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Summary. We make some brief remarks on the relation of the mixmaster universe
model of chaotic cosmology to the geometry of modular curves and to noncom-
mutative geometry. We show that the full dynamics of the mixmaster universe is
equivalent to the geodesic flow on the modular curve Xp, (). We then consider a
special class of solutions, with bounded number of cycles in each Kasner era, and
describe their dynamical properties (invariant density, Lyapunov exponent, topo-
logical pressure). We relate these properties to the noncommutative geometry of a
moduli space of such solutions, which is given by a Cuntz—Krieger C*-algebra.
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1 Modular curves

Let G be a finite index subgroup of I' = PGL(2,Z), and let Xs denote
the quotient X¢ = G\H?, where H? is the 2-dimensional real hyperbolic
plane, namely the upper half plane {z € C : Sz > 0} with the metric ds? =
|dz|?/(32)?. Equivalently, we identify H? with the Poincaré disk {z : 2| < 1}
with the metric ds? = 4|dz|?/(1 — |2|?)2.
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Let P denote the coset space P = I'/G. We can write the quotient X¢
equivalently as Xg = I'\(H? x P). The quotient space X has the structure
of a non-compact Riemann surface, which can be compactified by adding cusp
points at infinity:

Xe=G\(H*UP'(Q)) ~ I'\ (H> UP'(Q)) x P). (1.1)

In particular, we consider the congruence subgroups G = Iy(p), with p a
prime, given by matrices
_fa b
o= (2 4)

satisfying ¢ = 0 mod p. In fact, for our purposes, we are especially interested
in the case p = 2.

1.1 Shift operator and dynamics

If we consider the boundary P!(R) of H2, the arguments given in [9] and [10]
show that the quotient I'\(P*(R) x P), better interpreted as a “noncommuta-
tive space”, gives rise to a compactification of the modular curve X4 with a
structure richer than the ordinary algebro-geometric compactification by cusp
points.

In [9] this was described in terms of the following dynamical system, gen-
eralizing the classical Gauss shift of the continued fraction expansion:

T:[0,1] xP—1[0,1] xP

T(x,t) = (; _ Ll;] , <_[11/$] é) -t>. (1.2)

In fact, the quotient space of P*(R) x P by the PGL(2,Z) can be identified
with the space of orbits of the dynamical system T on [0,1] x P.

We use the notation « = [k1, ka,... , kn,...] for the continued fraction ex-
pansion of the point x € [0, 1], and we denote by p,,(z)/g.(x) the convergents
of the continued fraction, with p,, (z) and ¢, (z) the successive numerators and
denominators. It is then easy to verify that the shift 7" acts on x by shifting the
continued fraction expansion, T[ky,ka,...  kn,...] = [ko, ks, . knt1,.-.].
The element g, (z)~!, with

gn(7) = (pn-1<x> pn<x>> cr

qn—1 (JS) dn (J?)

acts on [0,1] x P as T™.
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The Lyapunov exponent

A(z) := lim l10g|(T”)’(Jj)|

n—oo n

1
=2 lim —logg,(x)

n—oo 1

measures the exponential rate of divergence of nearby orbits, hence it provides
a measure of how chaotic the dynamics is.

For the shift of the continued fraction expansion, the results of [14] show
that A\(z) = m2/(6log2) = Ao almost everywhere with respect to the Lebesgue
measure on [0, 1] and counting measure on P. On the other hand, the Lyapunov
exponent takes all values A(z) € [A\g,00). The unit interval correspondingly
splits as a union of T-invariant level sets of A (Lyapunov spectrum) of varying
Hausdorff dimension, plus an exceptional set where the sequence defining A
does not converge to a limit.

2 Mixmaster universe

An important problem in cosmology is understanding how anisotropy in the
early universe affects the long time evolution of space-time. This problem is
relevant to the study of the beginning of galaxy formation and in relating
the anisotropy of the background radiation to the appearance of the universe
today.

