

Models based on Finite Spectral Triple

Matilde Marcolli

Ma148b Spring 2016
Topics in Mathematical Physics

References

- M. Marcolli, W. van Suijlekom, *Gauge Networks in Noncommutative Geometry*, J. Geom. Phys., Vol.75 (2014) 71–91
- J.W. Barrett, *Matrix geometries and fuzzy spaces as finite spectral triples*, arXiv:1502.05383
- J.W. Barrett, L. Glaser, *Monte Carlo simulations of random non-commutative geometries*, arXiv:1510.01377

Gauge networks

- using finite spectral triple for a model combining gauge theory on a lattice (or graph) and spin networks approach to gravity
- an action functional (in terms of Dirac operator) that recovers the Wilson action (which in continuum limit gives Yang–Mills) will additional terms for a Higgs field in adjoint representation
- build a category of finite spectral triples with morphisms built from algebra morphisms and unitary operators
- representations of quivers (oriented graphs) in this category of finite spectral triples
- configuration space (of such representation) modulo gauge action
- morphisms between gauge networks by correspondences (bimodules); Hamiltonian and time evolution
- discretized Dirac operator and continuum limit

\mathcal{C}_0 Category of finite spectral triples with trivial Dirac $D = 0$

- objects $(\mathcal{A}, \pi, \mathcal{H})$, fin. dim. algebra \mathcal{A} and fin. Hilbert space rep. $\pi : \mathcal{A} \rightarrow \mathcal{L}(\mathcal{H})$
- morphisms $\Phi : (\mathcal{A}_1, \pi_1, \mathcal{H}_1) \rightarrow (\mathcal{A}_2, \pi_2, \mathcal{H}_2)$ pair $\Phi = (\phi, L)$
 $\phi : \mathcal{A}_1 \rightarrow \mathcal{A}_2$ morphism of unital \star -algebras, $L : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ unitary

$$L\pi_1(a)L^* = \pi_2(\phi(a))$$

\mathcal{C} Category of finite spectral triples

- objects $(\mathcal{A}, \pi, \mathcal{H}, D)$ fin spectral triples
- morphisms $\Phi : (\mathcal{A}_1, \pi_1, \mathcal{H}_1, D_1) \rightarrow (\mathcal{A}_2, \pi_2, \mathcal{H}_2, D_2)$ as above
with also $LD_1L^* = D_2$

Bratteli diagrams

- Wedderburn theorem:

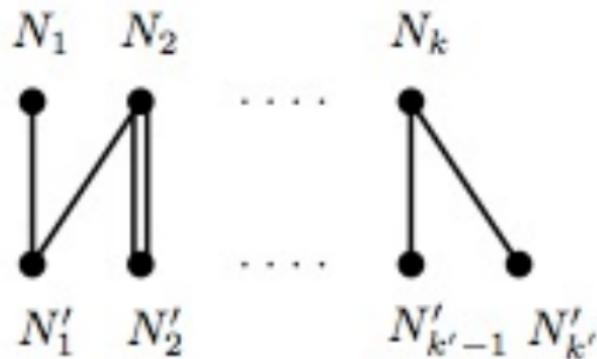
$$\mathcal{A}_1 = \bigoplus_{i=1}^k M_{N_i}(\mathbb{C}), \quad \mathcal{A}_2 = \bigoplus_{j=1}^{k'} M_{N'_j}(\mathbb{C})$$

- unital $*$ -algebra morphism $\phi : \mathcal{A}_1 \rightarrow \mathcal{A}_2$ direct sum

$$\phi_j : \bigoplus_{i=1}^k M_{N_i}(\mathbb{C}) \rightarrow M_{N'_j}(\mathbb{C})$$

ϕ_j splits as a direct sum of representation $\phi_{ij} : M_{N_i}(\mathbb{C}) \rightarrow M_{N'_j}(\mathbb{C})$ with multiplicity $d_{ij} \geq 0$, with $N'_j = \sum_i d_{ij} N_i$

