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A mathematical model of transformational grammars is presented 
which incorporates most current versions. Among other things, the 
model has a formal definition of transformations and a general 
scheme for ordering them. Numerous examples are given to illustrate 
the theory. 

INTRODUCTION 

One of the primary goals of linguistics is to find a suitable model of 
natural (human) language. Among the models proposed, one of them, 
the transformational grammar (abbreviated T-grammar) seems very 
promising and, in the past decade, has received considerable attention 
from linguists. At present, there are numerous alternative forms of the 
model under serious consideration. In fact, there is a noticeable lack of 
unanimity among linguists with respect to a number of aspects of the 
theory. As yet, no mathematical model has been given which encom- 
passes most of these different versions of a T-grammar. 1 The purpose of 

* Research sponsored in part by the Air Force Cambridge Research Labora- 
tories, Office of Aerospace Research, USAF, under Contract F1962867C0008, and 
by the Air Force Office of Scientific Research, Office of Aerospace Research, 
USAF, under AFOSR Grant No. AF-AFOSR-1203-67. 

1 A formalization of one particular version has been made in a forthcoming 
paper (Peters and Ritchie). Some extensions of this version and some con- 
sequences have been explored in Kimball (1967). A computer model has recently 
been proposed by Friedman (1968). 
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this paper is to propose one such mathematical model. In particular, 
a model is presented which appears to incorporate most current versions 
of transformational theory. 2 As would be expected from linguistic ex- 
perience, the model is general enough to yield all recursively enumerable 
sets as its generated languages. I t  appears likely that special natural 
restrictions on the model will yield many new types of formal languages 
of interest to the mathematician, linguist, and formal language theorist. 
In particular, because of the richness of the model, it seems reasonable to 
hope that appropriate restrictions will provide "grammars" for a num- 
ber of families of formal languages introduced in the past few years by 
families of acceptors. 

The paper is divided into four sections. In Section 1 we present a 
linguistic example to motivate the need for, and some underlying con- 
cepts of, T-grammars. In Section 2 we abstract some of the ideas of 
Section 1 and present a mathematical model of T-grammars. Section 3 
contains some examples illustrating the ordering of T-rules and an ex- 
ample of a T-grammar in its entirety. Section 4 contains a number of 
possible restrictions on the general model. Taken in various combina- 
tions, these restrictions provide submodels which correspond to certain 
descriptions of T-grammars in the literature. 

Stylistically, the paper has been written for tl~e mathematical linguist, 
the mathematician, and the formal language theorist. In this way we 
hope to (1)make some of the issues more precise to the linguist and 
(2) make accessible to the mathematician and formal language theorist 
a number of definitions and concepts deeply embedded in the linguistic 
literature. 

INFORMAL LINGUISTIC NOTIONS 

As mentioned in the introduction, the purpose of the present paper is 
to obtain a formal definition of T-grammars. In this section we present an 
example to motivate the need for, and informally determine some fea- 
tures of, a T-grammar. The linguist will find nothing new here and we 
suggest he skip to Section 2. 

Consider the following five English sentences: 
(1 p) The dog chased the cat 
(2') The eat ate the mouse 
(3 p) The mouse was eaten by the cat 

2 One important exception is the notion of "syntactic features" described in 
Chomsky (1965) and included in most subsequent T-grammars. 
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(4’) The cat that the dog chased ate the mouse 
(5’) The mouse was eaten by the cat that was chased by the dog 

Using certain morphophonemic rules (of no concern to us here), sen- 
tences (l’)-(5’) can be derived from the following forms: 

(1) $ the dog Past chase the cat $” 
(2) $ the cat Past eat the mouse $ 
(3) $ the mouse Past be E, eat by the cat $ 
(4) $ the cat that the dog Past chase Past eat the mouse $ 
(5) $ the mouse Past be E, eat by the cat that Past be E, chase by 

the dog $ 
In the remainder of this section, we shall construct a sample T-gram- 

mar, which generates “sentences” (I)-(5) (and other sentences as 
well). 

Sentences (1) and (2) are generated by the following CF rules4: 

s -+ $S’$ VI, + chase 

S’ --+ N,A,,V, 1 Va 3 eat 

V, -+ VbNp 

N, + the N, 

A ux -+ T,, 1 

N, -+ dog 

N, -+ cat 

N, -+ mouse 

Tm + Past 

The nonterminals S’, N, , A,, , V, , Vb , N, , and T,, abbreviate “sen- 
tence,” “noun phrase,” “verb auxiliary,” “verb phrase,” “verb,” “noun,” 
and “tense,” respectively. The S is the start symbol. The terminal sym- 
bols are Past ,6 the, chase, eat, dog, cat, mouse, and the boundary marker 
$. Clearly the rules generate (1) and (2) from S. If we were concerned 
only with sentences (1) and (2), then the above rules could be simplified. 
However, the rules as given provide linguistic structure needed to deal 
with sentences (3), (4), and (5). 

The passive sentence (3) cannot be generated by these CF rules. 
Clearly we could add extra rules to generate (3). However, this would 
complicate the grammar considerably and would not indicate that (3) 

3 The symbol $ is used as a sentence boundary marker. 
* We assume that the reader has a working knowlecge of both context-sensitive 

(abbreviated CS) rules and context-free (abbreviated CF) rules. 
6 The symboIs “Past ,I’ “the,” “chase,” etc., are to be regarded as single sym- 

bols. 
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is related to (2). For linguistic purposes it is thus necessary to introduce 
a different kind of rule. The type of rule suggested by Chomsky (1957) 
and currently receiving much attention is the "transformation rule" 
(abbreviated "T-rule"). Roughly described, a T-rule is a procedure 
which operates on "structured" sentences to form other structured sen- 
tences. This leads to the notion of a postulated set of "simple" structured 
sentences (in the current example, the set of sentences generated by the 
CF rules), and T-rules to generate more complicated structured sen- 
tences from them. 

