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1. Introduction and summary

Of many recently suggested definitions of F1-geometry, we work with the one de-
veloped in [19] that seems to be the minimal one. Namely, an F1-scheme is repre-
sented by its lift to Spec(Z) and the relevant descent data which are essentially a
representation of the lifted scheme as a disjoint union of locally closed tori.

This notion of F1-geometry can be seen as the simplest geometrization of the
condition that the class in the Grothendieck ring of the variety decomposes as
a sum of classes of tori, with non-negative coefficients. This motivic condition
accounts for the expected behavior of points over F1 and over “extensions” F1m in
relation to the counting of points over Fqm and zeta functions.

In this setting, we show that, while the torification condition (possibly with
additional restrictions such as a compatibility with an affine covering) provides a
viable notion of “algebraic variety over F1,” when one considers possible descent
data to F1 for stable curves of genus zero with marked points one needs to consider
also objects that are analogs of “constructible sets” over F1, which can be seen as
formal differences of torifications. In general, the complement of an algebraic
variety in another need not be an algebraic variety, but it is a constructible set.
Similarly, not all points or subvarieties over F1 (in the sense of torifications as
well as in other forms of F1-geometry) are complemented. The complemented case
corresponds to those F1-subvarieties whose complement also defines an F1-variety,
while in the non-complemented case one obtains an F1-constructible set, according
to a suitable notion of differences of torifications that we refer to as “constructible
torifications.” The moduli spaces M0,n and their generalizations Td,n constructed
in [5] also have a structure of F1-constructible sets. The operad structure on these
moduli spaces is also compatible with the F1-structure and the operad morphisms
give rise to F1-constructible morphisms.

In Section 2, we recall the notion of torification from [19] and we discuss dif-
ferent equivalence relations that determine when two choices of torification on the
same variety over Z determine the same F1-structure. This leads to three dif-
ferent notions of F1-morphisms, which we refer to as strong, ordinary, and weak
morphisms.

In Section 3 we focus on the condition that the Grothendieck class of a variety
decomposes into a sum of tori with non-negative coefficients, which is necessary
for the existence of geometric torifications. We show that it is satisfied for the
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moduli spaces M0,n and Td,n. This follows the same argument used in [24] and [5],
respectively, for the computation of the Poincaré polynomials. We also show that
these same computations provide a generating series for the numbers of F1m-points
of M0,n and Td,n.

In Sections 4 and 5 we discuss the notions of complemented points and comple-
mented subspaces in F1-geometry. We analyze the geometric torifications of stable
curves of genus zero and the role of the marked points as uncomplemented points.
We introduce the notions of constructible sets over F1 and of constructible torifica-
tions, which are formal differences of torifications preserving the positivity of the
Grothendieck class. In Section 6 we show that the moduli spaces M0,n and Td,n
are F1-constructible sets.

In Section 7, for each d ≥ 1, we introduce the operads with components
{Td,n+1} from [5] and we show that the operadic structure morphisms are compati-
ble with the structure of F1-constructible sets. The operad composition operations
and the morphisms that forget marked points determine strong F1-constructible
morphisms, while the action of Sn that permutes marked points acts through or-
dinary F1-constructible morphisms. In Section 8 we also show that, if one uses the
description of the moduli spaces M0,n and Td,n as iterated blowups, related to the
Fulton–MacPherson compactifications as in [5], then the projection maps of the
iterated blowups are only weak F1-morphisms.

In Section 9 we focus on the blueprint approach to F1-geometry, developed
in [21], see the chapter of Lorscheid in this volume. We make explicit a blueprint
structure of M0,n based upon explicit equations for M0,n, as in [12], [16]. We con-

sider then the genus-zero boundary modular operad {M0

g,n+1} whose components

are, by definition, unions of those boundary strata in {Mg,n+1} that parametrize
curves whose normalized irreducible components are projective lines. This is an
operad in the category of DM-stacks, so that for its complete treatment within
the setting of torifications it would be necessary to develop a formalism of stacky
F1-geometry compatible with torifications as descent data. We describe a blueprint

structure on the genus-zero boundary M
0

g,n+1 of the higher-genus moduli spaces,
using a crossed product construction.

Acknowledgments. The second author acknowledges support and hospitality
of the Max Planck Institute and the Mathematical Sciences Research Institute
and support from NSF grants DMS-0901221, DMS-1007207, DMS-1201512, PHY-
1205440. We thank Paolo Aluffi, Tom Graber and Oliver Lorscheid for constructive
criticism, useful comments and discussions.

2. Torifications

The notion of torification introduced in [19] is the following condition, which we
refer to in this chapter as geometric torification.

Definition 2.0.1 (see [19]). A torification of the scheme X is a morphism of

schemes eX : T → X from a disjoint union of tori T =
∐
j∈I Ti, where Tj = Gdjm ,
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such that the restriction of eX to each torus is an immersion (i.e. isomorphism
with a locally closed subscheme), and such that eX induces bijections of k-points,
eX(k) : T (k)

∼−→ X(k), for every field k.

Moreover, in [19] the authors also consider the stronger notion of affine torifi-
cation.

Definition 2.0.2 (see [19]). The torification eX is called affine if there exists an
affine covering {Uα} of X compatible with eX in the following sense: for each
affine open set Uα in the covering, there is a subfamily of tori {Tj

∣∣ j ∈ Iα} in the
torification eX such that the restriction of eX to the disjoint union of tori from
this subfamily is a torification of Uα.

2.1. Levels of torified structures. We assume that X is a variety over Z.
There are three levels of increasingly restrictive conditions in this approach based
on defining F1-structures via torifications: the basic level is a decomposition of the
class in the Grothendieck ring, the second is a geometrization of this decomposi-
tion at the level of the variety itself, and the third level includes more restrictive
conditions, such as affine and regular.

(1) Torification of the Grothendieck class: this is the weakest condition and
it simply consists of the requirement that the class [X] ∈ K0(VZ) in the
Grothendieck ring can be written as

[X] =
∑
k

akTk, (1)

where T = [Gm] = L− 1, and L = [A1] the Lefschetz motive (the class of the
affine line), and with coefficients ak ≥ 0.

(2) Geometric torification: this is the condition of Definition 2.0.1 above.

(3) Affine torification: where the geometric torification is also affine in the sense
of Definition 2.0.2.

(4) Regular torification: this is a geometric torification where one also requires
that the closure of each torus in the torification is itself a union of tori of the
torification.

Roughly, one can understand these different levels as describing stronger forms
of F1-structures based on torification. The decomposition of the class in the
Grothendieck ring reflects how one expects that Z-varieties that descend to F1

should behave with respect to motivic properties such as the zeta function and
counting of points. The notion of geometric torification introduced in [19] can be
seen as a minimal way of making this motivic behavior “geometric.” The further
level, given by the affine condition, was introduced in [19], motivated by the com-
parison between this approach to F1-geometry and the approaches developed by
Soulé in [27], and by Connes and Consani in [6]. However, in many respects, it
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would be natural to expect that varieties like Grassmannians would descend to
F1, have natural torifications coming from their cell decompositions that are not
affine. This concern justifies retaining the intermediate level of F1-structure given
by geometric torifications without the affine condition. As we shall argue later, this
level already provides a very rich and interesting structure. The regularity condi-
tion, which is independent of the affine requirement, but is usually considered for
affine torifications, was introduced in [19] as a possible way to “rigidify” the choice
of torification. We follow here a different approach based on considering different
levels of equivalence relations among torifications, hence we will not consider the
regularity condition.

2.2. Equivalent torifications and morphisms. When we consider geometric
torifications as data defining F1-structures on Z-varieties, one would like to have
a natural equivalence relation describing when two different choices of torification
on the same varieties should be regarded as defining the same F1-structure.

We first recall the notion of torified morphism introduced in [19].

Definition 2.2.1 (see [19]). A morphism of torified varieties (torified morphism)
Φ: (X, eX : TX → X) → (Y, eY : TY → Y ) is a triple Φ = (φ, ψ, {φi}), where
φ : X → Y is a morphism of Z-varieties, ψ : IX → IY is a map of the indexing sets
of the two torifications, and φj : TX,j → TY,ψ(j) is a morphism of algebraic groups,
such that φ ◦ eX |TX,j = eY |TY,ψ(j)

◦ φj .

In [19], a notion of affinely torified morphisms was also introduced: these are
torified morphisms in the sense recalled above, between affinely torified varieties,
such that, if {Uj} is an affine open covering of X compatible with the torification,
then for every j the image of Uj under Φ is an affine subscheme of Y . The following
lemma, communicated to us by Lorscheid, shows that it is not necessary to assume
this as an additional condition for torified morphisms between affine affinely torified
varieties.