- Bratteli diagrams: two rows of vertices: top k vertices labeled N_1, \dots, N_k , bottom k' vertices labeled by $N'_1, \dots, N'_{k'}$; d_{ij} edges between vertex i (top row) and j (bottom row)



$\phi : \mathcal{A}_1 \rightarrow \mathcal{A}_2$ unital, so all vertices in bottom row reached by an edge, but top row can have vacant vertices

Example

- $\mathcal{A}_1 = \mathbb{C} \oplus M_2(\mathbb{C})$, $\mathcal{H}_1 = \mathbb{C} \oplus \mathbb{C}^2$, $\mathcal{A}_2 = M_3(\mathbb{C})$, $\mathcal{H}_2 = \mathbb{C}^3$
- unital $*$ -algebra map $\phi : \mathcal{A}_1 \rightarrow \mathcal{A}_2$ two possibilities

$$(z, a) \in \mathbb{C} \oplus M_2(\mathbb{C}) \mapsto u \begin{pmatrix} z & \\ & a \end{pmatrix} u^* \in M_3(\mathbb{C})$$

with $u \in U(3)$ or

$$(z, a) \in \mathbb{C} \oplus M_2(\mathbb{C}) \mapsto z \mathbf{1}_3 \in M_3(\mathbb{C})$$

with kernel $M_2(\mathbb{C})$

- unitary map of \mathcal{H}_1 to \mathcal{H}_2

$$(x, y) \in \mathbb{C} \oplus \mathbb{C}^2 \mapsto U \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^3$$

with $U \in U(3)$

- compatibility of ϕ and L : first case OK with $u = U$

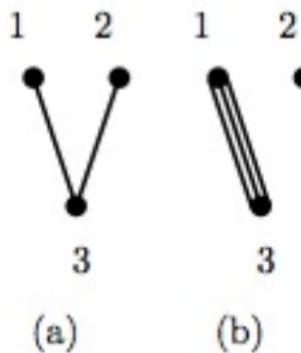
$$u \begin{pmatrix} z & \\ & a \end{pmatrix} u^* = U \begin{pmatrix} z & \\ & a \end{pmatrix} U^*.$$

but in second case

$$z1_3 = U \begin{pmatrix} z & \\ & a \end{pmatrix} U^*.$$

cannot be satisfied for arbitrary $(z, a) \in \mathcal{A}_1$

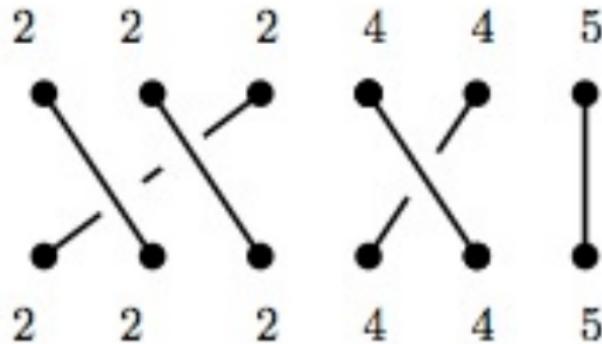
- so get $\text{Hom}((A_1, H_1), (A_2, H_2)) \simeq U(3)$ and Bratteli diagram



Example

Bratteli diagram for the only unital $*$ -algebra map
 $M_2(\mathbb{C}) \oplus M_3(\mathbb{C}) \rightarrow M_5(\mathbb{C}) \oplus M_3(\mathbb{C})$ given $(a, b) \mapsto (a \oplus b, b)$

- to better take care also of permutations of matrix blocks of the same dimension: **braid Bratteli diagrams**



braid Bratteli diagram with permutations of matrix blocks of same dim in $M_2(\mathbb{C})^{\oplus 3} \oplus M_4(\mathbb{C})^{\oplus 2} \oplus M_5(\mathbb{C})$

