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1. Introduction

The investigation of the spanning properties of sets of coherent states goes back to the foundations of quantum mechan-
ics by J. von Neumann [36] and signal analysis by D. Gabor [19].

Precisely, let ϕ(t) = e−πt·t , t ∈ R
d be the Gaussian function of d variables and π(z)ϕ = e2π iz2·tϕ(t − z1) be a phase-

space shift by z = (z1, z2) ∈ R
2d . Let Λ ⊆ R

2d be a countable set in phase-space R
2d and G(ϕ,Λ) = {π(λ)ϕ: λ ∈ Λ} the

corresponding collection of phase-space shifts. The fundamental problem is to determine the spanning properties of G(ϕ,Λ)

as a function of Λ. When does G(ϕ,Λ) span a dense subspace of L2(Rd) (or some other function space)? When is G(ϕ,Λ)

a frame for L2(Rd)? When is G(ϕ,Λ) linearly independent?
This problem has motivated an impressive body of work in mathematical physics, signal processing, in harmonic and

complex analysis, its investigation in applied mathematics is nowadays referred to as Gabor analysis.
Gabor analysis in dimension d = 1 has been thoroughly studied from 1970 to 1990, and the fundamental questions have

been solved with a fascinating mixture of harmonic analysis and complex analysis. If Λ = Z
2, then G(ϕ,Z

2) spans L2(R) by
the work of Bargmann et al. [3], but the corresponding expansions (Gabor expansions)

f =
∑

k,l∈Z

ckle
2π ilte−π(t−k)2
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are not stable and converge only in a distributional sense [1,27]. For stable expansions one has to use the notion of frames,
which formalize non-orthogonal overcomplete expansions. Specifically, G(ϕ,Λ) is called a Gabor frame (sometimes also
called a Weyl–Heisenberg frame), if there exist A, B > 0, such that for all f ∈ L2(Rd)

A‖ f ‖2
2 �

∑
λ∈Λ

∣∣〈 f ,π(λ)ϕ
〉∣∣2 � B‖ f ‖2

2. (1)

If (1) holds, then every f ∈ L2(Rd) possesses the expansion f = ∑
λ∈Λ cλπ(λ)ϕ for some coefficient sequence c ∈ �2(Λ)

satisfying ‖c‖2 � C‖ f ‖2. In dimension d = 1 the groundbreaking characterization of Gabor frames is due independently to
Lyubarskiı̆ [34] and Seip [42]: they proved that, in dimension d = 1, G(ϕ,Λ) is a frame if and only if the lower Beurling
density D−(Λ) > 1. This result solved a conjecture of Daubechies and Grossmann [11] and covered in particular the case
when Λ is a lattice. For many more results and variations we refer to the existing monographs on Gabor analysis and
time-frequency analysis [16,17,21].

By contrast, in higher dimensions next to nothing is known about the question which lattices Λ ⊆ R
2d generate a Gabor

frame G(ϕ,Λ). Gabor frames in higher dimensions seem to be on a different level of difficulty and are completely uncharted
territory.

In this article we initiate the study of multivariate Gabor frames and the corresponding sampling and interpolation
problems in several complex variables. As in [24] we will restrict the set Λ to be a lattice. We introduce the notion
of complex lattices (see [10]) and then derive sufficient conditions for such lattices to generate a Gabor frame G(ϕ,Λ).
Complex lattices are amenable to complex variable methods. This restriction allows us to extend the techniques used in
the univariate case to treat Gabor frames in higher dimensions. In this way we are able to prove a first, reasonably general
result about multivariate Gabor frames with a Gaussian window.

A second goal is to highlight the problem of Gabor frames for complex analysts. The frame problem is only one of many
problems of time-frequency analysis that lead to interesting questions in complex analysis. Its solution will certainly require
input from complex analysis. For other examples of the interaction between time-frequency analysis and complex analysis
see [24,35]

The difference between the univariate case and the multivariate case becomes apparent when we look at the proof
strategies for the results of Bargmann and Lyubarskiı̆–Seip. The frame inequality (1) is equivalent to a sampling inequality in
the Bargmann–Fock space F consisting of entire functions with norm ‖F‖2

F = ∫
Cd |F (z)|2 e−π |z|2 dz. The Bargmann transform

maps the phase-space shifts π(λ)ϕ to the reproducing kernel in F , and the frame inequality (1) is then equivalent to a
sampling inequality of the form

A‖F‖2
F �

∑
λ∈Λ

∣∣F (λ)
∣∣2

e−π |λ|2 � B‖F‖2
F for all F ∈ F . (2)

The difference between dimension d = 1 and d > 1 is now linked to the difference between complex analysis of one variable
and several variables. For entire functions of one complex variable the sampling problem (2) and a related interpolation
problem can be approached with the full arsenal of complex variable techniques as exemplified by the books of Boas [7]
and Levin [33].