To see how a T-rule is used to generate (3), let us consider how passive 
sentences are formed. Loosely described, a passive sentence is formed 
from its corresponding active sentence (e.g., (3) from (2)) by inter- 
changing subject and object, adding "by" before the original subject, 
and changing the verb to passive form. Linguistically speaking, a sen- 
tence of the form 

(6) $N~ 1) Wns VbNp(2)$ 
is made into a passive sentence by converting it to e 

(1) (7) $N~ 3) T,s be En Vb by Np $. 

In sentence (2), N~ 1) is "the cat," T.s is "Past ," Vb is "eat," and N~ 3) 
is "the mouse." Restructuring (2) as above gives (3). 

The mapping that converts sentences of the form (6) into sentences 
of the form (7) is a T-rule, called T,~s, which can be symbolically 
written as follows: 
T,~s : Domain statement: X (1) $ No!) Tns Vb N(p 3) $ Z (2) 

a~ a2 a3 a4 a~ a~ a7 as 
Structural change statement: (~)-(~-(~-~) be E~(~-by(~) -Q-@ 

N~ 1) and lxT(2) .~p are noun phrases 7 not necessarily identical to each other. 
X (1) and X (3) are variables representing arbitrary strings that are not 
necessarily identical to each other. In general, if a symbol occurs more 
than once in a domain statement, then each occurrence of the string it 
represents must be the same. In (6), each of the distinct symbols X a~ 
and X (3~ is the empty string e. 8 The domain statement specifies the form 
of the sentences to which the rule may be applied. The structural change 

6 En is a new terminal symbol which morphophonemically converts the verb 
following it  to passive (i.e., past  participle) form. 

7 Actually,  N~ 1) and N~ 2) are not  noun phrases; they are symbols representing 
trees tha t  generate noun phrases. The meaning at tached to these symbols is 
discussed rigorously in C of Section 2. 

s An instance will short ly be given (Fig. 5), where neither X(1) nor X (~) is the 
empty  string. 
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statement indicates the effect of the rule in a manner to be precisely 
explained in section two. 

Since a T-rule applies to any sentence which can be parsed into the 
form given in the domain statement, in effect it applies to the tree asso- 
ciated with the CF derivat, ion of the sentence. 9 The T-rule maps that 

S 

e a t  the mouse the cat Past 

FIG. 1.1° 

tree into a new one in accordance with the specifications of the structural 
change statement in a manner to be described in Section 2. In our ex- 
ample, the tree in Fig. 1 is mapped into the tree in Fig. 2. 

As noted above, the result of applying a T-rule to a tree structure is 
again a tree structure. This allows an iteration of the procedure, that is, 
allows T-rules to be applied in sequence (in a manner more fully de- 
scribed later). Thus, for example, the "question" T-rule (not given in 
the present paper) can be applied to passive sentences. 

Consider sentence (4). Intuitively, sentence (4) is a combination of 
sentences (1) and (2). I t  turns out that we need another CF rule and 
another T-rule to generate (4). Let us add to our CF rules the CF rule 

N, --~ the N~$ S'$. 

The CF rules then generate 
(4") $ the cat $ the dog Pa~ chase the cat $ P~t eat the mouse $ 

9 In  Section 2 and thencefor th ,  we regard a T-rule as mapping a tree into a 
tree. In  this sect ion we occasionally speak loosely of a T-rule operating 
on a sentence.  

10 We write trees from top to bot tom;  i.e., the root is at  the top. 
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with the tree structure in Fig. 3. To derive (4), we need a T-rule which 
will convert  the embedded sentence into a relative clause. The  T-rule 
which accomplishes this is Try1. I n  particular, Trol cheeks to see tha t  there 
is a noun in the embedded sentence which is identical to the noun im- 
mediately preceding the embedded sentence. I f  there is, then the noun 
in the embedded sentence is replaced by  " t h a t  ' 'n  , and the word " t h a t "  
moved to the front  of the embedded sentence. I n  a manner  similar to 
T,~, ,  T~l  may  be symbolically wri t ten as follows: 
Trel : Domain  s ta tement :  X (1} N(1) ~ X (2) the N ~  ) X (~) $ X (4) 

Oll Ol2 0/3 0/4 0~5 ~6 O~7 0/8 0/9. 

Condition: Np generates a~a6. 
Structural  change s ta tement :  (~)-(2~-that-(~)-~2f-~-(~)--Z-(~) 

The  condition is a constraint  on the domain of the T-rule. This par- 

n The noun may also be replaced by "who" or "which," or it may even be 
deleted. For simplicity, only one case is considered here. 
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ticular condition means that in Fig. 3, Np generates asa6 with superscripts 
removed. The fact that the superscripts on the two occurrences of N 
are the same means that the subtrees they generate must be the same. 

In the structural change statement, ~ denotes the empty tree 
(generating the empty string E). Its occurrence results in the deletion of 
the corresponding subtree designated by the domain statement. Thus, 
in this example, the second boundary marker $ and the noun phrase 
"the cat" of the inner sentence are deleted (replaced by the empty 
tree), and "that"  is substituted for the first boundary marker $ of the 
inner sentence. 

The terminal string associated with the tree in Fig. 3 generated by the 
CF rules satisfies the domain statement of Trel in the following way: 

$ the cat $ the dog Pas, chase the eat e $ P=~ eat the mouse $ 

X (~) N~ ) $ X (~) the N~ ) X (3) $ X(4) 
(~1 ~2 ~3 0/4 ~5 (~6 ~7 (~8 ~9 

Therefore, Trel can be applied to the tree in Fig. 3 to derive the tree in 
Fig. 4. The terminal string of the tree in Fig. 4 is the sentence (4). 