Lemma 2.2.2. Let Φ: (X, eX : TX → X) → (Y, eY : TY → Y ) be a torified mor-
phism between affinely torified varieties, with {Ui} and {Vj} respective affine tori-
fied coverings. Then Φ is an affinely torified morphism.

Proof. Let Wj = Φ−1(Vj) and Uij = Ui∩Wj . Then Uij is a torified and quasi-affine
subscheme of X that maps to Vj . The collection of all Uij covers X. Consider
then Zij = Spec

(
OX(Uij)

)
. Since Uij is quasi-affine, the natural map Uij → Zij is

an embedding of Uij into the affine subscheme Zij of Ui. Moreover, the morphism
Uij → Vj extends naturally to a morphism Zij → Vj (since Vj is affine), which
means that Zij is contained in Wj . Therefore, Zij is contained in Ui ∩Wj = Uij ,
hence we have that Uij = Zij is affine, and so Φ is an affinely torified morphism.

We consider the following notions of equivalence of torifications on a given
Z-variety X.

(1) Strong equivalence: the identity morphism is torified.
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(2) Ordinary equivalence: there exists an isomorphism of X that is torified.

(3) Weak equivalence: one identifies as the same F1-structure two torifications
on a variety X such that X has a decomposition into a disjoint union of
subvarieties X =

⋃
j Xj and X =

⋃
j X
′
j , respectively compatible with the

torifications, and such that there exist isomorphisms φi : Xi → X ′i that are
torified. One considers the equivalence relation generated by these identifi-
cations.

In the case of a weak equivalence the isomorphisms on the pieces of the decom-
position do not necessarily extend to isomorphisms of the whole variety. Typical
examples of this third condition are obtained by considering cell decompositions
compatible with the torifications. For example, one can consider P1 × P1 with
the cell decomposition P1 = A0 ∪ A1 on each factor. One can then consider the
standard torification of P1 × P1 compatible with the cell decomposition and the
torification obtained by taking a torification of the diagonal and of its comple-
ment in the A2 cell, and the torification of the other cells as before. These two
torifications are related by a weak equivalence, but not by an ordinary one.

The choice of the equivalence relation above determines what morphisms of
Z-varieties can be regarded as descending to F1.

(1) Strong F1-morphisms (or strongly torified morphisms): when geometric tori-
fications are assumed to define the same F1-structure if and only if they are
strongly equivalent, morphisms of Z-varieties that define F1-morphisms are
torified morphisms in the sense of Definition 2.2.1.

(2) Ordinary F1-morphisms (or ordinarily torified morphisms): under ordinary
equivalence, F1-morphisms are all morphisms of Z-varieties that become tori-
fied after composing with isomorphisms.

(3) Weak F1-morphisms (or weakly torified morphisms): under weak equiva-
lence, F1-morphisms are morphisms of Z-varieties that become torified after
composition with weak equivalences.

In the following, we refer to the different cases above as a strong, ordinary, or
weak F1-structure, or as geometric torifications in the strong, ordinary, or weak
sense.

Example. Any toric variety has a natural torification by torus orbits. In [19], ex-
plicit affine torifications are constructed, and it is checked that toric morphisms
are compatible with them. This shows that the Losev–Manin operad {L0,n}
in [22], [23], [25] has natural descent data to F1, in the strong sense of the no-
tion of torifications and morphisms described above.

Remark 2.2.3. Considering torifications and F1-morphisms in the weak sense is
very close to imposing only the condition of torification of Grothendieck classes,
though it appears to be stronger, as our discussion of constructible torifications in
§4 will illustrate.
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Remark 2.2.4. Among the other existing approaches to F1-structures, the one
based on the notion of blueprint, developed in [21], [20]—see also Lorscheid’s chap-
ter in the present book—does not resort to decompositions into tori, and it is a
less restrictive form of F1-structure in the sense that every scheme of finite type
admits a “blue model” of finite type over F1.

2.3. Categories of geometric torifications. The different notions of mor-
phisms of torified varieties considered above lead to the following categorical for-
mulation.

Proposition 2.3.1. There are categories GT s ⊂ GT o ⊂ GT w where the objects,
Obj(GT s) = Obj(GT o) = Obj(GT w), are pairs (XZ,T ), with XZ a variety over
Z and T = {Ti} a geometric torification of XZ. Morphisms in GT s are strong
morphisms of geometrically torified spaces; morphisms in GT o are ordinary mor-
phisms of geometrically torified spaces; morphisms in GT w are weak morphisms
of geometrically torified spaces.

Proof. According to our previous discussion, strong morphisms of geometrically
torified spaces are the “torified morphisms” of Definition 2.2.1, hence the cate-
gory GT s is the category of torified varieties, as considered in [19]. Morphisms in
GT o are arbitrary compositions of torified morphisms and ordinary equivalences,
which means that they can be written as arbitrary compositions of torified mor-
phisms and isomorphisms of Z-varieties. Since composition of two such morphisms
will still be of the same kind, composition of morphisms is well defined in GT o.
Morphisms in GT s are also morphisms in GT o, but not the other way around.
Similarly, morphisms in GT w are arbitrary compositions of torified morphisms
and weak equivalences, that is, arbitrary compositions of torified morphisms and
local isomorphisms of the type described in §2.2 above. Again, composition is well
defined. Morphisms in GT s and morphisms in GT o are also morphisms in GT w,
but not conversely.

3. Grothendieck classes and torifications

In this section we consider the moduli spaces M0,n, as well as their generaliza-
tions Td,n considered in [5], from the point of view of classes in the Grothendieck
ring. The existence of a decomposition of the form (1) into tori, with non-negative
coefficients, follows from the fact that these spaces can be realized as a sequence
of iterated blowups starting from a variety that clearly admits a torification and
blowing up loci that, in turn, admit torifications. The explicit form of the de-
composition (1) mirrors the known formulae for the Poincaré polynomial and the
Euler characteristic of [24] and [5] and can be obtained by a similar argument. The
generating functions of [24] and [5] computing the Poincaré polynomials are also
related to counting points over the extensions F1m .
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3.1. The class of M0,n. A first simple observation, which will be useful in the
following, is that the open stratum M0,n by itself cannot be torifed, since it fails
the necessary condition that the class [M0,n] is torified by a decomposition (1) with
non-negative coefficients.

Lemma 3.1.1. The class [M0,n] has a decomposition into tori of the form

[M0,n] =

n−2∑
k=0

s(n− 2, k)

k∑
j=0

(
k

j

)
Tj , (2)

where s(m, k) is the Stirling number of the first kind. In particular, the open
stratum M0,n does not admit a geometric torification.

Proof. We can view M0,n as the complement of the diagonals in a product of n−3
copies of P1 \ {0, 1,∞}, hence the class in the Grothendieck ring is given by

[M0,n] = (T−1)(T−2) · · · (T−n+ 2) =

(
T− 1

n− 3

)
(n−3)! = (−1)n(1−T)n−2, (3)

where (x)m = Γ(x+m)/Γ(x) is the Pochhammer symbol, satisfying

(x)m =

m∑
k=0

(−1)m−ks(m, k)xk,

with coefficients s(m, k) the Stirling numbers of the first kind, namely the integers
such that (−1)m−ks(m, k) is the number of permutations in Sm consisting of k
cycles. Thus, we obtain

[M0,n] = (−1)n
n−2∑
k=0

(−1)n−ks(n− 2, k)(−1)k(T− 1)k,

which gives (2), where some of the coefficients are clearly negative.

3.2. The class of M0,n and F1m-points. By Lemma 3.1.1, the open stratum
M0,n by itself cannot be torified. However, when one considers the compactification
M0,n, one finds that the condition of torification of the Grothendieck class is
satisfied.

Proposition 3.2.1. The classes [M0,n] ∈ K0(VZ) fit into a generating series

ϕ(t) = t+

∞∑
n=2

[M0,n]
tn

n!
∈ K0(VZ)Q[[t]] (4)

where we write K0(VZ)Q = K0(VZ)⊗Z Q, and where ϕ(t) is the unique solution in
t+ t2K0(VZ)Q[[t]] of the differential equation(

1 + Lt− Lϕ(t)
)
ϕ′(t) = 1 + ϕ(t). (5)
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In particular, the classes [M0,n] satisfy the recursive relation

[M0,n+2] = [M0,n+1] + L
∑

i+j=n+1,i≥2

(
n

i

)
[M0,i+1][M0,j+1], (6)

and therefore have a decomposition (1) with non-negative coefficients.

Proof. The argument is analogous to the proof of [24, Theorem 0.3.1] computing
the Poincaré polynomials of M0,n. In fact, the same argument used in [24] to de-
termine the Poincaré polynomials applies to the computation of the Grothendieck
classes, using the classes of all the M0,k given in (3), which we rewrite as

[M0,k] =

(
L− 2

k − 3

)
(k − 3)!

which is the direct analog of [24, equation (1.2)] for the Poincaré polynomials.
The existence of a decomposition (1) with non-negative coefficients then follows
inductively from the fact that the classes satisfy the recursive relation (6), which
follows from (5) as in [24, Corollary 0.3.2], and from the fact that the first terms
of the recursion can be seen explicitly to have non-negative coefficients.