By contrast, sampling and interpolation of entire functions of several complex variables are much harder to come by.
The zero set of an analytic function of several complex variables is never discrete. Research has mainly focused on the
construction of entire functions whose zero set is a given analytic variety and on growth estimates for such functions,
see for instance the books of Ronkin [41] and Lelong and Gruman [31]. Since a lattice in C

d may be interpreted as an
intersection of (countably many) hyperplanes, one may construct an entire function with the generating hyperplanes as the
zero set. In fact, we will construct an analog of the classical Weierstrass sigma function that vanishes on a given lattice Λ

(thus leading to conditions when (2) is violated). Zero sets consisting of hyperplanes have been studied in [37,39], but we
have been unable to make use of any of these results. Another relevant direction is the characterization of discrete sets of
interpolation for spaces of entire functions of several variables [6,38,39], but again these results are not yet precise enough
for us.

The paper is organized as follows: in Section 2 we summarize the prerequisites about Gabor frames and state some
important results of the duality theory. In Section 3 we make the transition to complex variables and rephrase the duality
theory in terms of sampling and interpolation in Bargmann–Fock space. In Section 4 we introduce complex lattices and
discuss the analogues of the classical Weierstrass sigma-function for complex lattices in several dimensions. In Section 5 we
discuss which complex lattices generate Gabor frames by solving a corresponding interpolation problem in the Bargmann–
Fock space of several complex variables. We study several examples in dimension d = 2 and conclude with a discussion of
open problems and indicate further directions.

2. Gabor frames

Given a point z = (x, ξ) ∈ R
2d in phase space, the time-frequency shift of a function f is defined as π(z) f (t) =

e2π iξ ·t f (t − x), t ∈ R
d . The mapping f ∈ L2(Rd) → V g f (z) = 〈 f ,π(z)g〉 is the short-time Fourier transform and is one

of the central objects of time-frequency analysis. For an introduction see [18,21].
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A lattice Λ in R
2d is a discrete, cocompact subgroup; every lattice Λ can be written as Λ = AZ

2d for some non-singular
real 2d×2d-matrix A ∈ GL(2d,R). The size of Λ is the volume of a fundamental domain s(Λ) = |det A|. The quantity s(Λ)−1

counts the average number of lattice points per unit cube and coincides with the usual notions of density.
The adjoint lattice is defined by the commutant property as

Λ◦ = {
μ ∈ R

2d: π(λ)π(μ) = π(μ)π(λ) for all λ ∈ Λ
}
. (3)

If Λ = AZ
2d ⊂ R

2d , then the adjoint lattice is given explicitly by

Λ◦ = J
(

AT )−1
Z

2d, (4)

where AT is the transpose of A and J = ( 0 I
−I 0

)
(consisting of d × d blocks) is the matrix defining the standard symplectic

form [15]. Clearly, (4) implies that

s
(
Λ◦) = s(Λ)−1. (5)

For a fixed g ∈ L2(Rd), the set of phase space shifts G(g,Λ) = {π(λ)g: λ ∈ Λ} is called a frame for L2(Rd) (a Gabor
frame), if there exist A, B > 0, such that

A‖ f ‖2
2 �

∑
λ∈Λ

∣∣〈 f ,π(λ)g
〉∣∣2 � B‖ f ‖2

2 for all f ∈ L2(
R

d). (6)

If only the right-hand inequality holds, then G(g,Λ) is called a Bessel sequence. We refer to [21] and [8,18] for a detailed
discussion of Gabor frames.

The fundamental question of Gabor analysis is the following: Given a window g ∈ L2(Rd), characterize all lattices Λ ⊆ R
2d,

such that G(g,Λ) is a frame for L2(Rd).
This question is solved for exactly three functions so far, and only in dimension d = 1, namely the Gaussian and two

related functions [30,34,42]. At this time, nothing is known in higher dimensions.