J 
the 

Np 

cat 

V 
J 

the dog Past chase the cat Past eat the mouse 

FIG. 5. 



MATHEMATICAL MODEL OF TRANSFORMATIONAL GRAMMARS 305  

Finally, consider sentence (5). Sentence (5) requires no additional 
rules. Its derivation involves T ,~ ,  T~ol, and T,~ as follows: The CF 
rules generate the tree in Fig. 5. The tree in Fig. 5 satisfies the domain 
statement of Tp~ as follows: 

$ the cat $ the dog P ~  chase the cat $ Pa~ eat the mouse $ 

a~ a~ a3  a4  a5  a6  a~ a8 

The Tvas converts the tree in Fig. 5 into the tree in Fig. 6. The tree in 
Fig. 6 satisfies the domain statement of T~ol as follows: 

$ the cat $ e the cat P~st be En chase by the dog $ 

0~1 0/2 (1'3 0/4 0/5 0/6 0/7 0/8 

Pas~ eat the mouse $ 

0/9 

The T~el converts the tree in Fig. 6 into the tree in Fig. 7. The tree in 
Fig. 7 satisfies the domain statement of Tp~ as follows: 

$ the cat that P~t be En chase by the dog Past eat the mouse 

0/1 0/2 

$ ~ 

0/7 018 

0/3 0/4 0/5 0/6 

The Tpas converts the tree in Fig. 7 into the tree in Fig. 8. The terminal 
string of the tree in Fig. 8 is sentence (5), so that the derivation is now 
complete. 

In the above example, we included a set of CF rules as part of the 
T-grammar. Since our main concern in the sequel is with T-rules and 
their usage, we are interested in CF or CS rules only insofar as they 
define a set of trees which serve as input to the T-rules. Now the 
linguistic literature generally includes ordered sets of CF or CS rules, 
ordered, frequently, in quite special ways (Chomsky, 1965). Therefore, 
we shall simplify our discussion by assuming that part of the T-grammar 
consists of a "base," i.e., set of finite trees. We shall not be concerned 
with the mechanism that generates this set of trees. 

In summary, then, the above example illustrates the utility of a gram- 
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mar with the following features: 
(1) The grammar contains a base consisting of trees with asso- 

ciated terminal strings. 
(2) The grammar contains T-rules which map trees onto trees. In 

particular, they apply to trees of the base to yield structures to which 
further T-rules can apply, etc. 

(3) Each T-rule is specified by a domain statement and a structural 
change statement. 

In the next section, we shall formalize the definition of a T-grammar 
on the basis of the above three properties. We shall also incorporate 
some properties not exemplified in the sample grammar. For example, 
the ordering of the T-rules and the definition of the languages generated 
are concepts which require specification. 

2. FORMALIZATION 

In this section we present a mathematical model of T-grammars. In 
particular, we shall define T-rules, the operation of T-rules, the order in 
which the T-rules may be applied (i.e., the "traffic rules"), and the 
language generated by the grammar. 
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A. BAsE 

As was mentioned in the preceding section, T-grammars are com- 
monly said to have a set of CF or CS rules that generate trees to which 
T-rules apply. In actual practice, special orders are imposed on the 
use of these rules (Peters, 1966), so that their usage differs from that 
given in either CF or CS grammars. Since our interest in this paper is 
in the T-rules and not the schemes used for deriving an original set of 
trees, we shall ignore such schemes and assume the existence of a given 
set of trees, called a "base. ''1~ 

In order to discuss "bases," we first consider "finite trees with labeled 
nodes," henceforth abbreviated "trees." We assume each non-empty 
tree has a "root. ''13 Following the convention in the linguistic literature, 
we draw trees with the root at the top. We also need 

Agreement. All trees in this paper are assumed to have the property 
that if a node has exactly one node immediately below it, then the two 
nodes have different labels. Each tree not of this form is to be auto- 
matically identified with the tree obtained by identifying such pairs of 
nodes in the obvious manner. 

As an example, the tree in Fig. 1 is automatically considered to be 
the tree in Fig. 2. 

The agreement is included because the T-rules as defined in our model 
cannot distinguish between such identified configurations. The condi- 
tion is linguistically reasonable (and its equivalent has always been 
included in linguistic definitions of CF and CS grammars). I t  may be 
regarded as a special case of tree pruning. (See Ross (1965; 1967, Chap- 
ter 3) and Section 3, Example 6, below.) 

We now briefly describe a base and the type of trees in it. 

DEFINITION. A base 6~ is a triple (B, V, ~), where V is a finite non- 
empty set, ~ (the set of terminal symbols) is a subset of V, and B is a 
set of non-empty trees, each of which (i) has its terminal nodes labeled 
with symbols of ~ (so that terminal nodes are labeled with terminals 14) 
and (ii) has its nonterminal nodes labeled with symbols of V - ~. 

13 A suggest ion for specifying the  se t  of base  t rees  b y  a means  o ther  t h a n  CF 
or CS rules appears  in  McCawley (1968). 

18 We assume the  reader  is famil iar  w i th  the  concept  of a finite t ree wi th  labeled 
nodes and  a root.  

14 For  some purposes  i t  migh t  be desirable  to allow te rmina l  nodes to be labeled 
wi th  symbols  of Z U le}, bu t  for the  purposes of th is  paper  there  is no need to doso.  
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DEFINITION. The associated word or the terminal string of a tree r 
satisfying (i) and (ii) above, whether or not in B, is the word formed by 
concatenating the labels of the terminal nodes of r in the usual left-to- 
right order. 