Quiver representations in categories

- Quiver Γ directed graph
- representation π of a quiver Γ in a category \mathcal{C} :
 - object π_v for each vertex v
 - morphism π_e in $\text{Hom}(\pi_{s(e)}, \pi_{t(e)})$ for each directed edge e .
- two representations π, π' of Γ in same category equivalent if $\pi_v = \pi'_v$, for all $v \in V(\Gamma)$ and \exists family of invertible morphisms $\phi_v \in \text{Hom}(\pi(v), \pi'(v))$ for $v \in V(\Gamma)$ such that

$$\pi_e = \phi_{t(e)} \circ \pi'_e \circ \phi_{s(e)}^{-1}$$

- For categories \mathcal{C} (or \mathcal{C}_0) of finite spectral triples, representation π of a quiver Γ assigns
 - spectral triples $(\mathcal{A}_v, \mathcal{H}_v, D_v)$ ($D_v = 0$ for \mathcal{C}_0) to vertices $v \in V(\Gamma)$
 - pairs $(\phi, L) \in \text{Hom}((\mathcal{A}_{s(e)}, \mathcal{H}_{s(e)}, D_{s(e)}), (\mathcal{A}_{t(e)}, \mathcal{H}_{t(e)}, D_{t(e)}))$ to edges $e \in E(\Gamma)$

Example $U(N)$ spin networks (John Baez)

- If $(\mathcal{A}_v, \mathcal{H}_v) = (M_N(\mathbb{C}), \mathbb{C}^N)$ and $D = 0$, unitary $u_e \in U(N)$ along each edge and gauge action $g_v \in U(N)$ at each vertex with

$$u_e \mapsto g_{t(e)} u_e g_{s(e)}^*$$

- only possible Bratteli diagram in this case for
 $\phi : M_N(\mathbb{C}) \rightarrow M_N(\mathbb{C})$ is single edge between one upper row vertex
and one lower row vertex
- J.C. Baez, *Spin network states in gauge theory*, Adv. Math. 117 (1996) 253–272

General case: gauge networks

$$\{\Gamma, (A_v, \lambda_v, H_v; \iota_v)_v, (\rho_e, \mathbb{B}_e)_e\}$$

- Γ directed graph
- (A_v, λ_v, H_v) is an object in the category \mathcal{C}_0^s for each vertex $v \in V(\Gamma)$
- Edge $e \in E(\Gamma)$: representation ρ_e of unitary group
 $G_e = \text{Aut}_{\tilde{A}_{t(e)}}(H_{t(e)}) \times \mathcal{U}(\ker \lambda_{t(e)})$
- Edge $e \in E(\Gamma)$: Bratteli diagram \mathbb{B}_e for $*$ -algebra maps
 $A_{s(e)} \rightarrow A_{t(e)}$
- subdiagrams $\widetilde{\mathbb{B}}$ for $\tilde{A}_{s(e)} \rightarrow \tilde{A}_{t(e)}$ and \mathbb{B}_0 for $A_{s(e)} \rightarrow \ker \lambda_{t(e)}$
- Vertex v : the intertwiners ι_v for the group $\mathcal{G}_v = U(\mathcal{A}_v) \rtimes S(\mathcal{A}_v)$:

$$\iota_v : \rho_{e'_1} \otimes \cdots \otimes \rho_{e'_k} \rightarrow \rho_{e_1} \circ \phi_{\mathbb{B}} \otimes \cdots \otimes \rho_{e_l} \circ \phi_{\mathbb{B}}$$

e'_1, \dots, e'_k incoming edges, e_1, \dots, e_l outgoing edges at v ; isotropy group $K_{\mathbb{B}_e} = \mathcal{U}(\ker \lambda_{t(e)})_{\mathbb{B}_{e0}}$.