It would be interesting to know if the Chern class of M0,n also satisfies a similar
recursive formula and positivity property.

Remark 3.2.2. The Poincaré polynomial for M0,n can be recovered from the
Grothendieck class by formally replacing L with q2 in the resulting expression.
This fact holds more generally for smooth projective varieties whose class in the
Grothendieck ring is a polynomial [X] =

∑
k bkLk in the class L of the Lef-

schetz motive. In fact, in this case the Hodge–Deligne polynomial hX(u, v) =∑
p,q(−1)p+qhp,q(XC)upvq is given by hX(u, v) =

∑
k bk(uv)k, which implies that

XC is Hodge–Tate, namely hp,q(XC) = 0 for p 6= q. This in turn implies that the
Poincaré polynomial is given by PX(q) =

∑
k bkq

2k, hence it is obtained from the
expression for [X] by formally replacing L by q2.

The expression of Proposition 3.2.1 for the Grothendieck classes [M0,n] can
also be interpreted as giving the counting of points over “extensions” F1m . In
fact, the number of points over F1 can be obtained as the limit as q → 1 of the
function NX(q) that counts points over finite fields Fq, possibly normalized by a
power of q − 1. The value NX(1) for a polynomially-countable variety coincides
with its Euler characteristic. Similarly, one can make sense of the number of points
over F1m as the values NX(m+ 1), see [7, Theorem 4.10] and [9, Theorem 1].

Proposition 3.2.3. Let pn,m denote the number of points of [M0,n] over F1m .
The generating function

ϕm(t) =
∑
n≥1

pn,m
tn

n!

is a solution of the differential equation(
1 + (m+ 1)t− (m+ 1)ϕm(t)

)
ϕ′m(t) = 1 + ϕm(t).
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Proof. Let X be a smooth projective variety over Z whose class in the Grothendieck
group can be written as [X] =

∑
i aiLi with the ai non–negative integers. For all

but finitely many primes p and q = pr, the function that counts points of X
over a finite field Fq is then given by NX(q) =

∑
i aiq

i. Thus, we obtain the
values NX(m+ 1) counting F1m-points by formally replacing L with m+ 1 in the
expression for the Grothendieck class.

3.3. The moduli spaces Td,n. We consider here a family of varieties Td,n con-
structed in [5], which are natural generalizations of the moduli spaces M0,n.

We recall the construction of [5] of Td,n as a family of varieties whose points
parametrize stable n-pointed rooted trees of projective spaces Pd. They generalize
the moduli spaces M0,n, with the latter given by T1,n = M0,n+1. These varieties
are also closely related to the Fulton–MacPherson compactifications X[n] of con-
figuration spaces [10], in the sense that for any choice of a smooth complete variety
X of dimension d, one can realize Td,n in a natural way as a subscheme of X[n].

3.4. n-pointed rooted trees of projective spaces. A graph τ consists of the
data (Fτ , Vτ , ∂τ , jτ ) as follows: a set of flags (half-edges) Fτ ; a set of vertices Vτ ;
boundary maps ∂τ : Fτ → Vτ that associate to each flag its boundary vertex; and
finally the involution jτ : Fτ → Fτ , j2

τ = 1 that registers the matching of half-edges
forming the edges of τ . We consider here only graphs whose geometric realizations
are trees, i.e. they are connected and simply connected.

A structure of rooted tree is defined by the choice of a root tail fτ ∈ Fτ ,
jτ (fτ ) = fτ . Its vertex vτ := ∂τ (fτ ) also may be called the root .

We define the canonical orientation on the rooted trees: the root tail is oriented
away from its vertex (so it is the output); all other flags are oriented towards the
root vertex. The remaining tails are called inputs.

The output tail of a tree can be grafted to an input tail of another tree.

We say that a vertex v is a mother for a vertex v′ if v′ lies on an oriented path
from v to the root vertex v0 and the oriented path from v to v′ consists of a single
edge.

Given an oriented rooted tree τ , we assign to each vertex v ∈ Vτ a variety
Xv ' Pd. To the unique outgoing tail at v we assign a choice of a hyperplane
Hv ⊂ Xv. To each incoming tail f at v we assign a point pv,f in Xv such that
pv,f 6= pv,f ′ for f 6= f ′ and we require pv,f /∈ Hv, for all f at v.

We think of an oriented rooted tree τ , with Sτ the finite set of incoming tails
of τ of cardinality n, as an n-ary operation that starts with the varieties Xvi ' Pd
attached to the input vertices vi, i = 1, . . . ,m ≤ n, and glues the hyperplane
Hvi ⊂ Xvi to the exceptional divisor of the blowup of Xwi at the point pwi,fi
where wi is the target vertex of the unique outgoing edge of vi and fi is the flag
of this edge with ∂τ (fi) = wi, ingoing at wi. The operation continues in this way
at the next step, by gluing the hyperplanes Hwi to the exceptional divisor of the
blowups of the projective spaces of the following vertex. At each vertex that has
an incoming tail, the corresponding variety acquires a marked point. The variety
obtained by this series of operations, when one reaches the root vertex, is the
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output of τ . It is endowed with n marked points from the incoming tails and with
a given hyperplane from the outgoing tail at the root. In the terminology of [5],
the output Xτ of an oriented rooted tree τ with n incoming tails is an n-pointed
rooted tree of d-dimensional projective spaces.

The stability condition for Xτ is the requirement that each component of Xτ

contains at least two distinct markings, which can be either marked points or
exceptional divisors. By [5, Proposition 2.0.5], this condition is equivalent to the
absence of nontrivial automorphisms of Pd fixing a hyperplane pointwise, that is,
translations and homotheties in Ad.

The variety Td,n is defined in [5, Theorem 3.4.4] as the moduli space of n-
pointed stable rooted trees of d-dimensional projective spaces.

3.5. The class of Td,n and F1m-points. In [5], the Poincaré polynomials of the
varieties Td,n are computed, generalizing the result of [24] on the Poincaré poly-
nomial of the moduli spaces M0,n. Again, the classes [Td,n] in the Grothendieck
ring can be computed with the same technique, which shows that they satisfy the
torification condition. One also obtains the counting of points over F1m .

Proposition 3.5.1. (1) For fixed d, the classes [Td,n] ∈ K0(VZ) form a generating
function

ψ(t) =
∑
n≥1

[Td,n]
tn

n!
(7)

in K0(VZ)Q[[t]], which is the unique solution in t+ t2K0(VZ)Q[[t]] of the differential
equation (

1 + Ldt− L[Pd−1]ψ(t)
)
ψ′(t) = 1 + ψ(t), (8)

where [Pd−1] = Ld−1
L−1 .

(2) The classes [Td,n] ∈ K0(VZ) have a decomposition (1) with non-negative
coefficients.

(3) For a fixed d, denote by pn,m the number of points of Td,n over F1m and
form the generating function

ηm(t) =
∑
n≥1

pn,m
n!

tn.

This function is a solution of the differential equation

(1 + (m+ 1)dt− (m+ 1)κd(m+ 1)ηm)η′m = 1 + ηm,

with κd(q
2) = q2d−1

q2−1 .

Proof. (1) Thanks to [5, Theorem 5.0.2 and Corollary 5.0.3] we know that, for a
fixed d and for n ≥ 2, the generating series

ψ(q, t) =
∑
n≥1

Pn(q)

n!
tn,
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for the Poincaré polynomials Pn(q) := PTd,n(q), with P1(q) = 1, is the unique
solution in t+ t2Q[q][[t]] to the differential equation

(1 + q2dt− q2κd(q
2)ψ)∂tψ = 1 + ψ,

where κd(q
2) is the Poincaré polynomial of Pd−1. This result is obtained using the

description of the varieties Td,n as iterated blowups, given in [5, Theorem 3.6.2].
The same construction of Td,n, using the blowup formula for the Grothendieck
class,

[BlY (X)] = [X] + [Y ]
(
[PcodimX(Y )−1]− 1

)
, (9)

gives an analogous result for the classes. Namely, the relation

Pn+1(q) = (κd+1 + nq2κd−1)Pn(q) + q2κd
∑

i+j=n+1,2≤i≤n−1

(
n

i

)
Pi(q)Pj(q)

satisfied by the Poincaré polynomials, as shown in [5], is replaced by the analogous
relation for the Grothendieck classes

[Td,n+1] =
(
[Pd] + nL[Pd−2]

)
[Td,n] + L[Pd]

∑
i+j=n+1,2≤i≤n−1

(
n

i

)
[Td,i][Td,j ]. (10)

These relations, for Poincaré polynomials and Grothendieck classes, respectively,
can be seen from the inductive presentation of the Chow group and the motive
of Td,n given in [5, §4], with (10) following from the formula for the motive given
in [5, Theorem 4.1.1].