B. TRANSFORMATION RULES 

As already noted, a T-rule is a rule which transforms trees into other 
trees. I t  has two parts: a "domain s ta tement"  and a "structural  change 
statement."  In  this subsection we shall formally define T-rules, and in 
the next subsection we shall specify how they operate on trees. 

Notation. Given (B = (B, V, Z), let Z' denote a finite superset of Z 
such tha t  ~'  and V - ~ are disjoint. Let  X denote a new symbol (a 
"dummy variable") and let V' = V [J Z' U {X}. Let V" denote a set 
consisting of V' plus a finite number of new symbols of the form Y (~), 
where Y is in V' and i is a nonnegative integer. 

We now define the notion of a "domain statement." 

DEFINITION. A Boolean domain statement is any expression formed as 
follows: 

(1) Each string al - . .  a~, k _> 1, every a~in V", is a Boolean domain 
statement. 

(2) If  D1 and D~ are Boolean domain statements, then (DI Y D:), 
(D1 h D2), and ~-~D1 are Boolean domain statements. 

We shall omit parentheses whenever no ambiguity results. 

DEFINITION. A domain statement is any expression of the form Dz 
or Dz h Do, where Dz is a string al • • • ak, k _> 1, every a~ in V", and 
Do is a Boolean domain statement. 
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A typical domain s tatement  is writ ten as either D, D = Dr ,  or 
D = Dr h Do,  with Dx and Do as above. 

We now define the notion of a "structural  change s tatement ."  

D~.F~NrrIO~. Let  D = Dz or D = Dx h Do be a domain statement, 
with Dr = al . "  ~ .  A structural change statement (on D )  is a string 
C = ~1 " "  ~, such tha t  for each i, (D is a new symbol, ~ = Q if i is in 
H, and fl~is in ((Z' U { ~ ,  O ,  " '"  , (~}) - H)+ls i f  i i s  not  i n H ,  where 
H = { j /a i  in {X,  X (i)~ X (~), . . .  }}. 

I t  will be subsequently seen t h a t  the above conditions on H guarantee 
tha t  a T-rule cannot alter or move any par t s  of the tree tha t  are desig- 
nated by  one of the variables X,  X (1), etc. The manner in which the 
struetual  change s ta tement  produces new consti tuent s tructure from 
old is specified in the next  subsection. 

Note tha t  whereas D = Dr or D = Dr h Do ,  C is defined only with 
respect to Dr .  Intuit ively described, the role of Do is only to add further 
conditions, beyond those specified in Dr ,  which a tree must satisfy in 
order for the T-rule to be applicable to it. (See Section C below.) The  
role of Dx is both to impose conditions which must  be satisfied by a tree 
and to define the structure on which the changes specified by C will 
operate. 

We are now able to formally define a T-ruie. 

DEFaXITmN. A transformation rule T is an ordered pair (D, C), where 
D is a domain s ta tement  and C is a structural change s ta tement  on D. 

We illustrate the concept of a T-rule by examining T , ~  and T~I .  

ExamPLE. Consider T , ~ .  The domain statement is Dr ,  where 
(1)~,-~-[(1)r[~ S r "kT (2)¢,V(2) The structural-change state- e x  ---- otl ' ' "  ors = X %~i~p .Lns ¥ b±~p %9xi • 

ment is fll " '"  fls = (~ ) - (~ -@-Q be E , - @ - b y  @_(~_~).~8 

EXamPLE. Consider T~o,. A first thought  is tha t  the domain s ta tement  
is D r ,  where Dr = a~ - - .  a9 = X (i)N(~I)$X (2) the N ~ ) X  (~)$X (4). How- 
ever, this does not  provide for the restriction tha t  a~a8 must be generated 
by  N , .  The solution is to have the condition tha t  asot8 is generated by 
Np expressed in a Boolean domain statement.  In  particnlar, the domain 

~ For each set E, E + is the set of all non-empty strings of elements from E 
and E* = E + [J {~}. 

~6 The dash symbol,-, is used to separate the ;~. Thus, for example, ~a = ® 
and/~ = (D be E~. 



MATHEMATICAL MODEL OF TRANSFORMATIONAL GRAMMARS 311 

s t a t emen t  is D~ A D o ,  where 

Dz = al . . .  a9 = X <I)N~I)$X <2) the  N~I)X (~)$X (4), 

and  Do = a l o  . "  ~1~ = X (~)N~I)$X (2)NpX ¢8)$X <4) 

We  shall see in C below how the  new domain  s t a t emen t  requires a6as to  
be genera ted  b y  N . .  T h e  s t ruc tura l  change s t a t emen t  is/3~ . . .  f19 = 

O - ( ~ - t h a t - ( ~ ) - / - / - ( ~ - ~ " Q .  

C. Us~, OF T-R~rLEs 

We  now tu rn  to the  problem of how to apply  a T-rule. Hereafter ,  each 
tree ment ioned is assumed to  (i) have  its terminal  nodes labeled with 
symbols  of Z',  and (ii) have  its nonterminal  nodes labeled wi th  symbols  
of V - ~ ' .  W e  shall see t h a t  a T-rule is applied to certain trees to  yield 
other  trees. I n  part icular ,  a T-rule  may  be applied to a given tree r if r 
"sat isf ies" the  domain  s t a t emen t  of the  T-rule  in a manner  defined below. 

DEFIm~mN. A graph-assignment f is a funct ion over V" defined as 
follows: 

(i) Fo r  ~ = ~ or ~ = ~, (~), ~ in V '  - {X}, f (~)  is a tree with roo t  
labeled ~. 

