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Gauge networks

e using finite spectral triple for a model combining gauge theory on
a lattice (or graph) and spin networks approach to gravity

e an action functional (in terms of Dirac operator) that recovers
the Wilson action (which in continuum limit gives Yang—Mills) will
additional terms for a Higgs field in adjoint representation

e build a category of finite spectral triples with morphisms built
from algebra morphisms and unitary operators

e representations of quivers (oriented graphs) in this category of
finite spectral triples

e configuration space (of such representation) modulo gauge action

e morphisms between gauge networks by correspondences
(bimodules); Hamiltonian and time evolution

e discretized Dirac operator and continuum limit
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Co Category of finite spectral triples with trivial Dirac D =0

e objects (A, m, H), fin. dim. algebra A and fin. Hilbert space rep.
m: A= L(H)

e morphisms & : (A3, 71, H1) — (A, m2, Hz) pair & = (¢, L)
¢ : A1 — Az morphism of unital x-algebras, L : H1 — Ho unitary
Lri(a)L* = m2(¢(a))

C Category of finite spectral triples
e objects (A, m, H, D) fin spectral triples

e morphisms & : (Ay, 71, Hi, D1) — (Az, w2, Ha, D2) as above
with also LD{L* = D,
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Bratteli diagrams

e Wedderburn theorem:
k K
A1 = P Mu(C), A2 =P Mu(C)
i=1 j=1
e unital x-algebra morphism ¢ : A; — A, direct sum
k
¢j - D Mn,(C) = My (C)
i=1

¢; splits as a direct sum of representation ¢;; : My, (C) — MNJ{((C)
with multiplicity dj > 0, with N/ = Y, dN;

e Bratteli diagrams: two rows of vertices: top k vertices labeled
Ni, ..., Nk, bottom k' vertices labeled by N, ..., N,,; djj edges
between vertex i (top row) and j (bottom row)
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¢ : A1 — A unital, so all vertices in bottom row reached by an
edge, but top row can have vacant vertices
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Example
e A1 = C® My(C), H1 =C@C? Ay = M3(C), Hp =C3
e unital x-algebra map ¢ : A; — A3 two possibilities

(z,a) € C& My(C) — u <Z a) u* € Ms(C)

with u € U(3) or
(z,a) e Cd My(C) — z13 € M3(C)

with kernel M,(C)
e unitary map of H; to Ho

(x,y)ECGB(CZHU<;> eC?

with U € U(3)
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e compatibility of ¢ and L: first case OK with v = U
u<z )u*zU(Z )U*.
a a

but in second case
zl3=U (z > U*.
a

cannot be satisfied for arbitrary (z, a) € A;
e so get Hom((A1, H1), (A2, H2)) ~ U(3) and Bratteli diagram

1 2 1 2
3 3

(a) (b)
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Example

Bratteli diagram for the only unital x-algebra map
M;(C) & M3(C) — Ms(C) @ M3(C) given (a,b) — (a@® b, b)
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e to better take care also of permutations of matrix blocks of the
same dimension: braid Bratteli diagrams

2 2 2 4 4 5
x5 X
g 4
2 2 2 4 4 5

braid Bratteli diagram with permutations of matrix blocks of same
dim in Ma(C)®3 @ My(C)*? & M5(C)
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Quiver representations in categories

e Quiver I directed graph

e representation m of a quiver I in a category C:
- object 7, for each vertex v
- morphism 7 in Hom(7g(e), m(e)) for each directed edge e.

e two representations 7w, 7’ of I' in same category equivalent if
m, =, for all v.€ V(') and 3 family of invertible morphisms
¢y € Hom(w(v), 7(v)) for v € V(I') such that

Te = Pr(e) © Te © Py(g)

e For categories C (or Cp) of finite spectral triples, representation
of a quiver I assigns

- spectral triples (Ay, Hy, D) (D, = 0 for Cp) to vertices v € V(I')
- pairs (¢, L) € Hom((Ag(e)> Hs(e)s Ds(e))s (Ae(e)s He(e)s De(e))) to
edges e € E(I')
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Example U(N) spin networks (John Baez)

o If (A,,H,) = (Mn(C),CN) and D = 0, unitary ue € U(N)
along each edge and gauge action g, € U(N) at each vertex with