(2) The existence of a decomposition (1) of [Td,n] with non-negative coefficients
then follows from the fact that these classes satisfy the recursive relation (10),
analogous to (6), which can be used to prove the statement inductively, as in the
case of M0,n.

(3) The counting NTd,n(m+1) of F1m-points is obtained, as in the case of M0,n,
by formally replacing L with m+ 1 in the expression for the Grothendieck classes,
or equivalently by replacing q2 with m+ 1 in the Poincaré polynomial.

4. Complemented subspaces and constructible sets

In Borger’s approach to F1-geometry via Λ-rings, [2], one has a notion of comple-
mented F1-points. Namely, a sub-Λ-space Y ⊂ X is complemented if the comple-
ment X \Y admits a Λ-space structure so that the map X \Y ↪→ X is a morphism
of Λ-spaces. In the case of toric varieties, with the Λ-space structure determined
by the torus orbits, the complemented subspaces are unions of closures of torus
orbits. In particular, the “complemented F1-points” are the fixed points of the
torus action, whose number equals the Euler characteristic.

The approach to F1-geometry via torifications is weaker than the approach via
Λ-rings. For example, as observed in [2, Example 2.8], with the exception of projec-
tive spaces, flag varieties do not admit a Λ-space structure, though they certainly
admit (non-affine) geometric torifications. However, it is possible to consider an
analogous notion of complemented subspaces in the setting of torifications.
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4.1. Complemented F1-points and torifications. Our use, in the previous
section, of the decomposition into tori of the class in the Grothendieck ring in
order to count F1m-points is based on thinking, as in [7], [9], of this counting as
being given by the values NX(m + 1) of the polynomial NX(q) counting points
over Fq. In terms of Grothendieck classes, we obtained the counting of F1m-points
as

#X(F1m) = [X]|T=m =
∑
k

akm
k, (11)

by formally replacing the variable T with m in the expression [X] =
∑
k akTk,

with ak ≥ 0 for the Grothendieck class. The case of points over F1 corresponds to
m = 0, with #X(F1) = [X]|T=0 = a0 = χ(X). Essentially, this means that, for a
variety X with a torification, only the 0-dimensional points contribute to F1-points,
while each k-dimensional torus T k of the torification with k > 0 contributes m
points over F1m for each m ≥ 1. This is related to the general philosophy that
the extensions F1m are related to actions of the groups µm of mth roots of unity,
see [15] and more recently [8], [25].

This leads to a natural generalization of the notion of complemented F1-points
in the context of torifications. The counting formula (11) implies that, according
to this notion, F1-points are points of X such that the Grothendieck class of
the complement of these points still admits a decomposition into tori with non-
negative coefficients. At the level of geometric torifications, it is natural therefore
to introduce a stronger notion of complemented points as follows.

Definition 4.1.1. Let X be a variety over Z, with a geometric torification. A
finite set of points S is strongly (resp. ordinarily, weakly) complemented if the
complement X\S also has a geometric torification, such that the inclusion X\S ↪→
X is a strongly (resp. ordinarily, weakly) torified morphism.

For example, if we consider P1 with a torification given by the choice of two
points, each of these two points is a strongly complemented F1-point, while any
other point would be an ordinarily complemented F1-point, since the complement
can be torified and the inclusion becomes a torified morphism after composing with
an isomorphism of P1.

4.2. Complemented torifications. Similarly, one has a notion of complemented
subspace in a torified variety. Torifications behave well with respect to blowups
along complemented subspaces.

Definition 4.2.1. Let X be a variety over Z with a geometric torification. A
subvariety Y ⊂ X is said to be strongly (resp. ordinarily, weakly) complemented
if both Y and the complement X \ Y have a geometric torification, so that the
inclusions Y ↪→ X and X \ Y ↪→ X are strongly (resp. ordinarily, weakly) torified
morphisms.

On a variety that has a geometric torification compatible with a Λ-structure,
the complemented condition for sub-Λ-spaces of [2] implies the strong form of
complementation of Definition 4.2.1.
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Example. Consider Pn with a torification T = {Ti} and Pn × Pn with the torifi-
cation {Ti× Tj}. The diagonal ∆ ⊂ Pn×Pn is weakly complemented, but neither
ordinarily nor strongly complemented. In the big cell An×An with the product tori-
fication, the diagonal is ordinarily complemented but not strongly complemented.

We have the following behavior of torifications with respect to blowups.

Proposition 4.2.2. Let X be a variety over Z with a geometric torification and
let Y ⊂ X be a strongly (resp. ordinarily, weakly) complemented subspace. Then
the torifications of Y and of X \ Y for which the inclusions are strongly (resp.
ordinarily, weakly) torified morphisms determine a geometric torification of the
blowup BlY (X) of X along Y , such that the morphism π : BlY (X)→ X is strongly
(resp. ordinarily, weakly) torified.

Proof. It suffices to show that the strongly (resp. ordinarily, weakly) compatible
torifications of X, Y determine a torification of the exceptional divisor of the
blowup, since the complement is then torified by the torification of X \ Y . Thus,
we consider the projectivized normal bundle P

(
NX(Y )

)
. The restriction of the

bundle over the tori of the torification of Y is trivial, hence P
(
NX(Y )

)
can be

torified by the products of the tori in the torification of Y with the tori in a
torification of PcodimX(Y)−1.

The blowup operation does not behave well with respect to geometric torifica-
tions in the non-complemented case. For example, the blowup of a 2-dimensional
torus at a point does not have a torification compatible with the blowup morphism,
even in the weak sense.

4.3. Geometric torifications of stable curves of genus zero. The fibers of
the forgetful morphism M0,n+1 →M0,n consist of the stable curves of genus zero.
We show that these admit geometric torifications. In general, these torifications
are neither regular nor affine.

Lemma 4.3.1. Let C be a stable (pointed) curve of genus zero. A choice of
a rooted tree, for a torification of P1, and of a point in each other component
determines a geometric torification of C.

Proof. A geometric torification of C is obtained by identifying C with a tree of P1

with marked points, choosing a root vertex and a torification of the P1 at the root,
for which the two 0-dimensional tori are away from the intersection points with
other components (and from the additional marked points), and then by choosing
at each adjacent vertex a torification given by a torification of the complement
of the intersection point with the P1 of the root vertex, with the 0-dimensional
torus chosen away from the intersection points with other P1’s (and away from the
additional marked points), and so on.

These torifications reflect the decomposition into tori of the class [C] in the
Grothendieck ring: a tree of P1 with N vertices has class [C] = NT +N + 1.
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4.4. Marked points, F1m-points, and constructible sets. When considering
stable curves of genus zero with n marked points, the geometric torifications con-
sidered in Lemma 4.3.1 do not reflect the presence of the marked points, as these
are not part of the torification. However, in order to descend to F1 the notion
of marked points, we need to ensure that the stable curve C has enough points,
possibly after passing to an extension to some F1m .

Lemma 4.4.1. If C is a tree of P1 with N vertices, then the number of points
of C over F1m is N(m+ 1) + 1.

Proof. This follows from the same argument used before, computing the number
of points over F1m from the Grothendieck class by formally replacing L = T + 1
with m+ 1.

In particular, in the case of a single P1 the number of points over F1m is m+ 1.
Thus, when we consider stable curves of genus zero with n marked points, one
should work with an extension F1m with m ≥ n − 1. Passing to an extension
in this way is necessary in order to have a morphism induced by the action of Sn
that permutes points. We will discuss more precisely the nature of such morphisms
below. This phenomenon is similar to what happens in [6], where Chevalley groups
define varieties over the extension F12 . Notice that, even after considering F1m -
points so as to ensure the existence of the correct number of marked points, one
needs to work with points that are not necessarily complemented.

In the usual case of algebraic varieties, the complement of an algebraic variety
inside another may not determine an algebraic variety, but a constructible set.
When we consider stable curves of genus zero with marked points, the fact that
the points are not complemented means that the complement does not define an
F1-variety. However, one expects that it will define an F1-constructible set, in an
appropriate sense. We show in the rest of this section how one can define a suitable
notion of F1-constructible sets, by relaxing the notion of geometric torification,
while retaining intact the decomposition of the class in the Grothendieck ring.

5. Constructible sets over F1 and torifications

The need to consider points that are not complemented in the case of the tori-
fications of stable curves of genus zero, suggests that one should take into con-
sideration a further level of structure that lives in between the coarse condition
about the decomposition of the Grothendieck class into a sum of tori with non-
negative coefficients and the geometric torifications, which allows for a larger class
of complemented subspaces and provides a suitable notion of F1-constructible set.

