, i.e. a Z-valued
function on the vertices (Ag/T")°. In fact, we have

o(f o) = o(f)

by the assumption that ¢ is defined on the coinvariants C(9Ag, Z)r; hence

hw)= > dixve) = D dxvie ©7) = hv).
s(e)=v s(e)=v
Since by construction h = dp, with u(e) = ¢(xv(e)) and d : A(Ag/T) — H(AL/T)
as in (7.10), it is in the kernel of the map ® of (7.11). This means that

®(h)= > h()=0,

uEAﬁ/[‘

but we know that

h(v) = Z P(xv(e)) = & z xv(e)) = ¢(xoax)

s(e)=v s(e)=v

so that the condition ®(h) = 0 implies h(v) = 0 for all v, i.e. d(xoax) = 0. This

gives
3 dlxvie) =0,
s(e)=v

which is the momentum conservation condition for the measure p. Moreover, the
fact that the measure on dAx defined by pu(e) = é(xv(e)) has total mass zero also
implies that
0 = d(xaax) = P(Xv(e)) + o(xv@);

hence u(é) = —p(e), so that p is a current. The condition #(f o) = ¢(f) shows

that it is a [-invariant current.

s of this section relate the theta functions of Mumford c:lrves to
the K-theory of a C*-algebra which is not directly‘ the graph algebra C (AK. /F)
we worked with so far, but the “boundary algebra” C(0Ax) » T Howevt.ari, 1:) is
known by the result of Theorem 1.2 of [KuPa] that the Crtzssed prodli.ctfa gte rz
C(dAg) » I is strongly Morita equivalent to the .algebra C (AK/F).F n ta(:f eev;'
use the fact that Ax is a tree and that the p—gdlc Schottky Frzupr ac ir rn ly
on Ag, so that C*(Ak) I ~ C*(Ak/T) ® K(£ (F)) Thus. 2 IK/ ) is s tl‘.)eegoyf
Morita equivalent to C*(Ak) » I'. Moreover, Ag is the universal covering

The result
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Ag /T, and T’ can be identified with the fundamental group so that the argument
of Theorem 4.13 of [KuPa] holds in this case and the result of Theorem 1.2 of
[KuPa] applies. Thus the K-theory considered here can be also thought of as the
K-theory of the latter algebra, and we obtain the following result.

COROLLARY 7.7. A theta function f € ©(") defines a functional
¢ € Hom(Kp(C*(Ag/T)), Z).

Two theta functions f, f' € O(T') define the same ¢y = ¢ if and only if they differ
by the action of K*.

PrOOF. The first statement follows from Proposition 7.6 and the identifica-
tion Ko(C*(Ag/T')) = Ko(C(dAk) x I') which follows from the strong Morita
equivalence discussed above. The second statement is then a direct consequence of
Proposition 7.6 and (7.12).

Corollary 7.7 shows that there is a close relationship between the K -homology
of C*(Ag/T") and theta functions. In the next section we make a first step towards
constructing theta functions from graphical data and spectral flows.

8. Inhomogeneous Graph Weight Equation and the Spectral Flow

Let E be a graph with zhyvot M with a choice of (not necessarily special)
graph weight (g, A) adapted to the zhyvot action. We would like to construct an
inhomogeneous graph weight (G, A, x) from these data.

The motivation for the construction is as follows. In the case of a special

graph weight, the spectral flow only sees edges and paths in the zhyvot M of E.
Consequently

= Y 8sn(SSID,8.D8:) = Y Ae)g(r(e)) < g(v).
s(e)=v s(e)=v
ec M

Thus in some sense the spectral flow is trying to reproduce the graph weight, but it
misses information from edges not in M. Alternatively, one may think of restricting
(9, A) to the zhyvot and asking whether it is still a (special) graph weight. This is
usually not the case, for exactly the same reason.

So to obtain (G, A, x) we begin with the ansatz that A is th

. e function given to
us with our graph weight and that &

G(v) = g(v) - a(v),
so that we require a(v) < g(v) for all v € E. We now compute

2. MeG(r(e) = gw) = 3 Ae)a(r(e))

s(e)=v s(e)=v

=9(v) —a@) +a@) - Y AMea(r(e))

s(e)=v

=6w+ 3 (00 - Xeate).

s(e)=v
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Hence to obtain an inhomogeneous graph weight, we must have

x(©) = 3-a(s(9) = A(e)a(r(e).