Ue — Bt(e) Uegs*(e)

e only possible Bratteli diagram in this case for
¢ Mn(C) — Mpy(C) is single edge between one upper row vertex
and one lower row vertex

e J.C. Baez, Spin network states in gauge theory, Adv. Math. 117
(1996) 253-272
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General case: gauge networks
{r7 (AV7 >\V7 HVv LV)Va (pa»Be)e}

o [ directed graph

e (Ay, Ay, Hy) is an object in the category Cj for each vertex
ve V()

e Edge e € E(I'): representation pe of unitary group

Ge = Autgt(e)(/‘/t(e)) x U (ker )\t(e))

e Edge e € E(I'): Bratteli diagram B, for x-algebra maps

Asie) = At(e)

e subdiagrams B for Zs(e) — Zt(e) and Bg for Age) — ker Ay(e)

e Vertex v: the intertwiners ¢+, for the group G, = U(A,) x S(A,):

Lot ®® N K]Bel K]Bel
v . pe{ pe,’( Peg ~ O d)B b2y ® Pe O QZ)B

ef,...,€, incoming edges, ey, ..., e outgoing edges at v; isotropy
group KIBe = Z/l(ker )‘t(E))Beo-
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Correspondences between gauge networks
e two 7, quiver reps of I
e A, — A, Bimodules &,

Hy=E®uq, 7'[(,
e morphisms Te : Ege) — Ey(e) compatible with alg maps ¢, ¢,
Te(anb) = ¢e(a) Te(n)¢;(b), ae As(e)v ne Es(e)7 be Als(e)

Es(e)

SN

A, Te Al
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Algebra of gauge networks and correspondences

e given gauge networks

7/} - (r7 (AV7 HV7 Lv)v; (Pe; ]Be)e)a ¢/ = (ra (AIW H\In /'V)V7 (p/ev B/e)e)

and correspondences W
W ={l,(aEn,tv @)y, (pe ® po; Be X Be)e}

e composition of correspondences (tensor product of bimodules)
Wi = {T, (A Eays tv @ 1)y, (Pe @ P, Be X B )e}

Wy = {T, (a, Fay, vy @ ty)v, (P © po, By X Bg)e}
Wi oWy ={T,(a,E ®@a Far,tv @ ty)v, (pe ® po,Be X BL)e}
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e § = category of gauge networks with correspondences as
morphisms

e algebra C[S] elements a = )", ay W convolution product

(a * b)\u = Z ay, b\u2.

V=y;0V¥,

e can be completed to a C*-algebra represented on a Hilbert space

e dynamical: Hamiltonian and time evolution, built using quadratic
Casimir (kind of Lie group Laplacian) on U(A())
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Spectral action and lattice field theory

e [ embedded in a Riemannian spin manifold M: pullback spin
geometry of M to

e S fiber of spinor bundle on M; take SY(I) space of spinors on I
e holonomy Hol(e, V*°) of spin connection along edges e of I

Hol(e, V°) = Pele“ ¥ « 1 + luwe(s(e)) + O()

we(v) pairing of 1-form w and vector é at vertex v
e Dirac operator on I:

(Drv)e = 2, o Ve Hol(e, V)i + > 5 waol(e V)(e):
t(e)=v " s(e)=v

le = geodesic length of embedded edge e; € = opposite orientation

e gamma matrices . defined so that (discretization/continuum)

Z VeWe = 'VMWM

eeS(v)
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Continuum limit of Dirac operator

e lattice spacing /. goes to zero; assume l, = / for all edges and
square lattice

1 1
(Drdj)v = Z 576(¢v1 - 1/1\/2) + E'Yewe(v)(wvl + wVQ) + O(/)
V1,2
sum over all collinear Vi—>V—>WV

e

e formally, when [ — 0

(Drip)y — (O + wu)(v)

Matilde Marcolli Models based on Finite Spectral Triple



Dirac twisted with finite spectral triples

e if also quiver representation of I in the category of finite spectral
triples

(Dr 1), = Z 21/6% (Hol(e, Vo) ® Le) Vs(e)

t(e)=v

1 —-
+ (z); 275’)’5 (HOl(ea V7)® LE) Yi(e) +vDvby
where Lg = L% and v grading on spinor bundle of M if even

dimensional

e if (A,, H,) = (My(C),CN) at all vertices v, then morphism
(¢, L) unitary in U(N) holonomy of some gauge connection 1-form
A, then Dirac on I reduces to Dirac on M twisted by gauge field

Matilde Marcolli Models based on Finite Spectral Triple



Spectral action: finite spectral triples

S[{Le}7 {Dv}] = Trf(DI',L)

some function f on the real line

o lattice gauge fields on M = R*, cutoff A oc /71
Sal{Le}, {Dv}] := Txf(Dr o /N) = I*Tr((Dr )"
e on square lattice Z* find