Starting from the observation that torifications behave well with respect to
products and disjoint unions, but not with respect to complements, one can in-
troduce a weaker notion of constructible torification, which is similar conceptually
to the usual way of passing from a semigroup to a group. Recall that every con-
structible subset C of an algebraic variety determines a class in the Grothendieck
ring K0(VZ) of varieties.
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Definition 5.0.2. Let CF1
be the class of constructible sets over Z that can be

obtained, starting from Gm, through the operations of products, disjoint unions,
and complements. Let X be a constructible set over Z. A constructible torification
of X is a morphism of constructible sets eX : C → X from an element C ∈ CF1

to X such that the restriction of eX to each component of C is an immersion and
eX induces a bijection of k-points, eX(k) : T (k)

∼−→ X(k), for every field k. An
F1-constructible set is a constructible set over Z together with a constructible tori-
fication, with the property that the class [X] in the Grothendieck ring of varieties
K0(VZ) has a decomposition (1) in classes of tori, with non-negative coefficients.

The class CF1 considered above includes all tori, as well as all the comple-
ments of disjoint unions of tori inside other tori, all products of such sets, and so
on. F1-constructible sets are built out of these building blocks, with the require-
ment that the positivity condition on the tori decomposition of the Grothendieck
class holds.

As in the case of geometric torifications, one assigns an equivalence relation
between constructible torifications that corresponds to defining the same structure
of F1-constructible sets. This can be done in a strong, ordinary and weak form,
following the analogous definitions for geometric torifications.

Definition 5.0.3. Let X and Y be constructible sets over Z, endowed with con-
structive torifications. A morphism f : X → Y is said to be a strong morphism of
F1-constructible sets if for each component Cj of the constructible torification of
Y , f−1(Cj) is a disjoint union of components of the partial torification of X. Let
X be a variety over Z. Two constructible torifications of X are strongly equiva-
lent if the identity on X is a strong morphism of F1-constructible sets. They are
ordinarily equivalent if there is an isomorphism of X that is a strong morphism of
F1-constructible sets, and they are weakly equivalent if there are decompositions
{Zk} and {Z ′k} of X compatible with the constructible torifications, and isomor-
phisms φk : Zk → Z ′k that are strong morphisms of F1-constructible sets. An
ordinary morphism of F1-constructible sets is a morphism f : X → Y such that
ψ ◦ f ◦ φ is a strong morphism of F1-constructible sets, for some isomorphism φ of
X and some isomorphism ψ of Y . A weak morphism of F1-constructible sets is a
morphism f : X → Y such that ψk ◦ f ◦ φ` is a strong morphism, where ψk and φ`
are isomorphisms of pieces of decompositions of Y and X, respectively, compatible
with the constructible torification.

The following result on blowups for constructive torifications will be useful
later.

Lemma 5.0.4. Let X be a variety over Z with a constructible torification. Let
Y ⊂ X be a closed subvariety, such that X \ Y has a constructible torification and
Y has a geometric torification and the inclusions are strong (resp. ordinary, weak)
morphisms of constructibly torified spaces. Then these torifications determine a
constructible torification of the blowup BlY (X) so that the map π : BlY (X) → X
is a strong (resp. ordinary, weak) morphism of constructibly torified spaces.
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Proof. The argument is as in Proposition 4.2.2. The exceptional divisor, which
we identify with P

(
NX(Y )

)
, has a geometric torification, since it is trivial when

restricted to the tori of the geometric torification of Y . The constructible torifica-
tion of X \ Y extends the torification of the exceptional divisor to a constructible
torification of BlY (X).

For this construction to extend to the case where the blowup locus Y has a
constructible torification, one would need to ensure that the bundle P

(
NX(Y )

)
is trivial when restricted to the components Ci ∈ CF1 of the decomposition of Y .
This is the case, for instance, when the complements of unions of tori inside other
tori in the sets Ci extend to actual (not necessarily disjoint) tori in Y .

5.1. Categories of constructible torifications. As in the case of geometric
torifications, the different notions of morphisms of constructible torifications give
rise to different categories.

Proposition 5.1.1. There are categories CT s ⊂ CT o ⊂ CT w where the ob-
jects Obj(CT s) = Obj(CT o) = Obj(CT w) are pairs (XZ,C ), where XZ is a
constructible set over Z and C = {Ci} is a constructible torification of XZ, in the
sense of Definition 5.0.2. Morphisms in CT s are strong morphisms of constructibly
torified spaces; morphisms in CT o are ordinary morphisms of constructibly torified
spaces; morphisms in CT w are weak morphisms of constructibly torified spaces.

Proof. Strong morphisms of constructibly torified spaces are as in Definition 5.0.3.
The torified condition is preserved by composition. Morphisms in CT o are ar-
bitrary compositions of strong morphisms and isomorphisms of Z-constructible
sets, hence composition is also well-defined. These are the ordinary morphisms of
constructibly torified spaces, as in Definition 5.0.3. Morphisms in CT s are also
morphisms in CT o, but in general not conversely. Similarly, morphisms in CT s

are arbitrary compositions of strong morphisms and weak equivalences, in the sense
of Definition 5.0.3. Composition is well defined and the morphisms in CT s and in
CT o between any pair of objects form a proper subset of the morphisms in CT w

between the same objects.

6. Constructible torifications of moduli spaces

We apply the notion of F1-constructible sets introduced above in order to define
F1-structures on the moduli spaces M0,n and on their generalizations Td,n.

6.1. Constructible torification of M0,n. As we have seen, stable curves of
genus zero with marked points are F1-constructible sets. It is therefore natural to
seek a realization of the moduli spaces M0,n in F1-geometry as F1-constructible
sets. We show that the moduli spaces M0,n have a constructible torification,
underlying the decomposition of the Grothendieck class into tori.
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Theorem 6.1.1. The moduli spaces M0,n are F1-constructible sets with a con-
structible torification determined by the choice of a constructible torification of P1

minus three points.

Proof. For n ≥ 4, we identify M0,n with the complement of the diagonals in the
product of n−3 copies of P1 minus three points. The complement of three points in
P1 is an F1-constructible set, with a constructible torification given by two points
and the complement of one point in a 1-dimensional torus. The product of n − 3
copies of P1 \{0, 1,∞} in turn has the product constructible torification. When we
remove the diagonals, this corresponds to taking complements of sets in the class
CF1 inside other sets in the same class, hence we still obtain a set in CF1 . This
does not define a structure of F1-constructible sets on the open stratum M0,n by
itself, because the positivity condition on the class [M0,n] is not satisfied. However,
we consider the constructible torification of M0,n together with the constructible
torifications obtained in this same way on all products

∏
iM0,ki+1 with

∑
i ki = n,

of the lower-dimensional strata and we obtain a constructible torification of M0,n,
which also satisfies the positivity condition on the Grothendieck class, by Propo-
sition 3.2.1. Thus, M0,n is an F1-constructible set.

6.2. Constructible torification of Td,n. We extend here the construction of
geometric torifications described above for M0,n to the case of the Td,n of [5].

We have seen that n-pointed stable curves of genus zero define F1-constructible
sets by a choice of a geometric torification of the underlying tree of P1, the con-
structible torification given by taking the complement of the marked points in the
geometric torification. One has an analogous construction for the n-marked stable
trees of projective spaces described in §3.4.

Proposition 6.2.1. Let Γ be an n-marked stable tree of projective spaces. Then Γ
defines an F1-constructible set with a constructible torification determined by the
choice of a torification TPd .

Proof. Given an oriented rooted tree τ , at the root vertex v0 we assign a choice
of a torification TPd = {Ti} of Xv0

' Pd, with a compatible torification of the
hyperplane Hv0

at the unique outgoing tail at v0. We then replace the torification
TPd of Xv0

by a constructible torification of the complement in Xv0
of the marked

points corresponding to all the incoming tails at v0, by replacing the tori Ti of
the torification that contain a subset {pv0,f,i} of the marked points with the sets
Ci ∈ CF1 given by the complements Ci = Ti \

⋃
pv0,f,i.

By construction, the marked points on Xv0
are distinct and not contained in

the hyperplane Hv0
. We then consider the blowup of Xv0

at the marked points
corresponding to incoming edges of the tree. By Lemma 5.0.4, the constructible
torification of the complement of the marked points determines a constructible
torification on the blowup. One then considers the adjacent vertices vi, and glues
the hyperplanes Hvi to the exceptional divisor of the blowup of Xv0

at the tail
mark of the edge from vi to v0, so as to match the torification of Hvi with a piece
of the torification of the exceptional divisor. One continues in this way for all the
other vertices.
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We also obtain a constructible torification of Td,n, by a construction similar to
what we have for M0,n.