Here are some possible choices of a.
(1) @ = g. This forces G = 0, and so we obtain an inhomogeneous graph
weight only when 7 = A(e).
(2) a=cg, 0 <c <1 Now G # 0 but we still need §- = A(e) in order to
obtain an inhomogeneous graph weight.

(3) @) = Tog=e Me)g(r(e)) = = ue)my /o0 (55D, SDS). Tn this
ee

case we obtain

@) =3 3 AN -A@) 3 Ahglr(n).

© s(f)=s(e) s(h)=r(e)
feMm heM
This may be non-negative for certain values of A.
glv) veM
(4) a(v) = { @) :
0 veg M
This gives
~-9(s(e)) — Ale)g(r(e)) s(e), r(e) € M
x(e) = { wn-9(s(e)) s(e) e M, r((e) ¢ M .
0 s(e), r(e) g M

Thus y is non-negative provided
1
F9(5()) = A(@)g(r(e)).

The choices 3 and 4 both yield triples (G, A, x) satisfying (7.19), and all that
remains to understand is the positivity of the function x.

In fact it is easy to construct examples where choice 4 fails to give a non-
negative function x. However, choice 3 is more subtle. At present we have no way
of deciding whether we can always find a g so that the function e in choice 3 is
non-negative for A associated to the zhyvot action. It would seem that passing to
field extensions allows us to construct graph weights adapted to the (new) zhyvot
so that both choices 3 and 4 fail. The reason is we may increase N, while keeping
A(e) constant. i

We describe here another construction of inhomogeneous graph weights adapted
to the zhyvot action. This uses special graph weights, with A(e) # 1 only on the
edges inside the zhyvot, so it does not apply to the construction of theta functions,
where one needs A(e) = N (which is g~! # 1 outside of the zhyvot), but we
include it here for its independent interest.

LEMMA 8.1. Let (g,A) be a graph weight on the graph E with zhyvot M such
that M(e) # 1 iffe € M. With the notation of Section 5, define o : E°® — [0,00)

by
ar(v) = op(pe®r), k=0,1,2,....

Then ak_1(v) = ak(v) for allv € 0.8
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Proor. We first observe that for k > 1,
(I)k = Z 63‘“3“.
J»uln'=k

This follows easily by induction from ® = 3" _ 0 ©,, ., and the definition of the
zhyvot action. Then

D (py®x) = b MmA(e)Traces(Os,s..5,5.)
eEM! |u|,=k—1,s(u)=v
= > A (€)b(S: Sy SuSe)
eEM? Jp|o=k—1,s(p)=v
< P M)A (€)(S: Sy SuSe)
e€E |p|o=k—1,5(p)=v
= b MH)$(SeS: S5 S,)

e€EL |pulo=k~1,5(u)=v

= > A1) (Pr(u) S5 Su)

|nlo=k—1,s(p)=0
= ¢p(poPr—1).

THEOREM 8.2. Let (g,)) be a graph weight on the graph E with zhyvot M
such that Me) # 1 iff e € M". Then for all k > 1 the triple (g — O, A, Xk) 45 an
inhomogeneous graph trace, where y(e) = Ale)(ax—-1(r(e)) — ax(r(e))).

PROOF. There are a couple of simple observations here. If v € E° \ M?, then
@k(v) = 0 when k > 0. This follows from Lemma 8.1. This means that for k > 1

> MOa(r(@) = 3 ANe)bo@rio®i) = 3 Ae)on(STS.Dx)

s(e)=v s(e)=v s(e)=v

= D p(S.2:S7)

s(e)=v
D OD(Se8:Prsn)
s(e)=v

= ¢p(PuPri1) = art1(v),
the last line following from the Cuntz-Krieger relations. Then the fnhomogeneous
graph weight equation is simple:

D" Ae)(g(r(e)) — ak(r(e)))
s(e)=v
= 2 NO(r(@) — ara(r(e)) + 3 Ale)(ax-1(r(e)) — ax(r(e)))

s(e)=v s(e)=v

= (9() —ar(v)) + 3~ A(e)(ar-1(r(e)) — ax(r(e))).

s(e)=v

Il

So the inhomogeneous graph weight equation is satisfied if we set

Xk(€) = Ale)(ax-1(r(e)) — ar(r(e))),
and both g — ax, xx > 0 by Lemma 8.1.