(ii) For  each ~ in {X, X (~), X(2), . .  .}, f (~)  is an a rb i t r a ry  con- 
ca tena t ion  of (possibly null)  t reesY 

DEFmITmN. (1) A tree r satisfies a string a l . . .  ak for a graph- 
assignment f if f(a~) . . .  f(otk) is a cofinal residual proper  subgraph  of r is 

(2) A tree r satisfies a conjunction D~ h . . .  A D ,  h ,~D~+~ 
A . . . .  D~+:  (p, m _ 0, each D + a s tr ing) ,  if there  exists a g raph  assign- 

m e n t  f such t h a t  r satisfies each D+,  1 < i < p, for  f, and there exists no 
g raph  ass ignment  f~ such t h a t  ( a ) r  satisfies each D+, 1 < i < p, for  f~ 
and  (fl)r satisfies a t  least one D~+~., 1 < j _< m, for f l .  

(3) A tree r satisfies a disjunction ~D~ V • • • Y ~Dq, q _> 1, each ~D~ a 
conjunct ion  of fo rm (2) above, if r satisfies a t  least one ~D+, 1 < i < q. 

For  a given tree r and a given str ing D,  there m a y  be zero, one, or  
more  t h a n  one g raph  ass ignment  for  which r satisfies D.  

~ Let m,  " "  , n~ be subgraphs of a tree. Then n~ . . .  n~, the concatenation of 
the f(a<), is the graph obtained by placing the ~ next to each other in the order 
given, taking the nodes of the ~ as pairwise disjoint. 

~s A subgraph r~ of a tree ~-~ is cofinal residual, if (a) for each node ~ in r~ there 
is a node ~ in r, which is either ~, itself or below ~,, and (b) if r~ is a node of r~ 
and ~ is a node of r~ below ~,, then ~, is in r , .  
A subgraph of r, is proper if it is not r, itself. 
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The adjective "proper" in condition (1) rules out the root of any of 
the trees f (as) being the root of the given tree v. The necessity for having 
the root of no f(a~) be the root of the tree r arises in the description of 
the effect of a structural change, which could otherwise replace a tree 
with a sequence of trees having no common root. 

We mention without proof that any two disjunctions of form (3) 
above, which are logically equivalent, are either both satisfied or both 
not satisfied for a given tree. Because of this, we shall say that a tree r 
satisfies a domain statement if r satisfies some equivalent domain state- 
ment of form (3) above. 

EXA~rLE. Let D = J (I)XUJ (1). Let fl be the following function on 
V " : f l  (J (1)) is the tree in Fig. 3, f~ (U) is the tree in Fig. 4, f~ (X) is the 
structure in Fig. 5, and fl is irrelevant elsewhere. Let r l ,  ~ ,  and ra be 
the trees in Figs. 6, 7, and 8, respectively. 

Then ~ satisfies D forf~, r~ does not satisfy D for fl (but does for some 
other graph assignment f) ,  and r3 does not satisfy D for any graph assign- 
ment f. 

J U M P 

A: 

FIG. 3. FIG. 4.  FIG. 5. 

@r 

S 

J E 

a J 

FIG. 6. 
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b 

FIG. 7. 

a 

b 

FIG. 8. 

EXAMPLE. Le t  r~, r~, and ra be as above. Let  D = Dx A Do = 
J(I>XJ (~ h ( (J (I)XJ (~ A J (1)E V (JLE A ~ J M F E )  ). T h e n  z2 and 
r3 satisfy D bu t  rl does not .  

! 
We  are now ready  to  define how a T-rule changes a tree r into a tree T, 

? ! 
wr i t ten  symbolical ly  r ~ r  r or r ~ r .  

Notation. Given a T-rule, T = (D, C), where D = Dr  or D = Dz h Do, 
D~ -- al • .- a~ ,  and C = fll • • • ~ ,  and  given a g raph  assignment  f for 
which z satisfies D, let g r . / ,  abbrevia ted  g when T and f are understood,  
be the  funct ion on ({~' ,  (~), . . -  , @} U i f ) +  defined as follows: 

(i) g(}) = f (ek) ,  for } = ~ ,  ~ i n  {Q,  . . .  , @}; 
(ii) g ( } )  is the  one-node tree wi th  label }, for } in i f ;  

(ifi) g (2f)  is the  e m p t y  tree; and 
(iv) g(~, . . .  ~ )  = g ( ~ )  . . .  g(}~), for all ~ ,  . . .  , ~ i n  

{;J, Q, . . . ,  ®} u 

Notation. Let  T = (D, C) be a T-rule  and r a tree which satisfies D for 
ass ignment f .  L e t D  = Dr h Do o r D  = D , ,  w i thD~  = e~ . . -  a~0. T h e n  
f ( m )  . "  f(a~) is a cofmal residual subgraph  of r. Le t  r0 be the  s t ruc ture  
formed f rom r by  replacing, for each i such t h a t  B~ # Q ,  f(a~) with 
g(~i)  in the  obvious manner .  Wri te  r ~ T  r '  or r ~ r , '  where r '  is the  
largest  t ree (possibly the  e m p t y  tree) contained in r0.19 

Clearly there always exists a unique such tree r '  (for a given f ) .  
To  il lustrate the  relat ion of r ~ to r0, if r0 is the  s t ructure  in Fig. 9 then  

r '  is the  tree in Fig. 10. Thus,  r '  need no t  coincide with ro.  

~9 Recall t ha t  as used here, a tree must  have each of its terminal  nodes labeled 
wi th  terminals.  The s t ructure  r0 need not  have its terminal  nodes labeled wi th  
terminals.  (See Fig. 9.) 
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J 

a ¢ 

FIG. 9. 