We follow [2] (cf. also [13]) for a brief summary of anisotropic and chaotic
cosmology. The simplest significant cosmological model that presents strong
anisotropic properties is given by the Kasner metric

ds? = —dt® + 121 da® + 22 dy? + 123 d22, (2.1)

where the exponents p; are constants satisfying . p;, = 1 = Y, p?. Notice
that, for p; = dlogg;;/dlog g, the first constraint ) . p; = 1 is just the condi-
tion that log g;; = 2ad;; + Bi; for a traceless (3, while the second constraint
> p? = 1 amounts to the condition that, in the Einstein equations written
in terms of o and §;;,

do\* _ 87 (oo, 1 (diy’
dt 3 16w \ dt

and [ 5.dBi; 1
e 3 & (63 dtj> :871' (THS(;%JTMC>7

the term 7Y is negligible with respect to the term (df;;/dt)?/16m, which
is the “effective energy density” of the anisotropic motion of empty space,
contributing together with a matter term to the Hubble constant.
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Around 1970, Belinsky, Khalatnikov, and Lifshitz introduced a cosmolog-
ical model (mizmaster universe) where they allowed the exponents p; of the
Kasner metric to depend on a parameter u,

P1= Tt

_ 1
P2 = Tt (2.2)

u(l+u)
P3 = 1Ttz

Since for fixed w the model is given by a Kasner space-time, the behavior
of this universe can be approximated for certain large intervals of time by a
Kasner metric. In fact, the evolution is divided into Kasner eras and each era
into cycles. During each era the mixmaster universe goes through a volume
compression. Instead of resulting in a collapse, as with the Kasner metric, high
negative curvature develops resulting in a bounce (transition to a new era)
which starts again a behavior approximated by a Kasner metric, but with
a different value of the parameter uw. Within each era, most of the volume
compression is due to the scale factors along one of the space axes, while the
other scale factors alternate between phases of contraction and expansion.
These alternating phases separate cycles within each era.

Namely, we are considering a metric generalizing the Kasner metric (2.1),
where we still require SO(3) symmetry on the space-like hypersurfaces, and
the presence of a singularity at ¢ — 0. In terms of logarithmic time df2 = —%,

the mizmaster universe model of Belinsky, Khalatnikov, and Lifshitz admits
a discretization with the following properties:

1. The time evolution is divided in Kasner eras [(2,, 2,11], for n € Z. At the
beginning of each era we have a corresponding discrete value of the parameter
up > 1in (2.2).

2. Each era, where the parameter u decreases with growing (2, can be sub-
divided in cycles corresponding to the discrete steps uy,, u, — 1, u, — 2, etc.
A change © — u — 1 corresponds, after acting with the permutation (12)(3)
on the space coordinates, to changing v to —u, hence replacing contraction
with expansion and conversely. Within each cycle the space-time metric is
approximated by the Kasner metric (2.1) with the exponents p; in (2.2) with
a fixed value of u = u,, — k > 1.

3. An era ends when, after a number of cycles, the parameter u,, falls in the
range 0 < u, < 1. Then the bouncing is given by the transition u — 1/u which
starts a new series of cycles with new Kasner parameters and a permutation
(1)(23) of the space axis, in order to have again p; < ps < p3 as in (2.2).

Thus, the transition formula relating the values u,, and wu,4+1 of two suc-

cessive Kasner eras is ]

Uy, — [un]’
which is exactly the shift of the continued fraction expansion, Tax = 1/z—[1/z],
with €41 = Tz, and u, = 1/z,,.

Up41 =
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3 Geodesics and universes

The previous observation is the key to a geometric description of solutions
of the mixmaster universe in terms of geodesics on a modular curve (Manin—

Marcolli [9]):

Theorem 1 Consider the modular curve Xr, (o). Each infinite geodesic v on
Xro(2) not ending at cusps determines a mizmaster universe.

Proof. An infinite geodesic on X, (9) is the image under the quotient map
WF:HQXPHF\(HZ x P) & Xg,

where I' = PGL(2,Z), G = I(2), and P = I'/G = P(Fy) = {0,1, 00},
of an infinite geodesic on H? x P with ends on P*(R) x P. We consider the
elements of P! (IFy) as labels assigned to the three space axes, according to the
identification

0=[0:1] —=z
o=[1:0ry (3.1)
1=[1:1] +~ z.

Any geodesic not ending at cups can be coded in terms of data (w™,w™, s),
where (w¥,s) are the endpoints in P*(R) x {s}, s € P, with w™ € (—o0, —1]
and wt € [0, 1]. In terms of the continued fraction expansion, we can write

w+ = [ko,kl,...kr,k,,«_;,_l,...]
w = [k_l;k_g,... ,k_n,k_n_l,...].