2.1. Some structure theory

There exists a rich theory for the structure of Gabor frames, and many criteria are known to check when a Gabor system
is a frame. We will make use of the following results.

Proposition 1 (Wexler–Raz biorthogonality relations). Assume that g ∈ L2(Rd) and that G(g,Λ) is a Bessel sequence. Then G(g,Λ)

is a frame in L2(Rd), if and only if there exists γ ∈ L2(Rd) such that G(γ ,Λ) is a Bessel sequence and γ satisfies the biorthogonality
relations

1

s(Λ)

〈
γ ,π(μ)g

〉 = δμ,0, for μ ∈ Λ◦. (7)

Proposition 2 (Density theorem).

(a) If G(g,Λ) is a frame for L2(Rd), then s(Λ) � 1.
(b) If G(g,Λ) is a frame for L2(Rd) and if in addition g ∈ S(Rd), then even s(Λ) < 1.

Propositions 1 and 2 are well-known. Elementary proofs involve only the Poisson summation formula [28,29], abstract
proofs require operator theory [12]. See [26] and [5] for historical accounts of both theorems and extended lists of references
and [21] for the general theory.

Proposition 2(b) is known as the Balian–Low theorem. Although it is stated in the literature only for symplectic lat-
tices [23], it holds for arbitrary lattices as an immediate consequence of the following stability result for Gabor frames: For
g ∈ S(Rd) the set of lattices such that G(g,Λ) is a frame is open [14]. In other words, if Λ = AZ

2d , g ∈ S(Rd), and G(g,Λ) is a
frame, then there exists a neighborhood V of A in GL(2d,R), such that G(g, A′

Z
2d) is a frame for every matrix A′ ∈ V . If

G(g, AZ
2d) were a frame and |det A| = 1, then we could choose a matrix A′ in a small neighborhood of A with |det A′| > 1

such that G(g, A′
Z

2d) is a frame. But this would contradict the density theorem (Proposition 2(a)).
Another useful characterization of Gabor frames does not even require any inequalities [22]. For its formulation we

denote by M∞(Rd) the subspace of tempered distributions with bounded short-time Fourier transform. Precisely, fix the
Gaussian ϕ(t) = e−πt·t, t ∈ R

d , then M∞(Rd) = { f ∈ S ′(Rd): Vϕ f ∈ L∞(R2d)} with norm ‖ f ‖M∞ = ‖Vϕ f ‖∞ .

Proposition 3. (See [22].) Let g ∈ S(Rd) (or more generally Vϕ g ∈ L1(R2d)). Then G(g,Λ) is a frame, if and only if the mapping
f ∈ M∞(Rd) → V g f |Λ ∈ �∞(Λ) (the so-called coefficient operator) is one-to-one on M∞(Rd), i.e., if for f ∈ M∞(Rd) we have
〈 f ,π(λ)g〉 = 0 for all λ ∈ Λ, then f = 0.
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3. Gaussians and complex variables

In this section we explain the transition from Gabor frames to sampling and interpolation in the Bargmann–Fock space.
We study only Gabor frames with the Gaussian window ϕ(t) = e−πt·t , t ∈ R

d .
For d = 1 Lyubarskiı̆ [34] and Seip [42] proved that G(ϕ,Λ) is a frame, if and only if s(Λ) < 1. Thus in dimension d = 1

the size (or density) of the lattice is the only parameter that determines the frame property.
In higher dimensions d > 1, however, the density alone cannot characterize the frame property. For example, for d = 2

choose the lattice Λ = Z
2 × (Z × εZ). Then clearly s(Λ) = ε can be chosen arbitrarily small. The Gabor system G(ϕ,Λ) ⊆

L2(R2) is the tensor product of the Gabor systems G(ϕ,Z × εZ) and G(ϕ,Z
2) in L2(R). Since G(ϕ,Z

2) is not a frame by
Proposition 2(b), the tensor product cannot be a frame either.

The failure to characterize multivariate sets of sampling by their density is not surprising, a similar phenomenon occurs
in the sampling theory of entire functions of exponential type [43].