Correspondences between gauge networks

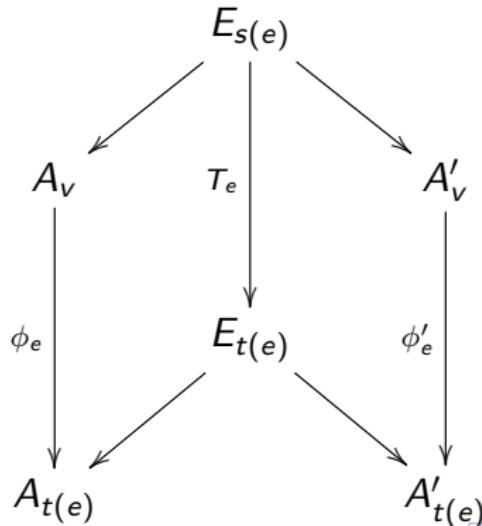
- two π, π' quiver reps of Γ

- $\mathcal{A}_v - \mathcal{A}'_v$ Bimodules \mathcal{E}_v

$$\mathcal{H}_v = \mathcal{E} \otimes_{\mathcal{A}'_v} \mathcal{H}'_v$$

- morphisms $T_e : \mathcal{E}_{s(e)} \rightarrow \mathcal{E}_{t(e)}$ compatible with alg maps ϕ_e, ϕ'_e

$$T_e(a\eta b) = \phi_e(a)T_e(\eta)\phi'_e(b), \quad a \in A_{s(e)}, \eta \in E_{s(e)}, b \in A'_{s(e)}$$



Algebra of gauge networks and correspondences

- given gauge networks

$$\psi = (\Gamma, (A_\nu, H_\nu, \iota_\nu)_\nu, (\rho_e, \mathbb{B}_e)_e), \quad \psi' = (\Gamma, (A'_\nu, H'_\nu, \iota'_\nu)_\nu, (\rho'_e, \mathbb{B}'_e)_e)$$

and correspondences ${}_\psi \Psi_{\psi'}$

$$\Psi = \{\Gamma, (A_\nu E_{A'_\nu}, \iota_\nu \otimes \iota'_\nu)_\nu, (\rho_e \otimes \rho'_e, \mathbb{B}_e \times \mathbb{B}'_e)_e\}$$

- composition of correspondences (tensor product of bimodules)

$$\Psi_1 = \{\Gamma, (A_\nu E_{A'_\nu}, \iota_\nu \otimes \iota'_\nu)_\nu, (\rho_e \otimes \rho'_e, \mathbb{B}_e \times \mathbb{B}'_e)_e\}$$

$$\Psi_2 = \{\Gamma, (A'_\nu F_{A''_\nu}, \iota'_\nu \otimes \iota''_\nu)_\nu, (\rho'_e \otimes \rho''_e, \mathbb{B}'_e \times \mathbb{B}''_e)_e\}$$

$$\Psi_1 \circ \Psi_2 = \{\Gamma, (A_\nu E \otimes_{A'_\nu} F_{A''_\nu}, \iota_\nu \otimes \iota''_\nu)_\nu, (\rho_e \otimes \rho''_e, \mathbb{B}_e \times \mathbb{B}''_e)_e\}$$

- \mathcal{S} = category of gauge networks with correspondences as morphisms
- algebra $\mathbb{C}[\mathcal{S}]$ elements $a = \sum_{\Psi} a_{\Psi} \Psi$ convolution product

$$(a * b)_{\Psi} = \sum_{\Psi = \Psi_1 \circ \Psi_2} a_{\Psi_1} b_{\Psi_2}.$$

- can be completed to a C^* -algebra represented on a Hilbert space
- dynamical: Hamiltonian and time evolution, built using quadratic Casimir (kind of Lie group Laplacian) on $\mathcal{U}(A_{t(e)})$