¢ 

O a b 

FIG. 10. 

JI uI uI i m 5 b m 

S 

b u l b  
FIG. 11. FIG. 12. FIG. 13. FIG. 14. 

s S 

m 

FIG. 15. FIG. 16. 

EXAMPLES. (a) T,~s changes the tree in Fig. 7 of section one into the 
tree in Fig. 8 of Section 1. 

(b) Let T = (D, C), where D =. D r ,  D~ = al . . .  o,4 = J (1)XUJ (1) 
and C --/~1 - "  B4 = O ( ~ - ( ~ - - ~ - b b .  L e t f b e  defined (in part)  b y f ( J  (1)) 

being the tree in Fig. 11, f ( X )  -- ~ ,  a n d f ( U )  being the tree in Fin. 12. 
The tree r2 in Fig. 7 above satisfies D for f.  For the function gr.] = 
g, g (f~l) = g ((~)(~)) is the structure in Fig. 13, g (B~) is Z;, g (~3) is ~Z;, and 
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g(~4) = g(bb) is the sequence of trees b" "b. Then r2 J r  r ' ,  where r '  is 
the tree in Fig. 14. 

(c) Let  T = (D, C), w h e r e D  = D~ = ala2as = L X U ,  and 
! ! 

C = ~82t~3 = ~f-(~-,~f.  Then r J r  r ,  where r is in Fig. 15 and r is in 
Fig. 16. 

D .  TRANSFORMATIONAL GRAMMAR 

We are now ready to formally define the concept of a T-grammar. In  
addition to the underlying base and the T-rules, the grammar will also 
have (i) a set Z~' of distinguished symbols over which the language 
generated by the grammar is defined, and (ii) a specification of the order- 
ing of the T-rules. We shall discuss this last component after presenting 
the definition of the grammar. 

DEFINITION. A transformational grammar is a 4-tuple 9 = (53, A, R, ~) 
satisfying the following conditions: 

(1) 53 = (B, V, ~ )  is a base of trees. 
(2) A = (if,  Z~', X, V't), where 

(a) Z' is a finite set of abstract symbols such tha t  ~ ~ %', and 
2~' is disjoint from V - Z. 

(b) X is an abstract  symbol not  in V [J f t .  
(c) ~ '  ~ ~'. 
(d) V" is a set containing V U ~ '  U {X} plus a finite number of 

new symbols of the form Y c~) where Y is in V U ~ '  U {X}, and i is a 
nonnegative integer. 

(3) R is a finite set of T-rules (D, C) with respect to V", ~',  and X. 
(4) ~ = (K,  ~ ,  ~, So), where 

(a) K is a finite set (of states) and So (the start state) is in K. 
(b) ~ = { N ( s ) / s  in K}, where each N ( s )  is a partially ordered 

set over R U {sTop}, sToP being a special symbol occurring only as a 
maximal element. 2° 

(e) 6 is a mapping from a subset of K X R into K (next state 
function).  

The  components 53, A, and R have already been discussed. (As noted 
above, ~ '  is the set of symbols over which the language generated by 
the grammar is defined.) The component ~ pertains to the order of 
application of the T-rules. In  general, i t  is not  true that  a T-rule may be 

~0 Given a partially ordered set (Y, <), x is maximal (minimal) if, for y in Y, 
y < x (y > x) implies y = x. An element x is isolated if there is no y # x such 
that either x < y or y < x. 
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(i) 
(ii) 

(iii) 
and 

applied any t ime its domain s ta tement  is satisfied. In  fact, all T-gram-  
mars in the l i terature which we have seen have restrictions on the order 
of application of the T-rules. We now show how ~ effects restrictions on 
the use of the rules, and we shall see tha t  the restrictions in the li terature 
can be obtained by  appropriate  ~. 

Informally,  K is a set of states which record the past  history of the 
use of the rules. Call a T-rule, T, "appl icable" to a given tree r at  s ta te  
s if (i) r satisfies the domain s ta tement  of T, (ii) T occurs in N ( s ) ,  and 
ii) T is not  preceded in N (s) by  a T-rule whose domain s ta tement  r 

satisfies. A "der ivat ion"  consists of either 
(a)  a sequence of T-rules T I ,  . . .  , T~, s tates s l ,  . . .  , sk+l, and 

trees r~, •. • , rk+~ such tha t  for each i, 1 < i < k, Ti is applicable to r~ a t  
s~, yielding ri41, and s~+1 = ~(si ,  Ti) ;  or 

(f~) a sequence of T-rules T I ,  - - .  , T~_I, states s l ,  . - .  , sk, and 
trees r~, . - -  , rk such tha t  for each i, 1 < i < k, T~ is applicable to r~ a t  
s , ,  yielding r~+l, S~+l = ~(si,  T~), and STOP is in N(sk) and is not 
preceded by  any T-rule applicable to rk a t  s~. 

We now make the preceding motions more precise. 

Notation. Let  9 = (~, A, R, ~)  be a T -g rammar  and t -  the relation 
between pairs (r, s), where r is a tree and s is in K, defined as follows: 
Write (r, s) ~- (r ' ,  s ' )  if there exists some T in R such tha t  

t 
T~TT, 
T occurs in N (s), ,, 

T' '~ T' , t h e r e i s n o  i n N ( s )  a n d r  ,w i th  < T, s u c h t h a t r  ~ r ,  r 

(iv) s' = 6 (s, T) .  
Let  ~-* be the transitive, reflexive closure of ~-, i.e., (r, s) ~-* ('/, s') 

! ! 
if there exists n _> 1 and rl = r, sl = s, . . -  , r~ = r ,  s~ = s such tha t  
(r~, s~) k- (ri+l, s~ l )  for each i, i < n. Write (r, s) I t-- STOP, if STOP is 

t 
in N(s)  and there is no T in N(s)  and r ,  with T < STOP, such tha t  

! 
r~rT. 

