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Gauge networks

• using finite spectral triple for a model combining gauge theory on
a lattice (or graph) and spin networks approach to gravity

• an action functional (in terms of Dirac operator) that recovers
the Wilson action (which in continuum limit gives Yang–Mills) will
additional terms for a Higgs field in adjoint representation

• build a category of finite spectral triples with morphisms built
from algebra morphisms and unitary operators

• representations of quivers (oriented graphs) in this category of
finite spectral triples

• configuration space (of such representation) modulo gauge action

• morphisms between gauge networks by correspondences
(bimodules); Hamiltonian and time evolution

• discretized Dirac operator and continuum limit
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C0 Category of finite spectral triples with trivial Dirac D = 0

• objects (A, π,H), fin. dim. algebra A and fin. Hilbert space rep.
π : A → L(H)

• morphisms Φ : (A1, π1,H1)→ (A2, π2,H2) pair Φ = (φ, L)
φ : A1 → A2 morphism of unital ?-algebras, L : H1 → H2 unitary

Lπ1(a)L∗ = π2(φ(a))

C Category of finite spectral triples

• objects (A, π,H,D) fin spectral triples

• morphisms Φ : (A1, π1,H1,D1)→ (A2, π2,H2,D2) as above
with also LD1L

∗ = D2
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Bratteli diagrams

• Wedderburn theorem:

A1 =
k⊕

i=1

MNi
(C), A2 =

k ′⊕
j=1

MN′
j
(C)

• unital ∗-algebra morphism φ : A1 → A2 direct sum

φj :
k⊕

i=1

MNi
(C)→ MN′

j
(C)

φj splits as a direct sum of representation φij : MNi
(C)→ MN′

j
(C)

with multiplicity dij ≥ 0, with N ′j =
∑

i dijNi

• Bratteli diagrams: two rows of vertices: top k vertices labeled
N1, . . . ,Nk , bottom k ′ vertices labeled by N ′1, . . . ,N

′
k ′ ; dij edges

between vertex i (top row) and j (bottom row)
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φ : A1 → A2 unital, so all vertices in bottom row reached by an
edge, but top row can have vacant vertices
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Example

• A1 = C⊕M2(C), H1 = C⊕ C2, A2 = M3(C), H2 = C3

• unital ∗-algebra map φ : A1 → A2 two possibilities

(z , a) ∈ C⊕M2(C) 7→ u

(
z

a

)
u∗ ∈ M3(C)

with u ∈ U(3) or

(z , a) ∈ C⊕M2(C) 7→ z13 ∈ M3(C)

with kernel M2(C)

• unitary map of H1 to H2

(x , y) ∈ C⊕ C2 7→ U

(
x
y

)
∈ C3

with U ∈ U(3)
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• compatibility of φ and L: first case OK with u = U

u

(
z

a

)
u∗ = U

(
z

a

)
U∗.

but in second case

z13 = U

(
z

a

)
U∗.

cannot be satisfied for arbitrary (z , a) ∈ A1

• so get Hom((A1,H1), (A2,H2)) ' U(3) and Bratteli diagram
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Example

Bratteli diagram for the only unital ∗-algebra map
M2(C)⊕M3(C)→ M5(C)⊕M3(C) given (a, b) 7→ (a⊕ b, b)
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• to better take care also of permutations of matrix blocks of the
same dimension: braid Bratteli diagrams

braid Bratteli diagram with permutations of matrix blocks of same
dim in M2(C)⊕3 ⊕M4(C)⊕2 ⊕M5(C)
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Quiver representations in categories

• Quiver Γ directed graph

• representation π of a quiver Γ in a category C:
- object πv for each vertex v
- morphism πe in Hom(πs(e), πt(e)) for each directed edge e.