Theorem 6.2.2. The moduli spaces Td,n are F1-constructible sets with a con-
structible torification determined by the choice of a constructible torification of Ad
minus two points.

Proof. The open stratum THd,n of Td,n is the configuration space of n distinct
points in Ad up to translation and homothety, or equivalently of all embeddings of
a hyperplane H and n distinct points not on the hyperplane in Pd, up to projective
automorphisms that pointwise fix H. Fixing two points in Ad suffices to fix the
symmetries, since fixing the origin 0 = (0, . . . , 0) eliminates translations and fixing
another point, for instance 1 = (1, . . . , 1), takes care of homotheties. Thus, we can
identify the open stratum with

THd,n ' (Ad \ {0,1})n−2 \∆, (12)

the complement of all the diagonals ∆ in the product of n− 2 copies of Ad minus
two points.

In the case where d = 1, this gives back the usual description of M0,n+1 =
THd,n as the complement of the diagonals in a product of copies of P1 \ {0, 1,∞}.
A choice of a constructible torification on the complement of two points in Ad
then determines constructible torifications on the products, on the diagonals, and
on the complements. As shown in [5], the compactification Td,n has boundary
components isomorphic to products Td,n1

× Td,n2
with n1 + n2 = n. Thus, by

considering constructible torifications on all the open strata∏
i

THd,ni with
∑
i

ni = n,

we obtain a constructible torification of Td,n. The condition of positivity of the
Grothendieck class is not in general satisfied by the individual THd,k and their
products, but it is satisfied by Td,n itself, because of Proposition 3.5.1. Thus, the
moduli spaces Td,n have a structure of F1-constructible sets.

7. Morphisms and operad structure

We show that the constructions of torifications described in the previous section
are compatible with the operad structures.

Let an operad P, in the symmetric monoidal category of varieties over Z with
Cartesian product, be given. Its descent data to F1 consist of affine torifications
such that the composition operations

P(n)×P(m1)× · · · ×P(mn) −→P(m1 + · · ·+mn)

and the structure actions of symmetric groups are morphisms of affinely torified
varieties. This is a “tourist class” description of [26]. A more systematic treatment
requires the explicit introduction of a category of labeled graphs as in [3].
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7.1. Categories of trees and operads. We consider a category Γ, whose ob-
jects are finite disjoint unions of oriented rooted trees. The morphisms are gen-
erated by edge contractions and graftings. The grafting of an oriented tree τ to
another oriented tree σ is realized by the morphism h : τ q σ → τ#v0,wσ, where
the involution jh matches the outgoing tail of the root vertex v0 of τ with an
ingoing tail of a vertex w of σ. The edge contractions are given by morphisms
he : τ → τ/e, where the edge e is a jτ -orbit e = {f, f ′} of flags f, f ′ ∈ Fτ , such
that Fτ \ hFe (Fτ/e) = {f, f ′}, the map h−1

e,F : hFe (Fτ/e)→ Fτ/e is the identity, and
he,V : Vτ → Vτ/e maps ∂τ (f) and ∂τ (f ′) to the same vertex in τ/e.

It is shown in [26, Section IV.2] that the datum of an operad is equivalent to a
monoidal functor M from a category of trees (forests) with the symmetric monoidal
structure given by disjoint union and morphisms generated by graftings and edge
contractions, to a symmetric monoidal category (C ,⊗), with the condition that

M (τ) =
⊗
v∈Vτ

M (τv),

where τv is the star of the vertex v, see [26, Proposition IV.2.4.1]. The operad
composition is identified with the image M (ψ) of the morphism ψ that assigns to
a disjoint union of corollas τ q τ1 · · · q τn the corolla obtained by first grafting the
outgoing tails of the component τk to the kth ingoing tail of τ and then contracting
all the edges.

7.2. Operad morphisms of M0,n. We now consider the composition maps
that give the operad structure of the moduli spaces M0,n and see that these are
also compatible with the structure of F1-constructible sets described above.

Theorem 7.2.1. Let M (n) = M0,n+1. The composition morphisms of the operad

M (n)×M (m1)× · · · ×M (mn) −→M (m1 + · · ·+mn)

are strong morphisms of constructibly torified spaces, with respect to the con-
structible torifications of Theorem 6.1.1. Thus, the operad M (n) descends to an
operad of F1-constructible sets, in the category CT s of Proposition 5.1.1.

Proof. The constructible torification of M0,n, obtained as in Theorem 6.1.1, is
built out of constructible torifications of the open strata M0,k and their products,
so that one has a family of compatible constructible torifications on the open strata∏
kM0,nk+1 with

∑
k nk = n. This implies that the inclusions of the boundary

strata
∏
kM0,nk+1 are compatible with the constructible torifications, hence they

are strong morphisms of F1-constructible sets.

The symmetric group Sn acts on M0,n by permuting the marked points.

Proposition 7.2.2. The elements of the symmetric group Sn act on M0,n as
ordinary morphisms of F1-constructible sets, that is, morphisms in the category
CT o of Proposition 5.1.1.
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Proof. The constructible torification of M0,n described in Theorem 6.1.1 is ob-
tained from a constructible torification of P1 \ {0, 1,∞} given by the points 0,∞
as 0-dimensional tori and by the complement Gm \ {1} of a 0-dimensional torus
in a 1-dimensional torus as the remaining piece of the decomposition into sets of
CF1 . The action of an element σ ∈ Sn on M0,n is a permutation of the n marked
points and is therefore given by an isomorphism of M0,n that sends this choice of
a constructible torification into a different choice, obtained by a different initial
choice of constructible torification of P1 \ {σ(0), σ(1), σ(∞)} and a permutation of
the factors in the product (P1 \ {0, 1,∞})n−3. Thus, the permutation group Sn
acts on M0,n by ordinary (not strong) morphisms of F1-constructible sets.

7.3. Operad morphisms of Td,n. The varieties Td,n have natural morphisms
defining an operad structure that generalizes the operad of M0,n. We use here, for
convenience, the notation Td,S , with S the set of marked points, with #S = n.

Theorem 7.3.1. For each fixed d ≥ 1, there are morphisms of the following form,
which determine an operad Td:

(1) isomorphisms: Td,S
∼−→ Td,S′ for S′

∼−→ S, functorial with respect to the
bijections of labeling sets.

(2) embeddings: Td,S′ × Td,S\S′∪{?} ↪→ Td,S, for S′ ⊂ S with #S′ ≥ 2.
(3) forgetful morphisms: Td,S → Td,S′ for S′ ⊂ S with #S′ ≥ 2.
These morphisms satisfy the standard identities.

Proof. The existence of morphisms of the form (1) is clear by construction. The
cases (2) and (3) follow from the boundary stratification of these varieties con-
structed in [5, Theorem 3.3.1]. In fact, the boundary of a variety Td,S is given
by smooth normal crossings divisors: given any proper subset S′ ⊂ S, there is
a nonsingular divisor Td,S(S′) ⊂ Td,S . These divisors meet transversely and the
only non-empty intersections Td,S(S1) ∩ · · · ∩ Td,S(Sr) occur when the sets Sk are
nested (each pair is either disjoint or one is a subset of the other). The divisors
satisfy Td,S(S′) ' Td,S′ × Td,S\S′∪{?}. This gives the morphisms (2) coming from
the inclusion of the strata. In terms of morphisms of oriented rooted trees, these
correspond to the morphisms that graft the outgoing tail of the first tree with the
set of incoming tails identified with S′ to the incoming tail marked by ? in the
second tree. The forgetful morphisms (3) come from the construction of Td,S∪{?}
from Td,S via a sequence of iterated blowups, as in [5, Theorem 3.3.1]. The compo-
sition of the projections of this sequence of blowups gives the forgetful morphism
Td,S∪{?} → Td,S . In terms of rooted trees of projective spaces, these correspond
to forgetting some of the marked points and contracting the resulting unstable
components.

Using the functorial characterization of operads which can be found in [26,
Proposition IV.2.4.1], let (C ,⊗) be the symmetric monoidal category of algebraic
varieties with the Cartesian product, and let (Γ,q) be the category of oriented
rooted forests with disjoint union. The embeddings of the strata determine the
morphisms Td(ψ), where ψ is the morphism of oriented rooted trees that assigns
to a disjoint union of oriented corollas τ q τ1 · · · q τn, where each corolla has only
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one outgoing tail, the corolla obtained by first grafting the outgoing tails of the
component τk to the kth ingoing tail of τ and then contracting all the edges. This
assignment determines the operad composition operations

Td,S × Td,S1 × · · · × Td,Sn −→ Td,S1∪···∪Sn ,

where n = #S is the number of incoming tails of the trees of projective spaces
parametrized by Td,S .

Theorem 7.3.2. The operad composition operations

Td,k × Td,n1
× · · · × Td,nk −→ Td,n1+···+nk (13)

are strong morphisms of constructible torifications, hence they define strong mor-
phisms of F1-constructible sets, that is, morphisms in the category CT s of Propo-
sition 5.1.1.