The shift acts on these data by

= (&[] (17 1) )

e (s (17 1))

Geodesics on X (2) can be identified with the orbits of T" on the set of data
(w, ).

The data (w,s) determine a mixmaster universe, with the k, = [u,] =
[1/z,] in the Kasner eras, and with the transition between subsequent Kasner
eras given by x,4+1 = Tz, € [0,1] and by the permutation of axes induced by
the transformation

—k, 1
(")

acting on P1(F,). It is easy to verify that, in fact, this acts as the permutation
000,11 00— 0,if k, is even, and 0 — o0, 1 — 0, co — 1 if k, is
odd, that is, after the identification (3.1), as the permutation (1)(23) of the
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space axes (x,y, z), if k, is even, or as the product of the permutations (12)(3)
and (1)(23) if k,, is odd. This is precisely what is obtained in the mixmaster
universe model by the repeated series of cycles within a Kasner era followed
by the transition to the next era.

Data (w,s) and T™(w, s), m € Z, determine the same solution up to a
different choice of the initial time.

There is an additional time-symmetry in this model of the evolution of
mixmaster universes (cf. [2]). In fact, there is an additional parameter d,, in
the system, which measures the initial amplitude of each cycle. It is shown in
[2] that this is governed by the evolution of a parameter

. Ont1(1+ up)

n =

1- 5n+1
which is subject to the transformation across cycles v,1 = [u,] + v, ! By
setting y,, = v, ! we obtain
1

Yn+1 = m,

hence we see that we can interpret the evolution determined by the data
(wt,w™,s) with the shift T either as giving the complete evolution of the
u-parameter towards and away from the cosmological singularity, or as giving
the simultaneous evolution of the two parameters (u, v) while approaching the
cosmological singularity.

This in turn determines the complete evolution of the parameters (u, 6, §2),
where (2, is the starting time of each cycle. For the explicit recursion 2,41 =
2n1(020, Ty yn) see [2].

Notice that, unlike the description of the full mixmaster dynamics given,
for instance, in [2], we include the alternation of the space axes at the end of
cycles and eras as part of the dynamics, which is precisely what determines the
choice of the congruence subgroup. This also introduces a slight modification
of some of the invariants associated to the mixmaster dynamics. For instance,
it is proved in [9] that there is a unique T—invariant measure on [0,1] x P,
which is given by the Gauss density on [0, 1] and the counting measure ¢ on
P:

d(s) dx

W) = Fiog@ 1+ a)

(3.2)

which reduces to the Gauss density for the shift of the continued fraction on
[0,1] when integrated in the P direction. In particular, as observed in [9], the
form (3.2) of the invariant measure implies that the alternation of the space
axes is uniform over the time evolution, namely the three axes provide the
scale factor responsible for volume compression with equal frequencies.
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4 Controlled pulse universes

The interpretation of solutions in terms of geodesics provides a natural way
to single out and study certain special classes of solutions on the basis of
their geometric properties. Physically, such special classes of solutions exhibit
different behaviors approaching the cosmological singularity.

For instance, the data (wT,s) corresponding to an eventually periodic
sequence koky ...k, ... of some period @g ... ayg correspond to those geodesics
on Xp,(2y that asymptotically wind around the closed geodesic identified with
the doubly infinite sequence ...ag ... agaqg ... ag . ... Physically, these universes
exhibit a pattern of cycles that recurs periodically after a finite number of
Kasner eras.

In the following we concentrate on another special class of solutions, which
we call controlled pulse universes. These are the mixmaster universes for which
there is a fixed upper bound N to the number of cycles in each Kasner era.

In terms of the continued fraction description, these solutions correspond
to data (w™,s) with w™ in the Hensley Cantor set Ex C [0,1]. The set Ey is
given by all points in [0, 1] with all digits in the continued fraction expansion
bounded by N (¢f. [6]). In more geometric terms, one considers geodesics on
the modular curve Xp, (o) that wander only a finite distance into the cusps.

4.1 Dynamical properties

It is well known that a very effective technique for the study of dynamical
properties such as topological pressure and invariant densities is given by
transfer operator methods. These have already been applied successfully to
the case of the mixmaster universe, c¢f. [11]. In our setting, for the full mix-
master dynamics that includes alternation of space axes, the Perron-Frobenius
operator for the shift (1.2) is of the form

eans =3 ot (0 (0 1) )

k=1

This yields the density of the invariant measure (3.2) satisfying Lof = f.
The top eigenvalue ng of Lg is related to the topological pressure by ng =
exp(P(f)). This can be estimated numerically, using the technique of [1] and
the integral kernel operator representation of §1.3 of [9].