Spectral action and lattice field theory

- Γ embedded in a Riemannian spin manifold M : pullback spin geometry of M to Γ
- \mathcal{S} fiber of spinor bundle on M ; take $\mathcal{S}^{V(\Gamma)}$ space of spinors on Γ
- holonomy $\text{Hol}(e, \nabla^S)$ of spin connection along edges e of Γ

$$\text{Hol}(e, \nabla^S) = \mathcal{P} e^{\int_e \omega \cdot dx} \sim 1 + l_e \omega_e(s(e)) + \mathcal{O}(l_e^2)$$

$\omega_e(v)$ pairing of 1-form ω and vector \dot{e} at vertex v

- Dirac operator on Γ :

$$(D_\Gamma \psi)_v = \sum_{t(e)=v} \frac{1}{2l_e} \gamma_e \text{Hol}(e, \nabla^S) \psi_{s(e)} + \sum_{s(e)=v} \frac{1}{2l_{\bar{e}}} \gamma_{\bar{e}} \text{Hol}(\bar{e}, \nabla^S) \psi_{t(e)};$$

l_e = geodesic length of embedded edge e ; \bar{e} = opposite orientation

- gamma matrices γ_e defined so that (discretization/continuum)

$$\sum_{e \in S(v)} \gamma_e \omega_e = \gamma^\mu \omega_\mu$$

Continuum limit of Dirac operator

- lattice spacing l_e goes to zero; assume $l_e = l$ for all edges and square lattice

$$(D_\Gamma \psi)_v = \sum_{v_1, v_2} \frac{1}{2l} \gamma_e (\psi_{v_1} - \psi_{v_2}) + \frac{1}{2} \gamma_e \omega_e(v) (\psi_{v_1} + \psi_{v_2}) + \mathcal{O}(l).$$

sum over all collinear

$$v_1 \xrightarrow{e'} v \xrightarrow{e} v_2$$

- formally, when $l \rightarrow 0$

$$(D_\Gamma \psi)_v \rightarrow \gamma^\mu (\partial_\mu + \omega_\mu) \psi(v)$$

Dirac twisted with finite spectral triples

- if also quiver representation of Γ in the category of finite spectral triples

$$(D_{\Gamma, L}\psi)_v = \sum_{t(e)=v} \frac{1}{2l_e} \gamma_e \left(\text{Hol}(e, \nabla^S) \otimes L_e \right) \psi_{s(e)}$$
$$+ \sum_{s(e)=v} \frac{1}{2l_{\bar{e}}} \gamma_{\bar{e}} \left(\text{Hol}(\bar{e}, \nabla^S) \otimes L_{\bar{e}} \right) \psi_{t(e)} + \gamma D_v \psi_v$$

where $L_{\bar{e}} = L_e^*$ and γ grading on spinor bundle of M if even dimensional

- if $(A_v, H_v) = (M_N(\mathbb{C}), \mathbb{C}^N)$ at all vertices v , then morphism (ϕ, L) unitary in $U(N)$ holonomy of some gauge connection 1-form A_μ , then Dirac on Γ reduces to Dirac on M twisted by gauge field

Spectral action: finite spectral triples

$$S[\{L_e\}, \{D_v\}] = \text{Tr}f(D_{\Gamma, L})$$

some function f on the real line

- lattice gauge fields on $M = \mathbb{R}^4$, cutoff $\Lambda \propto l^{-1}$

$$S_\Lambda[\{L_e\}, \{D_v\}] := \text{Tr}f(D_{\Gamma, L}/\Lambda) \equiv l^4 \text{Tr}((D_{\Gamma, L})^4)$$