To make the transition to complex analysis, we recall that the Bargmann–Fock space F consists of all entire functions F
of d complex variables z = (z1, . . . , zd) ∈ C

d such that

‖F‖2
F =

∫
Cd

∣∣F (z)
∣∣2

e−π |z|2dz < ∞. (8)

The inner product in F is 〈F , G〉F = ∫
Cd F (z)G(z)e−π |z|2dz, and dz is the Lebesgue measure on C

d . We write z · w =∑d
j=1 z j w j for z, w ∈ C

d and |z|2 = z · z̄.

Next we consider the Bargmann transform of a function f ∈ L2(Rd), which is defined by

B f (z) = F (z) = 2d/4e−π z2/2
∫
Rd

f (t)e−πt·te2πt·z dt, z ∈ C
d. (9)

The Bargmann transform is a unitary mapping between L2(Rd) and F [2,18]. The Bargmann transform is a short-time
Fourier transform in disguise, precisely, for z = (x, ξ) ∈ R

2d corresponding to z = x + iξ ∈ C
d , we have

Vϕ f (z̄) = eπ ix·ξ B f (z)e−π |z|2/2. (10)

The Fock representation of C
d on F is defined as

β(z)F (w) = eiπx·ξ eπ wz F (w − z̄)e−π |z|2/2. (11)

Then every β(z) is a unitary operator on F , and the Bargmann transform intertwines β(z) and the time-frequency shifts
π(z):

β(z)B = Bπ(z), z ∈ C
d. (12)

Since |〈 f ,π(z̄)ϕ〉| = |Vϕ f (z̄)| = |B f (z)|e−π |z|2/2, the set G(ϕ,Λ) is a frame, if and only if

∑
λ∈Λ

∣∣F (λ)
∣∣2

e−π |λ|2 � ‖F‖2
F , for all F ∈ F . (13)

In other words, G(ϕ,Λ) is a frame, if and only if Λ is a set of sampling for F .
Next we translate the general characterizations of Gabor frames by using the Bargmann transform. For the formulation

we need the Bargmann–Fock space F ∞ consisting of all entire functions F on C
d satisfying |F (z)| � Ceπ |z|2/2 for all z ∈ C

d .
It can be shown that F ∞ is the range of the modulation space M∞ under the Bargmann transform, i.e., F ∞ = B(M∞), see
for instance [20].

Proposition 4. Let Λ ⊆ R
2d be a lattice with adjoint lattice Λ◦ . Then the following are equivalent:

(i) G(ϕ,Λ) is a frame for L2(Rd).
(ii) Λ is a set of sampling for F .

(iii) There exists an interpolating function G ∈ F , such that

G(μ) = δμ,0, for all μ ∈ Λ◦. (14)

(iv) Λ is a set of uniqueness for F ∞ , i.e., if F ∈ F ∞ and F (λ) = 0 for all λ ∈ Λ, then F ≡ 0.
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Proof. The equivalence of (i) and (ii) follows by comparing (6) and (13).
By Proposition 1 G(ϕ,Λ) is a frame, if and only if there exists a γ ∈ L2(Rd) such that δμ,0 = |〈γ ,π(μ)ϕ〉| =

|Bγ (μ̄)|e−π |μ|2/2 for μ ∈ Λ◦ . For the equivalence (i) ⇔ (iii) just set G = Bγ .
The equivalence (ii) ⇔ (iv) follows from Proposition 3 and the surjectivity of B from M∞ onto F ∞ . �
The equivalence of conditions (i)–(iii) is not new and is underlying the work of Lyubarskiı̆ [34] and Seip [42].
The equivalence of (ii) and (iv) is easy to establish directly for entire functions of one variable with standard meth-

ods [7,33]. However, for entire functions of several variables the criterion seems to be new. Our proof of Proposition 3 and
Proposition 4 in [22] requires all known results about the structure and duality of Gabor frames. It might be a challenge to
give a direct proof using only complex variable arguments.

4. Weierstrass sigma functions and complex lattices

In dimension d = 1 a solution of the interpolation problem (14) can be written explicitly by means of the classical
Weierstrass sigma functions. In this section we construct analogues of the Weierstrass sigma function for a class of lattices
in C

d .
We recall the following fact about sigma functions that is fundamental for the understanding of Gabor frames in L2(R).