• two representations π, π′ of Γ in same category equivalent if
πv = π′v , for all v ∈ V (Γ) and ∃ family of invertible morphisms
φv ∈ Hom(π(v), π(v)) for v ∈ V (Γ) such that

πe = φt(e) ◦ π′e ◦ φ−1
s(e)

• For categories C (or C0) of finite spectral triples, representation π
of a quiver Γ assigns
- spectral triples (Av ,Hv ,Dv ) (Dv = 0 for C0) to vertices v ∈ V (Γ)
- pairs (φ, L) ∈ Hom((As(e),Hs(e),Ds(e)), (At(e),Ht(e),Dt(e))) to
edges e ∈ E (Γ)
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Example U(N) spin networks (John Baez)

• If (Av ,Hv ) = (MN(C),CN) and D = 0, unitary ue ∈ U(N)
along each edge and gauge action gv ∈ U(N) at each vertex with

ue 7→ gt(e)ueg
∗
s(e)

• only possible Bratteli diagram in this case for
φ : MN(C)→ MN(C) is single edge between one upper row vertex
and one lower row vertex

• J.C. Baez, Spin network states in gauge theory, Adv. Math. 117
(1996) 253–272
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General case: gauge networks

{Γ, (Av , λv ,Hv ; ιv )v , (ρe ,Be)e}

• Γ directed graph

• (Av , λv ,Hv ) is an object in the category Cs0 for each vertex
v ∈ V (Γ)

• Edge e ∈ E (Γ): representation ρe of unitary group
Ge = Aut

Ãt(e)
(Ht(e))× U(ker λt(e))

• Edge e ∈ E (Γ): Bratteli diagram Be for ∗-algebra maps
As(e) → At(e)

• subdiagrams B̃ for Ãs(e) → Ãt(e) and B0 for As(e) → ker λt(e)

• Vertex v : the intertwiners ιv for the group Gv = U(Av )oS(Av ):

ιv : ρe′1 ⊗ · · · ⊗ ρe′k → ρ
KBe1
e1 ◦ φB ⊗ · · · ⊗ ρ

KBel
el ◦ φB

e ′1, . . . , e
′
k incoming edges, e1, . . . , el outgoing edges at v ; isotropy

group KBe = U(ker λt(e))Be0 .
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Correspondences between gauge networks

• two π, π′ quiver reps of Γ

• Av −A′v Bimodules Ev
Hv = E ⊗A′

v
H′v

• morphisms Te : Es(e) → Et(e) compatible with alg maps φe , φ′e

Te(aηb) = φe(a)Te(η)φ′e(b), a ∈ As(e), η ∈ Es(e), b ∈ A′s(e)

Es(e)

""||
Te

��

Av

φe

��

A′v

φ′e

��

Et(e)

""||
At(e) A′t(e)
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Algebra of gauge networks and correspondences

• given gauge networks

ψ = (Γ, (Av ,Hv , ιv )v , (ρe ,Be)e), ψ′ = (Γ, (A′v ,H
′
v , ιv )v , (ρ

′
e ,B′e)e)

and correspondences ψΨψ′

Ψ = {Γ, (AvEA′
v
, ιv ⊗ ι′v )v , (ρe ⊗ ρ′e ,Be × B′e)e}

• composition of correspondences (tensor product of bimodules)

Ψ1 = {Γ, (AvEA′
v
, ιv ⊗ ι′v )v , (ρe ⊗ ρ′e ,Be × B′e)e}

Ψ2 = {Γ, (A′
v
FA′′

v
, ι′v ⊗ ι′′v )v , (ρ

′
e ⊗ ρ′′e ,B′e × B′′e )e}

Ψ1 ◦Ψ2 = {Γ, (AvE ⊗A′
v
FA′′

v
, ιv ⊗ ι′′v )v , (ρe ⊗ ρ′′e ,Be × B′′e )e}
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• S = category of gauge networks with correspondences as
morphisms

• algebra C[S] elements a =
∑

Ψ aΨΨ convolution product

(a ∗ b)Ψ =
∑

Ψ=Ψ1◦Ψ2

aΨ1bΨ2 .