We now restrict our attention to the case of controlled pulse universes.
Since these form sets of measure zero in the measure (3.2), they support
exceptional values of such dynamical invariants as Lyapunov exponent, topo-
logical pressure, entropy. In fact, for a fixed bound N on the number of cycles
per era, we are considering the dynamical system (1.2)

T:Ey xP— Ex xP.

For this map, the Perron-Frobenius operator is of the form



368 Matilde Marcolli

(Lo ) 5) = i gl (e (3 1))

k

It is proved in [10] that this operator still has a unique invariant measure f,
whose density satisfies Lo dimy, (Ey),~f = f, with
6 72log N
dimp(Ex) =1 - - — —5— + O(1/N?
iy (Ey) = 1= o — — 2 + O(1/N?)
the Hausdorff dimension of the Cantor set F. Moreover, the top eigenvalue
ng of L n is related to the Lyapunov exponent by

d
AMx) = Q%nﬂ‘ﬁ:QdimH(EN)y

for py-almost all z € Ey, cf. [10].

5 Non-commutative spaces

A consequence of this characterization of the time evolution in terms of the
dynamical system (1.2) is that we can study global properties of suitable
moduli spaces of mixmaster universes. For instance, the moduli space for time
evolutions of the w-parameter approaching the cosmological singularity as
2 — oo is given by the quotient of [0,1] x P by the action of the shift 7.
Similarly, the moduli spaces that correspond to controlled pulse universes are
the quotients of En x P by the action of the shift T. It is easy to see that
such quotients are not well behaved as a topological spaces, which makes it
difficult to study their global properties in the context of classical geometry.
However, non-commutative geometry in the sense of Connes [4] provides the
correct framework for the study of such spaces. The occurrence in physics of
non-commutative spaces as moduli spaces is not a new phenomenon. A well
known example is the moduli space of Penrose tilings (cf. [4]), which plays an
important role in the mathematical theory of quasi-crystals.

We consider here only the case of controlled pulse universes. In this case,
the dynamical system T is a subshift of finite type which can be described by
the Markov partition

An = {((k’t)7 (& 8))|Uk,t C T(Ué,s)}v

for k,£ € {1,... ,N}, and s,t € P, with sets Uy = Uy, x {t}, where Uy C En
are the clopen subsets where the local inverses of T" are defined,

11
Uy = |——, = | NEn.
b [k—kl’k] N

This Markov partition determines a matrix Ay, with entries (An)rees = 1 if
Ukt C T(Ug,s) and zero otherwise.
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Lemma 2 The 3 x 3 submatrices Ary = (A(i1),(¢,5))s,tcp of the matriz Ay
are of the form
001
Mi=[010]¢4=2m
100
001
My=|[100])/4=2m+1
010

The matrixz An is irreducible and aperiodic.

Proof. The condition Uy, C T(Uys) is equivalently written as the condition

that
0 1
(1 e)-s-t.

We then proceed as in the proof of Theorem 1 and notice that the transfor-

mation
0 1
1 7

acts on P}(Fy), under the identification (3.1), as the permutation 0 — oo,
1—1, 0o+ 0, when £ is even, and oo +— 0, 0 — 1, 1 +— oo if £ is odd.

Irreducibility of Ay means that the corresponding directed graph is
strongly connected, namely any two vertices are connected by an oriented
path of edges. Since the matrix Ay has the form

M, My My --- M,
Mo My My -+ My
An=| M, My My --- My | >

irreducibility follows from the irreducibility of As, which corresponds to the
directed graph illustrated in the Figure. This graph also shows that the matrix
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Ap is aperiodic. In fact, the period is defined as the gcd of the lengths of the
closed directed paths and the matrix is called aperiodic when the period is
equal to one.