- on square lattice \mathbb{Z}^4 find

$$S_\Lambda[\{L_e\}, \{D_v\}] = -\frac{1}{4} \sum_{\partial p = e_4 \dots e_1} (\text{Tr}(L_{\bar{e}_4} L_{\bar{e}_3} L_{e_2} L_{e_1}) + \text{Tr}(L_{\bar{e}_1} L_{\bar{e}_2} L_{e_3} L_{e_4})) + \text{const}$$

$$+ \sum_v l^4 \text{Tr} D_v^4 + 4l^2 \sum_e \left(\text{Tr} D_{s(e)}^2 + \text{Tr} D_{t(e)}^2 - \text{Tr} L_e^* D_{t(e)} L_e D_v \right)$$

from counting contributions of different cycles in the lattice

- flat case: holonomy of spin connection trivial: $S_\Lambda[\{L_e\}]$ is

$$= 4I^4 \sum_{\partial p = \bar{e}_4 \bar{e}_3 e_2 e_1} \frac{1}{(2I)^4} \text{Tr}(\gamma_\nu \gamma_\mu)^2 (\text{Tr}(L_{\bar{e}_4} L_{\bar{e}_3} L_{e_2} L_{e_1}) + \text{Tr}(L_{\bar{e}_1} L_{\bar{e}_2} L_{e_3} L_{e_4}))$$

plus constant terms

$$= -\frac{1}{4} \sum_{\partial p = \bar{e}_4 \bar{e}_3 e_2 e_1} (\text{Tr}(L_{\bar{e}_4} L_{\bar{e}_3} L_{e_2} L_{e_1}) + \text{Tr}(L_{\bar{e}_1} L_{\bar{e}_2} L_{e_3} L_{e_4})) + \text{const}$$

Similar argument for the other terms

Continuum limit and Wilson action

- μ direction of e and A_μ continuous gauge field at $s(e)$

$$L_e = \mathcal{P} e^{i \int_e A \cdot dx} \sim e^{i A_\mu l} \quad \text{for } l \rightarrow 0$$

- with $(A_v, H_v) = (M_N(\mathbb{C}), \mathbb{C}^N)$ at all vertices v , limit $l \rightarrow 0$ and $\Lambda \propto l^{-1}$ spectral action S_Λ becomes

$$\begin{aligned} & \frac{1}{4} \int_M \text{Tr} F_{\mu\nu} F^{\mu\nu} + 2 \int_M \text{Tr} (\partial_\mu \Phi - [iA_\mu, \Phi]) (\partial^\mu \Phi - [iA^\mu, \Phi]) \\ & + 8\Lambda^2 \int_M \text{Tr} \Phi^2 + \int_M \text{Tr} \Phi^4. \end{aligned}$$

Yang–Mills coupled to a Higgs field with quartic potential

- For a plaquette

$$\text{Tr}(L_{\bar{e}_4}L_{\bar{e}_3}L_{e_2}L_{e_1}) = \text{Tr}e^{-ilA_\nu(x)}e^{-ilA_\mu(x+l\hat{\nu})}e^{ilA_\nu(x+l\hat{\mu})}e^{ilA_\mu(x)} \\ \sim \text{Tr}e^{il^2F_{\mu\nu}} \quad \text{for } l \rightarrow 0$$

and similarly for $\text{Tr}(L_{\bar{e}_1}L_{\bar{e}_2}L_{e_3}L_{e_4})$

- so for $l \rightarrow 0$ (and $\Lambda \rightarrow \infty$)

$$S_\Lambda \sim \frac{1}{4} \int_M \text{tr} F_{\mu\nu} F^{\mu\nu}$$

- Higgs terms: vertex v at position x

$$\text{Tr}e^{-iA_\mu l}\Phi(x+l\hat{\mu})e^{iA_\mu l}\Phi(x) \sim \\ \text{Tr} \left(\Phi(x)\Phi(x+l\hat{\mu}) + l\Phi(x+l\hat{\mu})[iA_\mu, \Phi(x)] \right. \\ \left. - \frac{1}{2}l^2[iA_\mu, \Phi(x+l\hat{\mu})][iA_\mu, \Phi(x)] \right) + \mathcal{O}(l^3)$$

$\Phi(x)$ continuous (hermitian) Higgs field corresponding to D_x and L_e is expanded in A_μ