• can be completed to a C ∗-algebra represented on a Hilbert space

• dynamical: Hamiltonian and time evolution, built using quadratic
Casimir (kind of Lie group Laplacian) on U(At(e))
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Spectral action and lattice field theory

• Γ embedded in a Riemannian spin manifold M: pullback spin
geometry of M to Γ

• S fiber of spinor bundle on M; take SV (Γ) space of spinors on Γ

• holonomy Hol(e,∇S) of spin connection along edges e of Γ

Hol(e,∇S) = Pe
∫
e ω·dx ∼ 1 + leωe(s(e)) +O(l2e )

ωe(v) pairing of 1-form ω and vector ė at vertex v

• Dirac operator on Γ:

(DΓψ)v =
∑

t(e)=v

1

2le
γe Hol(e,∇S)ψs(e)+

∑
s(e)=v

1

2le
γe Hol(e,∇S)ψt(e); (ψ ∈ SV (Γ)),

le = geodesic length of embedded edge e; e = opposite orientation

• gamma matrices γe defined so that (discretization/continuum)∑
e∈S(v)

γeωe = γµωµ
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Continuum limit of Dirac operator

• lattice spacing le goes to zero; assume le = l for all edges and
square lattice

(DΓψ)v =
∑
v1,v2

1

2l
γe(ψv1 − ψv2) +

1

2
γeωe(v)(ψv1 + ψv2) +O(l).

sum over all collinear v1
e′
// v e

// v2

• formally, when l → 0

(DΓψ)v −→ γµ(∂µ + ωµ)ψ(v)
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Dirac twisted with finite spectral triples

• if also quiver representation of Γ in the category of finite spectral
triples

(DΓ,Lψ)v =
∑

t(e)=v

1

2le
γe

(
Hol(e,∇S)⊗ Le

)
ψs(e)

+
∑

s(e)=v

1

2le
γe

(
Hol(e,∇S)⊗ Le

)
ψt(e) + γDvψv

where Le = L∗e and γ grading on spinor bundle of M if even
dimensional

• if (Av ,Hv ) = (MN(C),CN) at all vertices v , then morphism
(φ, L) unitary in U(N) holonomy of some gauge connection 1-form
Aµ, then Dirac on Γ reduces to Dirac on M twisted by gauge field

Matilde Marcolli Models based on Finite Spectral Triple



Spectral action: finite spectral triples

S [{Le}, {Dv}] = Trf (DΓ,L)

some function f on the real line

• lattice gauge fields on M = R4, cutoff Λ ∝ l−1

SΛ[{Le}, {Dv}] := Trf (DΓ,L/Λ) ≡ l4Tr((DΓ,L)4)

• on square lattice Z4 find

SΛ[{Le}, {Dv}] = −1

4

∑
∂p=e4···e1

(Tr (Le4Le3Le2Le1 ) + Tr (Le1Le2Le3Le4 ))+const

+
∑
v

l4TrD4
v + 4l2

∑
e

(
TrD2

s(e) + TrD2
t(e) − TrL∗eDt(e)LeDv

)
from counting contributions of different cycles in the lattice
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• flat case: holonomy of spin connection trivial: SΛ[{Le}] is

= 4l4
∑

∂p=e4e3e2e1

1

(2l)4
Tr(γνγµ)2 (Tr (Le4Le3Le2Le1 ) + Tr (Le1Le2Le3Le4 ))

plus constant terms

= −1

4

∑
∂p=e4e3e2e1

(Tr (Le4Le3Le2Le1 ) + Tr (Le1Le2Le3Le4 )) + const

Similar argument for the other terms
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Continuum limit and Wilson action

• µ direction of e and Aµ continuous gauge field at s(e)

Le = Pe i
∫
e A·dx ∼ e iAµl for l → 0

• with (Av ,Hv ) = (MN(C),CN) at all vertices v , limit l → 0 and
Λ ∝ l−1 spectral action SΛ becomes

1

4

∫
M
TrFµνF

µν + 2

∫
M
Tr(∂µΦ− [iAµ,Φ])(∂µΦ− [iAµ,Φ])

+8Λ2

∫
M
TrΦ2 +

∫
M
TrΦ4.