MODULAR INDEX INVARIANTS OF MUMFORD CURVES 7

These inhomogeneous weights are canonically associated to the decompositions
I = F}. & G}, of the fixed point algebra arising from the zhyvot action.

8.1. Constructing Theta Functions from Spectral Flows

We show how some of the methods described above that produce inhomoge-
neous graph weights with A(e) = N, ! can be adapted to construct theta functions
on the Mumford curve.

First notice that, given such a construction of a solution of the inhomogeneous
graph weights as above, we can produce a rational virtual graph weight in the
following way.

LEMMA 8.3. Suppose we are given two graph weights g1, g2 on the infinite graph
Ay /T, both with the same A(e) = NJ'. Suppose we are also given inhomogeneous
graph weights of the form Gi(v) = gi(v) — a;(v) as above, with 0 < a;(v) < gi(v)
at all vertices, and with xi(e) = —Nl—e(ai(s(e)) — a;(r(e))). Then setting Gi(v) =
g,(v)—a(v) with a(v) = min{a; (v), as(v)} gives two solutions of the inhomogeneous
graph weight equation with the same x(e) = x-(a(s(e)) —a(r(e))) and Ale) = N-s

Proor. We have

Giv) = 5v) —al) = Y F-ai(r(e)) - al)
s(e)=v o
= Y G+ Y yrlalr(e) - als),

y=v °© s(e)=v

s(e
which shows that both Gi(v) are solutions of the inhomogeneous weight equation

Gi(v) +dx(v) = ]—Vlzéi(r(e)),

s(e)=v
where x(e) = N (a(s(e)) — a(r(e))).

Thus, whenever we have multiple solutions for the graph weights on A /T we
can construct associated rational virtual graph weights by setting

(8.1) G(v) = Gr(v) = Ga(v).

If the graph weights g; are rational valued, g; : E® — Qy, then the virtual graph
weight G is also rational valued, G : E°-Q. o 8
Moreover, since the graph Ag/T" has a finite zhyvot with 1r.1ﬁmte tree_s (Tommg
out of its vertices, one can obtain a rational virtual’ graph weight that is l-n.teger
valued. In fact, along the trees outside the zhyvot Ap/T of Ag/T, the condition

. 1 =
6w = Y G
s(e)=v
is satisfied by extending G(v) from the zhyvot by G(r(e)) = 'G'(s(e)) 'alonlg th(;i thsls.
In this case, what remains is the finite graphﬂ, the zhy.vot, which only involves I;)lt .y
ominators for a rational-valued G(v), which means tk!at olne' ctan lo anE
an int,eger-valued solution. We will therefore assume t.ha.t the railol:‘a (“;r l;;) g_r’al?z
weights constructed as in (8.1) and Lemma 8.3 are mte;lger va :Zl ,ﬂow. .
This in particular includes the cases constructed using the ;p?cllr i l:%un;
According to the results of Section 7.1, we then have the following i

many den
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PROPOSITION 8.4. Suppose we have a virtual graph weight G : E°(Ag/T) — Z
as above and a homomorphism c: T' — K*. Then there is a theta function f on the
Mumford curve Xr satisfying log, || flla-1») = G(v) and f(vz) = e(7)f(z), 'whfef‘e
G : E\(Ag) — Z is defined as G(v) = G(v) on a fundamental domain of the action
of T' on Ak and extended to Ag by G(yv) = log, [e(7)| + G(v).

PROOF. This follows from the identification of the group of theta functions
O(T') with the extension (7.12) of the group C(Ax)" of currents on Ag /T’ by K*, and
by identifying the current u(e) = G(r(e)) — G (s(e)) with ps(e) = log, | flla-1(r(e)) —
logg [ flla-1(s(ey)-

The last two results highlight the interest in determining whether non-negative
a can be found for the function A(e) = N1,
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