Proposition 5. Let L ⊆ C be a lattice in C of size s(L). Then there exists an entire function σ = σL such that

• σL(κ) = 0 for κ ∈ L, and

• |σL(z)| � C(L)e
π

2s(L)
|z|2 for all z ∈ C.

The function σL is a modification of the classical Weierstrass sigma-function, and is given explicitly by

σL(z) =
(

z
∏

λ∈Λ\{0}

(
1 − z

λ

)
e

z
λ
+ z2

2λ2

)
eaz2

, (15)

for a suitable complex number a ∈ C. Using the quasi-periodicity of the classical Weierstrass σ -function, one can show that

the parameter a can be chosen so that the function |σL(z)|e− π
2s(Λ)

|z|2 is L-periodic, whence the growth estimate follows. The
argument goes back to Hayman [25] and is given in detail in [24].

Note that the interpolation problem (14) is solved by the function G(z) = σL(z)/z and that G satisfies the same growth
estimate as σL .

While an arbitrary lattice in R
2d � C

d is of the form Λ = AZ
2d for some invertible, real-valued 2d × 2d-matrix A ∈

GL(2d,R), we will only consider complex lattices. These are adapted to the complex structure.
Essentially a complex lattice is of the form Λ = A(Zd + iZd) for some invertible complex-valued d × d-matrix A, A ∈

GL(d,C), see for instance [10]. For a slightly more general definition let L ⊆ C be a normalized lattice in C, i.e., L is spanned
by two complex numbers ω1 and ω2, such that s(L) = i

2 (ω1ω2 − ω1ω2) = i Imω1ω2 = 1. Written in real form, L = BZ
2 for

a 2 × 2-matrix B ∈ SL(2,R).

Definition 1. A complex lattice is a lattice of the form

Λ = A

(
d⊕

j=1

L j

)

for some A ∈ GL(d,C) and normalized lattices L j ⊆ C, j = 1, . . . ,d. The size of a complex lattice is s(Λ) = |det A|2, see [10].

For complex lattices we may write down explicit d-dimensional analogues of the Weierstrass σ -function.

Proposition 6. Let Λ = A(
⊕d

j=1 L j) ⊆ C
d be a complex lattice.

(a) Then there exists an entire function GΛ solving the interpolation problem

GΛ(λ) = δλ,0 for λ ∈ Λ (16)

satisfying the growth estimate∣∣GΛ(z)
∣∣ � Ceπ‖A−1‖2

op |z|2/2.
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(b) Similarly, there exists an entire function σΛ such that σΛ(λ) = 0 for all λ ∈ Λ with growth |σΛ(z)| � Ceπ‖A−1‖2
op |z|2/2 . (As usual

‖A‖op denotes the largest singular value of A.)

Proof. (a) For a lattice L in C the interpolation problem (16) is solved by the function sL(z)/z, where sL is the (modified)
Weierstrass sigma-function (15) of Proposition 5. For a direct sum of 1-dimensional lattices Γ0 = ⊕d

j=1 L j we set

σ0(z) = σ0(z1, . . . , zd) =
d∏

j=1

σL j (z j)

z j
.

Finally for an arbitrary complex lattice we set

GΛ(z) = σ0
(

A−1z
)
.

If λ = A(κ1, . . . , κd) ∈ Λ with κ j ∈ L j , then

GΛ(λ) = σ0
(

A−1λ
) = σ0(κ1, . . . , κd)

=
d∏

j=1

σL j (κ j)

κ j
=

d∏
j=1

δκ j ,0 = δλ,0.

As for the growth, we have |σL j (z j)| � C je
π
2 |z j |2 and thus |σ0(z1, . . . , zd)| � Ce

π
2

∑ |z j |2 = Ce
π
2 |z|2 . Consequently,

∣∣GΛ(z)
∣∣ = ∣∣σ0

(
A−1z

)∣∣ � Ce
π
2 |A−1 z|2 � Ce

π
2 ‖A−1‖2

op |z|2 .

(b) is similar by using σ0(z) = ∏d
j=1 σL j (z j) and σ(z) = σ0(A−1z). �

Remark. Note that the zero set of σΛ is the union of analytic hyperplanes in C
d; the lattice points are exactly the inter-

sections of such hyperplanes and correspond to the singular points of the zero set. The general construction of Weierstrass
sigma functions whose zero set is a given analytic manifold is addressed in the books [31,41].