Yang–Mills coupled to a Higgs field with quartic potential
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• For a plaquette

Tr (Le4Le3Le2Le1) = Tre−ilAν(x)e−ilAµ(x+l ν̂)e ilAν(x+lµ̂)e ilAµ(x)

∼ Tre il
2Fµν for l → 0

and similarly for Tr (Le1Le2Le3Le4)

• so for l → 0 (and Λ→∞)

SΛ ∼
1

4

∫
M
trFµνF

µν

• Higgs terms: vertex v at position x

Tre−iAµlΦ(x + l µ̂)e iAµlΦ(x) ∼

Tr

(
Φ(x)Φ(x + l µ̂) + lΦ(x + l µ̂)[iAµ,Φ(x)]

−1

2
l2[iAµ,Φ(x + l µ̂)][iAµ,Φ(x)]

)
+O(l3)

Φ(x) continuous (hermitian) Higgs field corresponding to Dx and Le is

expanded in Aµ
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• modulo O(l3) find in SΛ

SΛ = −1

4

∑
∂p=e4e3e2e1

(Tr (Le4Le3Le2Le1) + Tr (Le1Le2Le3Le4))

+
∑
v

l4TrD4
v + 4l2

∑
e

(
TrD2

s(e) + TrD2
t(e) − TrL∗eDt(e)LeDs(e)

)
∼ 1

2
Tre il

2Fµν + l4TrΦ4(x) + 2l2
∑
µ

trΦ2(x) + trΦ2(x + l µ̂)

+ 2l4
∑
µ

1

l2
Tr(Φ(x + l µ̂)− Φ(x))2

− 2

l
TrΦ(x + l µ̂)[iAµ(x),Φ(x)] + Tr([iAµ(x),Φ(x)])2
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John Barret’s Random noncommutative geometries

• a geometry: (A,H,D, J, γ) finite spectral triple with real
structure

• random geometry: fixed fermion space (A,H, J, γ) and varying
Dirac operator D up to unitary equivalences

• a random geometry is a “random” (in a suitable probability
distribution) point in the moduli space of Dirac operators

• want measure to reflect some action functional, as in path
integral:

e−S(D) dD
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• view this as a random matrix model where the matrices D are
constrained by the properties of Dirac operators of finite spectral
triples

• take action functional as a spectral action

S(D) = Tr(f (D)) =
∑

λ∈Spec(D)

f (λ)

• here want some function f (x) with f (x)→∞ for |x | → ∞ for
convergence of

Z =

∫
M

e−S(D) dD

• simplest choice quartic polynomial: g4 > 0 (or g4 = 0, g2 > 0)

f (D) = g2D
2 + g4D

4

• observables O(D) functions of D

〈O〉 =
1

Z

∫
M
O(D)e−S(D) dD

behavior in limit N →∞ of large matrices
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• use only Dirac operators that resemble those on manifolds

• different possibilities for Dirac operators: action on
H = V ⊗Mn(C) with V = Ck a Clifford module signature (p, q)
(with k = 2d/2 or k = 2(d−1)/2)

• express all the possibilities for (p, q) writing Dirac operators in
terms of gamma matrices and commutators [L, ·] or
anticommutators {L, ·} with given hermitian matrices H and
anti-hermitian L

• Example: (1, 0) has D = {H, ·} and (0, 1) has D = −i [L, ·]
• Example: (1, 1) has (γ1)2 = 1 and (γ2)2 = −1 and

D = γ1 ⊗ {H, ·}+ γ2 ⊗ [L, ·]

etc.
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Monte Carlo simulation
• start with random D and construct D + δD by δHi and δLi

• accept if ∆S(D) = S(Dnew )− S(Dold) < 0 or (to escape local
minima) if exp(S(Dold)− S(Dnew )) > p uniformly distributed
random number on [0, 1] otherwise keep Dold

• compare results with Wigner’s semicircle law for random matrix
model with real symmetric matrices large order N
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Density of states for H and L from Barrett and Glaser arXiv:1510.01377
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