- modulo $\mathcal{O}(l^3)$ find in S_Λ

$$\begin{aligned}
 S_\Lambda = & -\frac{1}{4} \sum_{\partial p = \bar{e}_4 \bar{e}_3 e_2 e_1} (\text{Tr}(L_{\bar{e}_4} L_{\bar{e}_3} L_{e_2} L_{e_1}) + \text{Tr}(L_{\bar{e}_1} L_{\bar{e}_2} L_{e_3} L_{e_4})) \\
 & + \sum_v l^4 \text{Tr} D_v^4 + 4l^2 \sum_e \left(\text{Tr} D_{s(e)}^2 + \text{Tr} D_{t(e)}^2 - \text{Tr} L_e^* D_{t(e)} L_e D_{s(e)} \right) \\
 \sim & \frac{1}{2} \text{Tr} e^{il^2 F_{\mu\nu}} + l^4 \text{Tr} \Phi^4(x) + 2l^2 \sum_\mu \text{tr} \Phi^2(x) + \text{tr} \Phi^2(x + l\hat{\mu}) \\
 & + 2l^4 \sum_\mu \frac{1}{l^2} \text{Tr}(\Phi(x + l\hat{\mu}) - \Phi(x))^2 \\
 & - \frac{2}{l} \text{Tr} \Phi(x + l\hat{\mu}) [iA_\mu(x), \Phi(x)] + \text{Tr}([iA_\mu(x), \Phi(x)])^2
 \end{aligned}$$

John Barret's Random noncommutative geometries

- a geometry: $(\mathcal{A}, \mathcal{H}, D, J, \gamma)$ finite spectral triple with real structure
- random geometry: fixed fermion space $(\mathcal{A}, \mathcal{H}, J, \gamma)$ and varying Dirac operator D up to unitary equivalences
- a random geometry is a “random” (in a suitable probability distribution) point in the moduli space of Dirac operators
- want measure to reflect some action functional, as in path integral:

$$e^{-S(D)} dD$$

- view this as a **random matrix model** where the matrices D are constrained by the properties of Dirac operators of finite spectral triples
- take action functional as a spectral action

$$S(D) = \text{Tr}(f(D)) = \sum_{\lambda \in \text{Spec}(D)} f(\lambda)$$

- here want some function $f(x)$ with $f(x) \rightarrow \infty$ for $|x| \rightarrow \infty$ for convergence of

$$Z = \int_{\mathcal{M}} e^{-S(D)} dD$$

- simplest choice quartic polynomial: $g_4 > 0$ (or $g_4 = 0, g_2 > 0$)

$$f(D) = g_2 D^2 + g_4 D^4$$

- observables $\mathcal{O}(D)$ functions of D

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int_{\mathcal{M}} \mathcal{O}(D) e^{-S(D)} dD$$

behavior in limit $N \rightarrow \infty$ of large matrices

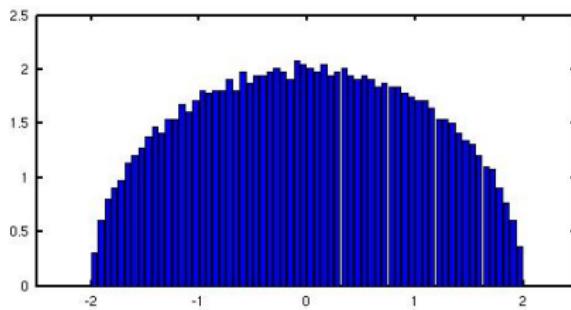
- use only Dirac operators that resemble those on manifolds
- different possibilities for Dirac operators: action on $\mathcal{H} = V \otimes M_n(\mathbb{C})$ with $V = \mathbb{C}^k$ a Clifford module signature (p, q) (with $k = 2^{d/2}$ or $k = 2^{(d-1)/2}$)
- express all the possibilities for (p, q) writing Dirac operators in terms of gamma matrices and commutators $[L, \cdot]$ or anticommutators $\{L, \cdot\}$ with given hermitian matrices H and anti-hermitian L
- Example: $(1, 0)$ has $D = \{H, \cdot\}$ and $(0, 1)$ has $D = -i[L, \cdot]$
- Example: $(1, 1)$ has $(\gamma^1)^2 = 1$ and $(\gamma^2)^2 = -1$ and