As a non-commutative space associated to the Markov partition we con-
sider the Cuntz—Krieger C*-algebra O 4, (c¢f. [5]), which is the universal C*-
algebra generated by partial isometries Sy, satisfying the relations

> SkSi =1,

(kst)

SiSts = > At (0.5)Skt Sk
(k,t)

It is a well known fact that the structure of this C*-algebra reflect proper-
ties of the dynamics of the shift T'. For example, one can recover the Bowen—
Franks invariant of the dynamical system T from the K-theory of a Cuntz—
Krieger C*-algebra Q4 (cf. [5]). Moreover, in our set of examples, information
on the dynamical properties of the shift 7" and the Perron-Frobenius opera-
tor (4.1) can be derived from the KMS states for the C*-algebras 04, with
respect to a natural one-parameter family of automorphisms.

5.1 KMS states

Recall that a state ¢ on a unital C*-algebra A is a continuous linear functional
¢ : A — C satisfying ¢(a*a) > 0 and ¢(1) = 1. Let oy be an action of
R on A by automorphisms. A state ¢ satisfies the KMS condition at inverse
temperature § if for any a,b € A there exists a bounded holomorphic function
F,» continuous on 0 < Im(z) < f, such that, for all t € R,

Fa,b<t) = (p(a’ Ut(b)) and Fa,b(t + Zﬁ) = (10<Ut(b)a) (51)

Equivalently, the KMS condition (5.1) is expressed as the relation

p(oi(a)b) = p(boryip(a)). (5.2)

Consider now a Cuntz—Krieger C*-algebra O4. Any element in the -
algebra generated algebraically by the S; can be written as a linear com-
bination of monomials of the form 5,5}, for multi-indices p = (i1, . ..iw)
and v = (j1,... ,Jjy|). The subalgebra F4 is the AF-algebra generated by the
elements of the form S, S}, for |u| = |v|. It is filtered by finite dimensional
subalgebras Fy, for k > 0, generated by the matrix units Eft’l, = S, PS5}, with
|u| = |v| = k, where P; = 5,5} are the range projections of the isometries S;.
The commutative algebra of functions on the Cantor set A4 of the subshift
of finite type (A4, T) associated to the Cuntz—Krieger algebra, is a maximal
abelian subalgebra of ¥4, identified with the elements of the form 5,5} (cf.

[5])-
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In our case, one can consider a one-parameter family of automorphisms
on 04, of the type considered in [7], with 0" (Sy) = exp(it(u — h)) Sk, for
u = lognz = P(f), the topological pressure, i.e. the top eigenvalue of (4.1),
and h(x) = —3/2 log [T’ (x)|. Thus, for all ¢t € R, the function exp(—it h) acts
on the elements of O 4, by multiplication by an element in C(Ex x P).

Then a KMS; state ¢ for this one-parameter family of automorphisms
satisfies the relation (cf. [7] Lemma 7.3)

Y e(Sidhasy) = e pla),
e

for a € Oa,. For all a = f € C(Ey x P), we have Y., Si el f Sy = Ln(f),
where the Ruelle transfer operator

Li(f)as)= D> exp(hy) fly,7)

(y,r)ET—1(z,s)

is in fact the Perron—Frobenius operator (4.1). In particular, the KMS condi-
tion implies that the state ¢ restricts to C(En X P) to a probability measure
w satisfying L} i = e . For v = logng, the existence and uniqueness of such
measure can be derived from the properties of the operator (4.1), along the
lines of [12] [9].

Theorem 3 For § < 2logr(An)/log(N + 1), there exists a unique KMS;

state for the one-parameter family of automorphisms af(ﬁ)’_ﬁﬂ eIl o, the

algebra O 4. This restricts to the subalgebra C(Enx x P) to f v+ [ fdu with
the probability measure satisfying L = ngp, for Lg the Perron—Frobenius
operator (4.1).

Proof. Since by Lemma 2 the matrix Ay is irreducible and aperiodic, by
Proposition 7.6 of [7], there is a surjective map of the set of KMS states
to the set of probability measures satisfying L p = e“p. Uniqueness fol-
lows from Lemma 7.5 and Theorem 7.8 of [7], by showing that the estimate
varg(h) < r(An) holds, where r(Ay) is the spectral radius of the matrix Ay
and varg(h) = max h—min h on Ey xP. This provides the range of values of 3
specified above, since on Ex x P we have varg(—3/2log |T']) = log(N +1)%/2.
The KMS state ¢ is obtained as in [7], by defining inductively compatible
states
vp(a) =e Z gok,l(S;eh/zaeh/sz) for a€ F.
J
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