Proof. We consider the structure of F1-constructible sets on the moduli spaces
Td,n given by the constructible torification obtained as in Theorem 6.2.2. Since
this is built as a collection of compatible constructible torifications on all the
boundary strata of Td,n, we see that the operad composition operations (13), which
are obtained from the morphisms of type (2) of Theorem 7.3.1, are inclusions of
boundary strata, hence compatible with the constructible torification.

The result above accounts for the morphisms of type (2) in Theorem 7.3.1.
The morphisms of type (1) and (3) also determine morphisms of constructible
torifications.

Proposition 7.3.3. Morphisms of type (1) in Theorem 7.3.1 are ordinary (not
strong) morphisms of F1-constructible sets. Morphisms of type (3) of Theorem
7.3.1 are strong morphisms of F1-constructible sets, that is, morphisms in the cat-
egory CT s of Proposition 5.1.1.

Proof. The case of morphisms of type (1) is analogous to the case of morphisms
permuting the marked points of M0,n, and for the same reason they are ordi-
nary (not strong) F1-morphisms. Morphisms of type (3) are the forgetful mor-
phisms Td,n+1 → Td,n that forget one of the marked points and contract the
unstable components. The restrictions of these projection maps to the open strata
THd,n and

∏
i THd,ni , with

∑
i ni = n and ni ≥ 2, are given by projections

(Ad \ {0,1})nj−2 \∆ → (Ad \ {0,1})nj−3 on one of the factors with nj > 2. By
construction of the constructible torifications on the Td,n given in Theorem 6.2.2,
these projections are morphisms of F1-constructible sets.

8. Moduli spaces and wonderful compactifications

Another approach to defining F1-structures on the operads of the moduli spaces
M0,n and of the Td,n is based on the construction of the moduli spaces Td,n as
iterated blowups and their relation to the Fulton–MacPherson compactifications.
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8.1. Moduli spaces Td,n and Fulton–MacPherson spaces. Let us denote
by X[S] the Fulton–MacPherson space. We describe its construction in terms of
iterated blowups, following the general construction for graph configuration spaces
used in [17], [18] and in [4], in the special case of the complete graph. One starts
with the product XS of n = #S copies of X and considers all diagonals ∆S′ ⊂ XS

for all subsets S′ ⊆ S, given by ∆S′ = {x ∈ XS
∣∣ xi = xj , ∀ i, j ∈ S′}. Upon

identifying the subset S′ with the set of vertices of a subgraph ΓS′ ⊂ ΓS , where ΓS
is the complete graph on the set S of vertices, the diagonal ∆S′ is identified with
a product XVΓS/Γ

S′ where the quotient graph ΓS/ΓS′ is obtained by identifying
all of ΓS′ with a single vertex. Consider the set GS of all subgraphs ΓS′ that are
biconnected (that is, that cannot be disconnected by removing the star of any one
vertex) and choose an ordering GS = {ΓS′

1
, . . . ,ΓS′

N
} such that if Si ⊇ Sj , then

the indices are ordered by i ≤ j. By dominant transform of a subvariety under a
blowup one means the proper transform if the variety is not contained in the blowup
locus, and the inverse image otherwise (see [17, Definition 2.7]). It was shown
in [17, Theorem 1.3 and Proposition 2.13] (see also [4, Proposition 2]) that the se-
quence of blowups Y (k) with Y (0) = XS and Y (k+1) obtained by blowing up Y (k)

along the dominant transform of ∆S′
k
, gives Y (N) = X[S], the Fulton–MacPherson

compactification. Let D(S′) be the divisors on X[S] obtained as iterated dom-
inant transforms of the diagonals ∆S′ , for ΓS′ in GS . By [17, Theorem 1.2]
and [4, Proposition 4], the intersections D(S′k1

) ∩ · · · ∩ D(S′kr ) are non-empty if
and only if the collection of graphs N = {ΓS′

k1
, . . . ,ΓS′

kr
} forms a GS-nest , that

is, it is a set of biconnected subgraphs of type ΓS′ such that any two subgraphs are
either disjoint, or they intersect at a single vertex, or one is contained as subgraph
in the other (see [17, Section 4.3] and [4, Proposition 3]). The varieties Td,S can
be identified with the fibers of the projection π : D(S) → X ' ∆S ⊂ XS , for any
smooth variety X of dimension d. In particular, we can use X = Pd.

8.2. Blowup of diagonals and torifications. The wonderful compactification
X[n] for X = Pd is obtained as described above, as an iterated sequence of blowups
of the dominant transforms of the diagonals that correspond to all the biconnected
subgraphs of the complete graph on n vertices.

Lemma 8.2.1. The choice of a geometric torification of projective spaces com-
patible with their cell decomposition determines a geometric torification of the
blowup Bl∆

(
(Pd)n

)
of a diagonal ∆ inside the product (Pd)n. The morphism

π : Bl∆
(
(Pd)n

)
→ (Pd)n is a weak F1-morphism, with respect to the product torifi-

cation on the base.

Proof. The diagonal itself can be identified with a product of copies of Pd, so it has
a geometric torification induced by the choice of torification of Pd. The exceptional
divisor of the blowup then also has a geometric torification, determined by the
torification of ∆ and a torification of Pcodim(∆), as in Proposition 4.2.2. Thus, we
need to check that the complement (Pd)n \ ∆ also has a geometric torification.
It suffices to show this for the deepest diagonal, as in other cases one can split
off a factor that can be torified as a product of copies of Pd. Consider the cell
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decomposition Pd =
⋃d
i=0 Ak and the induced cell decomposition of (Pd)n. The

deepest diagonal meets the cells (Ak)n of this decomposition. Thus, to construct
a geometric torification of (Pd)n \∆ we can use the product torification on all the
cells

∏n
i=1 Aki with not all the ki the same, and construct a torification of the

complements of the diagonal in the affine spaces (Ak)n \∆k, with ∆k = ∆∩ (Ak)n.
This can be achieved by a change of variables from the standard torification of the
product of affine spaces. Thus, if we consider the product torification on (Pd)n,
the morphism π : Bl∆

(
(Pd)n

)
→ (Pd)n is compatible with torifications only in the

weak sense: there is a decomposition (the cell decomposition) of the variety such
that there are isomorphisms on the pieces of the decomposition which perform the
change of torification that makes the morphism torified, but these isomorphisms
do not extend globally to the variety.

Thus, in a construction of geometric or constructible torifications on the com-
pactifications Pd[n] based on iterated blowups, as in [1] the maps π : Pd[n]→ (Pd)n
will only be weak F1-morphisms, that is, morphisms in the category CT w of Propo-
sition 5.1.1.

9. Blueprint structures

As recalled in Remark 2.2.4, one can also consider the less restrictive approach to
F1-structures based on blueprints as in [21]. Here we make explicit a blueprint
structure of M0,n based upon explicit equations for M0,n, as in [12], [16]. We also

describe a blueprint structure on the genus-zero boundary M
0

g,n+1 of the higher-
genus moduli spaces, using a crossed product construction.

Recall that a blueprint A �R is constructed by considering a commutative mul-
tiplicative monoid A and the associated semiring N[A ], together with a set of re-
lations R ⊂ N[A ]×N[A ], written as relations

∑
ai ≡

∑
bj , for (

∑
ai,
∑
bj) ∈ R.

Much more details on blueprints can be found in Lorscheid’s contribution to
this volume.

9.1. M0,n and toric varieties. In [12], [13] and [29], one considers a simplicial

complex ∆̃ with the set of vertices I =
{
I ⊂ {1, . . . n}, 1 ∈ I,#I ≥ 2,#Ic ≥ 2

}
and with simplexes σ ⊂ ∆̃ if for all I and J in σ either I ⊆ J or J ⊆ I or
I ∪ J = {1, . . . , n}. The collection of cones associated to the simplexes σ in ∆̃

determines a polyhedral fan ∆ in R(n2)−1, which also arises in tropical geometry
as the space of phylogenetic trees [28]. The associated toric variety X∆ is smooth,
though not complete. The moduli space M0,n embeds in X∆ and it intersects
the torus T of X∆ in M0,n. The boundary strata of M0,n are pullbacks of torus-
invariant loci in X∆ (see [13, Section 6 ] and [12, Section 5]).

9.2. A blueprint structure on M0,n. The construction of the toric variety X∆

in [12], [13], and [29] with the embedding M0,n ↪→ X∆, relies on an earlier result of
Kapranov realizing M0,n as a quotient of a Grassmannian. More precisely, in [14],
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Kapranov showed that the quotient Grass0(2, n)/T of the open cell Grass0(2, n) of
points with non-vanishing Plücker coordinates in the Grassmannian Grass(2, n),
by the action of an (n− 1)-dimensional torus T , is the moduli space M0,n, and its
compactification M0,n is obtained as the (Chow or Hilbert) quotient of Grass(2, n)
by the action of T .