For a given lattice Λ there are many associated sigma functions; these depend on the choice of A or equivalently on the
choice of a basis for Λ. The problem is to find a sigma function of minimal growth. This question is closely related to the
famous problem of finding short vectors in a lattice or a basis consisting of short vectors [9,32]. We will pursue this point
of view in a subsequent work.

In order to apply Proposition 4, we need to compute the adjoint lattice of a complex lattice Λ.

Lemma 7. If Λ = AΓ0 for A ∈ GL(d,C) and Γ0 = ⊕d
j=1 L j , then Λ◦ = (A∗)−1Γ0 .

Proof. By definition

Λ◦ = {
μ ∈ C

d: β(λ)β(μ) = β(μ)β(λ) for all λ ∈ Λ
}
.

Then for F ∈ F we obtain that

β(λ)β(μ)F (z) − β(μ)β(λ)F (z) = eπ i(λ1·λ2+μ1·μ2)
(
e−πμ·λ̄ − e−πλ·μ̄)

eπ(λ+μ)·z F (z − λ̄ − μ̄)e−π(|λ|2+|μ|2)/2,

and so β(λ) commutes with β(μ) for all λ ∈ Λ, if and only if

eπ(λ·μ̄−μ·λ̄) = e2π i Imλ·μ̄ = 1 for all λ ∈ Λ,

in other words, Imλ · μ̄ ∈ Z for all λ ∈ Λ.
Assume first that Λ = A(Zd + iZd), then λ ∈ Λ is of the form λ = A(k + il) for k, l ∈ Z

d . We find that μ ∈ Λ◦ , if and only
if Im AT μ̄ · (k + il) ∈ Z for all k, l ∈ Z

d , if and only if Im A∗μ · (k + il) ∈ Z for all k, l ∈ Z
d , if and only if A∗μ ∈ Z

d + iZd , if
and only if μ ∈ (A∗)−1(Zd + iZd).

Next assume Λ = AΓ0 and Γ0 = ⊕
L j . Let λ = A(κ1, . . . , κd) ∈ AΓ0 and μ = (A∗)−1(ρ1, . . . , ρd) ∈ (A∗)−1Γ0 with

κ j,ρ j ∈ L j . Then Imλ · μ̄ = ∑d
j=1 Imκ jρ j . Each lattice L j ⊆ C is spanned by complex numbers ω

( j)
1 ,ω

( j)
2 ∈ C and

κ j = k1ω
( j)
1 + k2ω

( j)
2 and ρ j = l1ω

( j)
1 + l2ω

( j)
2 , k j, l j ∈ Z. Then Imκ jρ j ∈ Z for each j. Consequently (A∗)−1Γ0 ⊆ Λ◦ . Since

s(Λ◦) = |det A|−1 = s((A∗)−1Γ0), we must have Λ0 = (A∗)−1Γ0. �
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5. Gabor frames with complex lattices

In this section we formulate a sufficient condition for a Gabor system G(ϕ,Λ) to form a frame. We first state a simple
invariance property of sets of sampling for F .

Lemma 8. Let U ∈ U (d) be a unitary d ×d-matrix and Λ′ = UΛ. Then Λ is a set of sampling for F , if and only if Λ′ is a set of sampling
for F .

Proof. Set TU F (z) = F (U z) for U ∈ U (d). Then TU is a unitary operator on F , and∑
λ∈Λ

∣∣F (Uλ)
∣∣2

e−π |Uλ|2 =
∑
λ∈Λ

∣∣TU F (λ)
∣∣2

e−π |λ|2

� ‖TU F‖2
F = ‖F‖2

F .

If Λ is a set of sampling for F , then so is Λ′ = UΛ, and conversely. �
Let A ∈ GL(d,C). Using the Gram–Schmidt orthogonalization (also called the Iwasawa decomposition), we may factor A

into a unitary matrix and an upper triangular matrix. Precisely, there exists a unitary d × d-matrix U ∈ U (d) and an upper
triangular matrix S such that

A = U S.

By choosing U appropriately, we may assume that

S =

⎛
⎜⎜⎜⎝

γ1 ∗ . . . ∗
0 γ2 . . . ∗
...

0 . . . 0 γd

⎞
⎟⎟⎟⎠ (17)

with the diagonal elements γ j > 0. This factorization is unique, and we call the numbers γ j, j = 1, . . . ,d, the characteristic
indices of A. With this factorization in place, we may now formulate our main theorem.