Using the above notation, we now define the "language generated by  
a T -g rammar . "  

DEFINITION. A word w is said to be generated by a T-grammar  
= ( ~ , 4 ,  R , ~ ) , w h e r e ~  = (B, V , Z ) ,  A = (if ,  Z ~ ' , X ,  V") ,  and 
= (K, ~ ,  6, So) if 

(i) w is in (Z~')*, and 
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(ii) there exist r, r', and s' such that r is in B, (r, so) }- * (r', s')] ~- 
STOP, and w is the terminal string of r'. 
The language generated by 9, denoted by L(9), is the set of all words 
generated by 9. 

The purpose of STOP and of the distinction between acceptable termi- 
nals (Z~') and unacceptable terminals (Z' - ~ ' )  is to eliminate from 
the language of a T-grammar, b y  methods akin to the methods in 
the linguistics literature, certain words generated by the rules of the 
grammar. The STOP symbol is primarily used to allow only certain 
words, derived at intermediate stages of words in the language, to also 
be in the language. The unacceptable terminals (cf. the use of ~ in 
[Chomsky (1965)]) are used primarily in those derivations which never 
lead to a word in the language. These uses are not mutually exclusive, 
however; i.e., each of these mechanisms may occasionally be used to 
perform the function of the other. In Section 4, we discuss some meth- 
ods for reducing this "filter power." 

In passing, we mention that the model as defined, with CF base, 
generates all recursively enumerable sets. The analogous theorem, for a 
different model, is proved in Kimball (1967). 

3. ORDERING AND. GRAMMAR EXAMPLES 

We now present some examples to illustrate the above notions. The 
first five give some indication of the variety and generality of the use of 
partially ordered sets to specify the order of rule applications. The sixth 
illustrates the operation of "tree-pruning." The last one is a simple ex- 
ample of a T-grammar. 

(1) The set of T-rules in virtually every T-grammar extant is 
linearly ordered, in part. The rules in a linearly ordered set of rules are 
divided into two types, "obligatory" and "optional." An obligatory rule 
is one which must be applied if its domain statement is satisfied at the 
appropriate point in the derivation; an optional rule is one which need 
not be. (See, for example, Chomsky, 1957.) If R = {T1, . . .  , Tn} is 
linearly ordered, in the order given, with T~ 1 , . - .  , Ti~ optional, then 
the ordering system ~ can be constructed as follows: 

(i) K = { s 0 , . . - ,  sn}. 
(ii) 8(s~ ,T~)  -~ sj , for all i, j , O  < i <  n, 1 _<j_< n. 

(iii) In N (so), the obligatory rules are linearly ordered, with the 
last of them immediately preceding STOP. Each optional rule T~j is repre- 
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sented in N (s0) as a maximal node, which is directly preceded by the last 
(in R) preceding obligatory rule, if there is one, and isolated if there is no 
preceding obligatory rule. 

(iv) For all i, 1 ~_ i ~_ n, N(s~) is formed from N(s~-l) by re- 
moving T~. 

To illustrate, let R = { T1, T2, T3, T4, T~} be linearly ordered, in the 
order given, with T1, 2"2, and T~ optional. Then ~ is as follows: 
K = {s0, --- , ss} and ~ (st, T~) = sj ,  for all i, j, 0 ~ i < 5 and 1 _< j _~ 5, 
and N (So), -- .  , N(ss) are in Fig. 1-Fig. 6, respectively. 

(2) Recent versions of T-grammars, starting with Chomsky (1965), 
have assumed a cyclic order of application of T-rules. In this example, 
we ignore the linguistic problems involved in setting up the domain 
statement and simply show how a cyclic ordering is represented by our 
ordering scheme. If R = IT1, "-- , T~} is cyclically ordered (i.e., the 
rules are applied in the order given, but starting over with T1 after T~), 
with each rule obligatory, and the derivation halts whenever there is 
no rule that can be applied, then ~ is as follows: 

(i) K = {so,..., s,}. 
(ii) ~(s~, Tj) = sj,foralli, j,O ~ i <_ hand1 <j < n. 

(ili) For all i, 1 _< i _< n, N(s~) is in Fig. 7, and N(so) = N(s~). 
To illustrate, let R = { T~, T2, T3}. This cyclic ordering, with the rules 

obligatory, is represented as follows: 
(i) K = Is0, s~, s , ,  8~}. 

(ii) 8(s,, T~.) = s~., for all i, j, 0 _< i < 3, 1 ~ j _< 3. 
(fii) N (so) --- N (s~) is in Fig. 8. The N (s~) is in Fig. 9. The 

N(82) is in Fig. 10. 

T :ii 
FIG. 1. FIG. 2. FIG. 3. 

T ~ ~  

FIG. 4. 

STOP• @2 5 STOP • 

FIG. 5. FIG. 6. 
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STOP 

T 1 

i 

I 
@ 

Ti+l 

FIG. 7.  

STOP 

~3 

T 2 

T 1 

Fro. 8. 

STOP 

T 3 

T 2 

Fro. 9. 

STOP 

T 2 

T 1 

T 3 

FIs. 10. 

(3) In some grammars (e.g., Mitre Corp., 1964) the rules are 
cyclically ordered, except that  certain rules are optionally and others 
obligatorily reapplied as often as possible before going to the next rule. 
(Such provisions are implicit in many grammars which appear to be 
cyclically ordered.) Here K, ~, and N(s0) are as in Example 2. If  T~ is 
obligatorily reapplied as often as possible before going to the next (in R)  
rule, then N (s~) is in Fig. 11. If  T~ is optionally reapplied indefinitely be- 
fore going to the next rule, then N(s~) is as in Fig. 12. 