From the blueprint point of view on F1-geometry, observe that the Plücker

embedding of the Grassmannian Grass(2, n) ↪→ P(n2)−1, used to obtain M0,n in
this way, also furnishes Grass(2, n) with an F1-structure as blueprint in the sense
of [20], [21] (but not as affinely torified varieties), where the blueprint structure
(see [21] and [20, Section 5 ]) is defined by the congruence R generated by the
Plücker relations xijxkl + xilxjk = xikxjl for 1 ≤ i < j < k < l ≤ n.

One can use the Plücker coordinates, together with the toric variety construc-
tion of [12], [13] and [29], to obtain explicit equations for M0,n in the Cox ring of
the toric variety X∆, see [12, Theorem 1.2 ] and [16]. This can be used to give a
blueprint structure on M0,n.

Theorem 9.2.1. The moduli spaces M0,n have a blueprint structure

OF1
(M0,n) = A � R,

where, denoting by Q[xI : I ∈ I ] the Cox ring of X∆, A is the monoid

A = F1[xI : I ∈ I ] :=
{∏

I

xnII

}
nI≥0

,

and the blueprint relations are given by R = S −1
f R′ ∩A , where we denote by R′

the set

R′ =
{ ∏
ij∈I,kl/∈I

xI +
∏

il∈I,jk/∈I

xI ≡
∏

ik∈I,jl/∈I

xI : 1 ≤ i < j < k < l ≤ n
}
,

and by S −1
f R′ the localization of R′ with respect to the submonoid generated by

the element f =
∏
I xI .

Proof. In [12, Proposition 2.1] one finds a general method for producing explicit
equations for quotients of subvarieties of a torus by the action of a subtorus,
and [12, Theorem 3.2] uses this result to obtain explicit equations for Chow and
Hilbert quotients of T d-equivariant subschemes of projective spaces Pm. Then, [12,
Theorem 6.3] obtains explicit equations for M0,n inside the toric variety X∆ start-
ing with the Plücker relations on the Grassmannian Grass(2, n) and the quotient
description of M0,n obtained in [14]. More precisely, the equations for M0,n are
obtained by homogenizing the Plücker relations with respect to the grading in the
Cox ring of X∆, and then saturating by the product of the variables in the Cox
ring. With the notation I : J∞ for the saturation of an ideal I by J, the equations
for M0,n are given by (see [12, Theorem 6.3])〈 ∏

ij∈I,kl/∈I

xI −
∏

ik∈I,jl/∈I

xI +
∏

il∈I,jk/∈I

xI

〉
:
(∏
I

xI

)∞
,
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where Q[xI , : I ∈ I ] is the Cox ring of X∆, and where i, j, k, l satisfy 1 ≤ i < j <
k < l ≤ n.

In general, let A be a polynomial ring and I an ideal, and let J = (f) be the
ideal generated by an element f . Then the saturation I : J∞ is If ∩ A, where
If is the localization of I at f . Thus, we can write the ideal of M0,n in terms of
localizations.

As in [20, Section 4], we can consider the blueprint B′ = A � R′, with the
monoid A = F1[xI : I ∈ I ] and the blueprint relations R′ given in the state-
ment. As shown in [21, Section 1.13], blueprints admit localizations with respect
to submonoids of A . Thus, given the element f =

∏
I xI , and letting Sf be the

submonoid of A generated by f , we can consider the localization

S −1
f R =

{ ∏
ij∈I,kl/∈I

xI
faI

+
∏

il∈I,jk/∈I

xI
faI
≡

∏
ik∈I,jl/∈I

xI
faI

: 1 ≤ i < j < k < l ≤ n
}
,

where the localized blueprint relation S −1
f R′ lives in the localization S −1

f A ⊂
A ×Sf , given by the set of equivalence classes (denoted a/fk) of elements (a, fk)
with the relation (a, fk) ∼ (b, f `) when fk+mb = f `+ma for some m. The blueprint
relations R = S −1

f R′ ∩A then give the blueprint structure of M0,n.

9.3. Remarks on higher genera. The moduli spaces Mg,n of stable curves of
higher genus with marked points have Deligne–Mumford compactifications Mg,n,
with natural morphisms between them, similar to the genus-zero case: inclusions
of boundary strata

Mg1,n1+1 ×Mg2,n2+1 −→Mg1+g2,n1+n2

and forgetting markings (and stabilizing)

Mg,n −→Mg,n−1,

as well as morphisms arising from gluing two marked points together,

Mg,n+2 →Mg+1,n.

However, Mg,n are generally only stacks rather than schemes.
One does not expect higher-genus moduli spaces to carry F1-structures in

the approach based on torifications (though they can have blueprint structures).

However, one can consider interesting sub-loci of these moduli spaces, like M
0

g,n,
parametrizing curves whose irreducible components are all rational. These stacks
can be made components of an operad, and at least some covers of them admit a
compatible F1-structure. In order to complete this picture, the basics of DM-stacks
theory over F1 must be developed first.

9.4. Blueprints and the M
0

g,n strata. The locus M
0

g,n of rational curves in

the higher-genus moduli space Mg,n can be described, as explained in [11], as the
image of a finite map

R : M0,2g+n −→Mg,n,
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obtained in the following way. The locus M
0

g,n is the closure of the locus of ir-
reducible g-nodal curves. These curves have a normalization given by a smooth
rational curve with 2g + n marked points. One can then consider the subgroup
G ⊂ S2g of permutations of these 2g additional marked points that commute with
the product (12)(34) · · · (2g − 1 2g) of g transpositions, so that the normalization

of M
0

g,n can be identified with the quotient M0,2g+n/G.
We say that a group G acts on a blueprint A �R by automorphisms if it acts by

automorphisms on the monoid A and the induced diagonal action on N[A ]×N[A ]
preserves the set of blueprint relations R.

Lemma 9.4.1. The action of G on M0,2g+n induces an action by automorphisms
on the blueprint OF1(M0,2g+n).

Proof. In general, the action of the symmetric group Sn on M0,n by permutation
of the marked points induces an action by automorphisms on the commutative
monoid A = F1[xI : I ∈ I ] described above, by correspondingly permuting the
coordinates xI . This action fixes the element f =

∏
I xI and preserves the set of

blueprint relations R, because it corresponds to the action on the set of Plücker
relations by permuting matrix columns. Thus, the subgroup G ⊂ S2g ⊂ S2g+n

also acts by automorphisms on the monoid A of M0,2g+n preserving the blueprint
relations, hence as automorphisms of OF1(M0,2g+n).

In order to obtain F1-data for the quotient M0,2g+n/G, we suggest an approach
that uses the point of view of noncommutative geometry, replacing the quotient
operation by a crossed product by the group of symmetries, at the level of the
associated algebraic structure. This point of view suggests introducing a notion of
(non-commutative) crossed product blueprints.

Definition 9.4.2. Let A �R be a blueprint with A a commutative multiplicative
monoid and R a set of blueprint relations, and letG be a group of automorphisms of
A �R. The monoid crossed product A oG is the multiplicative (non-commutative)
monoid with elements of the form (a, g) with a ∈ A and g ∈ G, and with product
(a, g)(a′, g′) = (ag(a′), gg′). The semiring crossed product N[A ] o G is given by
all finite formal sums

∑
(ai, gi) with ai ∈ A and gi ∈ G, and with multiplication

(ai, gi)(aj , gj) = (aigi(aj), gigj). Let

RG ⊂ (N[A ] oG)× (N[A ] oG)

be the set of elements
(
(
∑
ai, g), (

∑
bj , g)

)
, with (

∑
ai,
∑
bj) ∈ R and g ∈ G.

The crossed product (A � R) oG is defined as the pair (A oG,RG).

Lemma 9.4.3. The action of the symmetric group Sn on the moduli space M0,n

determines a crossed product blueprint OF1(M0,n) o GLn(F1).

Proof. This is an immediate consequence of Lemma 9.4.1, Definition 9.4.2, and the
identification Sn = GLn(F1).

We can then use this notion of crossed product blueprint to associate F1-data

to the strata M
0

g,n of the higher-genus moduli spaces Mg,n.
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Proposition 9.4.4. The normalization of M
0

g,n has an associated crossed product

blueprint structure OF1
(M0,2g+n)oG, with G ⊂ S2g the subgroup of permutations

that commute with the product of transpositions (12)(34) · · · (2g − 1 2g).

Proof. Again, this follows from Lemma 9.4.1 and from Definition 9.4.2.

As in noncommutative geometry, the use of crossed product structures is a
convenient replacement for the quotient M0,2g+n/G.
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