Theorem 9. Let Λ = AZ
2d be a complex lattice in C

d and let γ j be the characteristic indices of A defined in (17).
If 0 < γ j < 1 for j = 1, . . . ,d, then Λ is a set of sampling for F , and the set G(ϕ,Λ) is a frame for L2(Rd).

Proof. By Lemma 8 we may assume without loss of generality that the lattice is of the form Λ = SΓ0 for some upper
triangular matrix S ∈ GL(d,C). Consequently the adjoint lattice is Λ◦ = (S∗)−1Γ0.

If S is the upper triangular matrix of (17), then

(
S∗)−1 =

⎛
⎜⎜⎜⎜⎝

γ −1
1 0 . . . 0

∗ γ −1
2 0

...

... 0

∗ . . . ∗ γ −1
d

⎞
⎟⎟⎟⎟⎠ .

By assumption we have γ −1
j > 1 for j = 1, . . . ,d.

Now define

G(z) =
d∏

j=1

σL j (γ j z j)

z j
.

Then by Proposition 5 this σ -function satisfies the growth estimate

∣∣G(z)
∣∣ � C

d∏
j=1

eπγ 2
j |z j |2/2

.

Since γ j < 1, we find that G is an entire function in F .
Next let μ ∈ Λ◦ , μ = (S∗)−1κ for κ = (κ1, . . . , κd) with κ j ∈ L j ⊆ C. Since S∗ is lower triangular, the �-th component

of μ is μ� = ((S∗)−1κ)� = γ −1
� κ� + ∑

j<� s�, jκ j . Write κ = (0, . . . 0, κ J , κ J+1, . . . , κd) where J is chosen so that κ J �= 0, but

κ j = 0 for j < J . Then μ J = γ −1κ J , and thus
J
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G(μ) =
d∏

j=1

μ−1
j σL j (γ jμ j)

= σL J (κ J )

μ J

∏
j �= J

μ−1
j σL j (γ jμ j) = 0.

Clearly, if μ = 0, then G(0) �= 0. By Proposition 4 the set G(ϕ,Λ) is therefore a Gabor frame. �
Using a similar factorization of A = V L with V ∈ U (d) and a lower triangular matrix L, we obtain a similar sufficient

condition.

Corollary 10. Let Λ be a complex lattice with A ∈ GL(d,C). Assume that A = V L for some V ∈ U (d) and a lower triangular matrix L
with positive entries γ j > 0 on the diagonal. If γ j < 1 for j = 1, . . . ,d, then G(ϕ,Λ) is a frame for L2(Rd).

Remarks. 1. The set of all phase-space lattices can be identified with the quotient GL(2d,R)/SL(2d,Z) and thus has dimen-
sion 4d2.

The class of complex lattices in C
d has real dimension 2d2 + 2d, because the real dimension of GL(d,C)/SL(d,Z + iZ) is

2d2 and
⊕d

j=1 L j has an additional 2d free parameters.
2. Theorem 9 sheds some light on the existence problem of Gabor frames for general lattices. Bekka [4] showed that for

every lattice Λ ⊆ R
2d with s(Λ) � 1, there exists some g ∈ L2(Rd), such that G(g,Λ) is a Gabor frame. For s(Λ) < 1 it is

expected that there exist arbitrarily smooth functions g , such that G(g,Λ) is a frame. Theorem 9 asserts that for complex
lattices with small characteristic values one may even use the Gaussian to obtain a Gabor frame.

5.1. Complex lattices in dimension d = 2

At first glance one might suspect that the condition γ j < 1 is also necessary for G(ϕ,Λ) to be a frame. However, looking
at a few examples in dimension d = 2 shows that the situation is much more delicate.

We assume that A = ( γ1 b
0 γ2

)
for unique γ j > 0. Since the matrix A and the matrix A′ = A

( 1 κ

0 1

)
for κ ∈ L2 generate the

same lattice Λ = A(L1 ⊕ L2) = A′(L1 ⊕ L2), there is no loss of generality to assume that b is close to the origin. For example,
if L1 = L2 = Z + iZ, then we may take b = b1 + ib2 with |b j | � γ1/2.