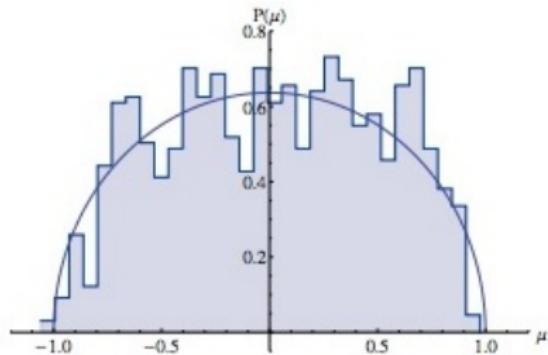
$$D = \gamma^1 \otimes \{H, \cdot\} + \gamma^2 \otimes [L, \cdot]$$

etc.

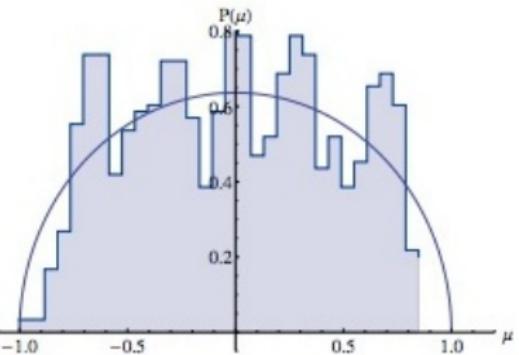
Monte Carlo simulation

- start with random D and construct $D + \delta D$ by δH_i and δL_i
- accept if $\Delta S(D) = S(D_{new}) - S(D_{old}) < 0$ or (to escape local minima) if $\exp(S(D_{old}) - S(D_{new})) > p$ uniformly distributed random number on $[0, 1]$ otherwise keep D_{old}
- compare results with Wigner's semicircle law for random matrix model with real symmetric matrices large order N

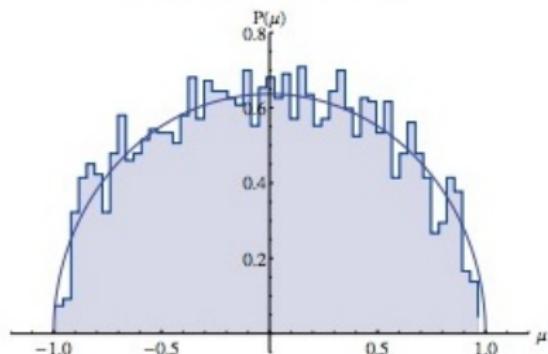




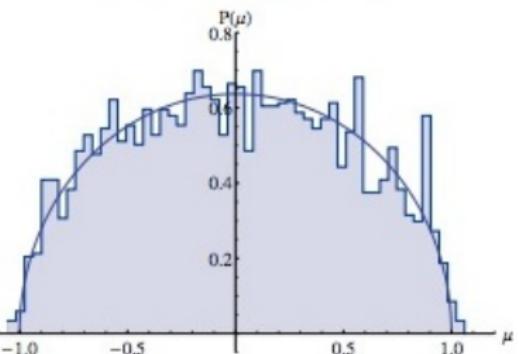
(c) Type $(1, 0)$ $n = 5$



(d) Type $(0, 1)$ $n = 5$



(e) Type $(1, 0)$ $n = 15$



(f) Type $(0, 1)$ $n = 15$

Density of states for H and L from Barrett and Glaser arXiv:1510.01377