SA[{Le},{DV}]:—% S (Tr (LeyLayLeyLe,) + Tt (L, L, Ley Lo, ))-+const

Op=ey---e;

+3 FTDg 4Py (TrD_f(E) + TrDZqy — TrLiDyo)Le Dv)
v

e

from counting contributions of different cycles in the lattice
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e flat case: holonomy of spin connection trivial: Sp[{Le}] is
1
= 4/4 Z WH(VV’YH)2 (Tr (LE4 LEs Le2 Le]) + Tr (LE1 LEz Le3 Le4))
Op=eéjezere;
plus constant terms
1
=7 > (Tr(Le,le,lele) + Tr(Lg Lg, Le, Le,)) + const

Op=esezere;

Similar argument for the other terms
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Continuum limit and Wilson action

e 1 direction of e and A, continuous gauge field at s(e)
Le =PeJeAd ~ el for | 0

e with (A,, H,) = (Mn(C),CN) at all vertices v, limit / — 0 and
A o< 171 spectral action Sp becomes

E / TeF,, F 12 / Tr(0,® — [iAy, O])(9"® — [iA*, ©])
4 Jm i

+8A? / Trd? + / Tro*,
M M

Yang—Mills coupled to a Higgs field with quartic potential
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e For a plaquette

Tr (LE4 LE3 L62 Lel) — Tre—iIAl,(x)e—iIA,u(x—l—lﬁ)eilA,,(x—&—lﬁ)eilAH(x)

~ TreFuvr for | =0
and similarly for Tr (Lg, Le,Le, Le,)
e so for | - 0 (and A — o)

1
Sh~ / trF, FHY
4 Jm

e Higgs terms: vertex v at position x
Tre~Auld(x + I)e ! d(x) ~

Tr (¢(x)d>(x + 1) + 1O(x + IR)[iA,, P(x)]

5T 00+ IDIIA 0001 ) + OF)

®(x) continuous (hermitian) Higgs field corresponding to D, and L is
expanded in A,
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e modulo O(/?) find in Sy

1
Sv=g > (Tr(lalelola) +Tr (L LeLaLs)

Op=esezere;

+ Z PTeD? + 412 Z (TvDZ.) + TrDR,) — TrLiDye)LeDie) )

1
2Tre’/ Fur 4 PTrd*(x) + 212 Z trd2(x) 4 trd?(x + /1)
I

Ly IlzTr(cb(x +12) — B(x))?
n

— 200+ 1) (x), (] + T[4, (x), ()
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John Barret's Random noncommutative geometries

e a geometry: (A, H, D, J,) finite spectral triple with real
structure

e random geometry: fixed fermion space (A, H, J,~) and varying
Dirac operator D up to unitary equivalences

e a random geometry is a “random” (in a suitable probability
distribution) point in the moduli space of Dirac operators

e want measure to reflect some action functional, as in path
integral:
e >0 dD
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e view this as a random matrix model where the matrices D are
constrained by the properties of Dirac operators of finite spectral
triples

e take action functional as a spectral action

S(D)=Te(f(D)) = D_ f(N)

AeSpec(D)

e here want some function f(x) with f(x) — oo for |x| — oo for

convergence of
Z= / e=>P)dD
M

e simplest choice quartic polynomial: g4 > 0 (or ga =0, g2 > 0)
f(D) = goD? + g4 D*
e observables O(D) functions of D
1
0y =1 / O(D)e~5®) dp
Z Jm

behavior in limit N — oo of large matrices
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e use only Dirac operators that resemble those on manifolds

e different possibilities for Dirac operators: action on
H =V ® M,(C) with V = Ck a Clifford module signature (p, q)
(with k = 29/2 or k = 2(d-1)/2)

e express all the possibilities for (p, g) writing Dirac operators in
terms of gamma matrices and commutators [L, -] or
anticommutators {L,-} with given hermitian matrices H and
anti-hermitian L

e Example: (1,0) has D ={H,-} and (0,1) has D = —i[L, ]
e Example: (1,1) has (7!)?> =1 and (7?)2 = —1 and

D:71®{H,}+’Y2®[L,]

etc.
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Monte Carlo simulation

e start with random D and construct D 4+ D by §H; and dL;

e accept if AS(D) = S(Dnew) — S(Doig) < 0 or (to escape local
minima) if exp(S(Doid) — S(Dnew)) > p uniformly distributed
random number on [0, 1] otherwise keep Doq

e compare results with Wigner's semicircle law for random matrix
model with real symmetric matrices large order N
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Density of states for H and L from Barrett and Glaser arXiv:1510.01377
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