Proposition 11. Let Λ = A(L1 ⊕ L2) be a complex lattice in C
2 determined by A = ( γ1 b

0 γ2

)
. Then:

(i) If γ1 < 1 and γ2 < 1, then G(ϕ,Λ) is a frame.
(ii) If γ2 � 1, then G(ϕ,Λ) is not a frame.

(iii) If γ1 � 1, γ2 < 1, and γ1γ2 < (γ 2
2 + |b|2)1/2 < 1, then G(ϕ,Λ) is a frame.

(iv) If γ1 � 1, γ2 < 1, γ1γ2 � (γ 2
2 + |b|2)1/2 , then G(ϕ,Λ) is not a frame.

Proof. (i) was proved in Theorem 9.

(ii) Consider the function σ(z1, z2) = σL2(γ
−1

2 z2). Then σ vanishes on Λ and |σ(z)| � Ceπγ −2
2 |z2

2|/2 � Ceπ |z|2/2, because
γ2 � 1, and so σ ∈ F ∞ . This means that Λ is not a set of uniqueness for F ∞ , and thus G(ϕ,Λ) cannot be a frame by
Proposition 4.

To prove (iii) and (iv), we write A as V L for some lower triangular matrix. Let V = ( u v
−v̄ ū

)
with

u = γ2

(γ 2
2 + |b|2)1/2

and v = − b

(γ 2
2 + |b|2)1/2

.

Then V is unitary and

V

(
γ1 b

0 γ2

)
=

⎛
⎝

γ1γ2

(γ 2
2 +|b|2)1/2 0

b̄γ1

(γ 2
2 +|b|2)1/2 (γ 2

2 + |b|2)1/2

⎞
⎠ .

(iii) The assumptions state that γ1γ2

(γ 2
2 +|b|2)1/2 < 1 and (γ 2

2 + |b|2)1/2 < 1, so by Corollary 10, G(ϕ,Λ) is a frame.

(iv) If ρ1 = γ1γ2

(γ 2
2 +|b|2)1/2 � 1, then the function F (z1, z2) = σL1(ρ

−1
1 z1) is in F ∞ and vanishes on the lattice V AΓ0. Again

by Proposition 4, G(ϕ,Λ) cannot be a frame. �
Items (iii) and (iv) can be proved directly by finding a suitable sigma function. Set � = (γ 2 + |b|2)1/2. For (iii) set
2
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G(z1, z2) = σL1(
γ1γ2
�2 (γ2z1 − bz2))

γ2z1 − bz2

σL2(b̄z1 + γ2z2)

b̄z1 + γ2z2
.

Then one can check that G(μ) = δμ,0 for μ ∈ Λ◦ = (A∗)−1(L1 ⊕ L2) and that G ∈ F , if and only if, γ1γ2 < � < 1.
For (iv) we set σΛ(z1, z2) = σL1(γ

−1
1 (z1 − b

γ2
z2)). This function vanishes on Λ and is in F ∞ , if and only if � � γ1γ2.

At this time the case γ1γ2 < 1 � (γ 2
2 + |b|2)1/2 remains open, although we can already show for several families of

lattices whether they generate Gabor frames or not.

5.2. Open problems

1. The analysis of this paper is quite limited, and several difficult questions remain open. Clearly the arguments of
Theorem 9 and Proposition 11 can be pushed further. In higher dimensions it will be important to use a suitable basis
for Λ consisting of short vectors, so-called reduced basis [9,32]. For complex lattices we have some hope to classify those
lattices that generate a Gabor frame.

On the other hand, for real lattices AZ
2d for general A ∈ GL(2d,R) the field of speculation is wide open. We cannot

even guess, let alone conjecture, what the results may be. An example of a real lattice has been investigated by Pfander and
Rashkov [40].

2. Since a symplectic structure is implicit in the commutation relations defining the adjoint lattice, one may wonder
where symplectic analysis comes in. How do symplectic structure and complex structure interact?

3. What about non-uniform sampling sets Λ ⊆ C
d for F ? We are aware only of a qualitative results that follows from a

more general theory: If the maximum distance to the nearest neighbor is small enough, then Λ is a set of sampling for F .
Precisely, there exists a constant δ > 0 such that every relatively separated set Λ satisfying

⋃
λ∈Λ B(λ, δ) = C

d is a set of
sampling for F [13].
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