To illustrate, let R = / T1, T2, Ts,  T4} be cyclically ordered, with all 
rules obligatory, with T2 obligatorily reapplied as many times as possible 
before going to T3, and with T8 optionally reapplied indefinitely before 
going to T4. Then K = {So, Sl, s2, s3, s4}, 8(s~, Tj.) = st for all i, j 
0 < i _< 4 and 1 _< j _< 4, N(so) = N(s4) is in Fig. 13, N(s~) = N(s2) is 
in Fig. 14, and N(ss) is in Fig. 15. 

(4) Recently the notion of an "anywhere" rule has been proposed 
(Ross, 1967). Roughly described, an "anywhere" rule is one which must 
(or may)  be applied whenever its domain statement is satisfied. We con- 
sider only the case where R --- {T~, . . .  , T~, T~}, with T~ to T.  obliga- 
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Ti'l I 
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Fro. 11. 

Ti_ 1 

0P 
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Ti+l 

Fm. 12. 
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T 3 

T 2 

T 1 

Fro. 13. 

STOP STOP 'I 

T3 ; 
r 

Fro. 14. 

STOP 

T 2 

T 1 

T4 • 

FIG. 15. 

oT3 

tory  and cyclically ordered, and Ta an obligatory anywhere rule. (We 
assume tha t  T~ is a reapplicable rule as in the preceding example; vari- 
ations such as nonreapplicable anywhere rules, more than one anywhere 
rule, and optional anywhere rules, could all be represented by fairly 
obvious modifications.) Then K = {so, . . .  , s.}. The next state function 
plays a more significant role in this case; ~(st, T¢) = s¢ for i, j with 
0 < i < n , l _ < j < n ,  a n d ~ ( s t , T A )  = st for all i, 0 < i < n .  These t s  
N ( s t )  are as in the cyclic case except tha t  TA is added to each set as a 
zero element. 21 

For  example, l e t R  = {T1, T2, T3, T~}, with T1 to T3 obligatory and 
cyclic, and T~ an obligatory anywhere rule. Then  K = {so, Sl, s2, s3}, 
~(st, T¢) = s~ for all i and all Tj except T~ ,  and ~(s~, T~) = s~ for all 

21 Given a partially ordered set (Y, _<), x is a zero element if x < y for all y. 
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i, N(so) = N(s3) is in Fig. 16, N(sl) is in Fig. 17, and N(s2) is in 
Fig. 18. 

(5) The STOP symbol can be used in several ways to filter words 
from the language. The previous examples have illustrated its use in pre- 
venting words which occur in intermediate stages of certain derivations 
from being in the language. As another instance of its use, suppose a 
certain partially ordered set N (s) contains no occurrence of STOP. Then 
any tree v occurring at  state s to which no rule in N (s) can be applied 

! ! 
is eliminated, since (r, S)l I-- STOP is false and there is no r ,  4 such that  
(r, 4) I-- (r', s'). (For more drastic filtering, N(s) may be empty for 
some states s. ) 

To illustrate the implications of the absence of STOP, let R = 
{ T1, T~, T3} be linearly ordered, let K = {So, sl, 42, s3}, let ~(8¢, Ti) = st 
for all i,j, 0 < i _< 3, 1 ~ j < 3, and let N(so) be as in Fig. 19, N(sl) as 
in Fig. 20, N(s2) as in Fig. 21, and N(48) as in Fig. 22. Then any tree to 
which T~ fails to apply as the last rule in the derivation is eliminated. 

STOP STOP STOP 

~3 

T 2 

% 
FIG. 16. 

T 3 

Tfi 

FIG. 17: 

% 

T 1 

FIG. 19. 

~3 

T 2 

T 1 

Fm. 20. FIG. 21. FIG. 22. 

~3 

TA 

FIG. 18. 

STOP 
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(6) We now present a simple example of "tree-pruning" (Ross, 
1967; 1967, Chp. 3), and JR2, Chapter 3]. 

Suppose that the trees in Figs. 23 and 24 arise as subtrees in deriva- 
tions. Furthermore, suppose we want to (a) "prune" the S-node in Fig. 
23, i.e., to delete the S-node without deleting the subtree under it, 
thereby obtaining the tree in Fig. 24, and (b) leave unchanged the tree 
in Fig. 25. This cannot be accomplished by one application of a T-rule 
for the following two reasons: 

(i) The domain statement D = D~ h D o  = , ~ 3  h o~4~ct6 = 

X (1)NpX c2) h X (1)SX (2) is satisfied by the trees in both Fig. 23 and 
Fig. 25. 

(ii) Even if the trees in Fig. 23 and Fig. 25 could be distinguished 
by some domain statement, there is no way to substitute the Np-subtree 
for the S-subtree (for both subtrees cannot be included in one Dx, and 
only subtrees mentioned in Dz are affected by the structural change. ) 

The problem can be resolved by using the following sequence of 
T-rules, which are obligatory and linearly ordered with respect to each 
other. (We ignore here the question of how they might relate to the other 
rules of a grammar): 

Tx = (D, C), where D = DI A D o  = ala~aa A a4a~a6 = X (1)SX ~) 

h X (I>N~X (~, C = (~)-(~)m-@, and m is a new element of Z'. 
T2 = (D, C), where D = Dz h D o  = ala2asa4 h asa6a7 = 

X (1 )N~mX (3) A X (~)SX (2), and C = C)-~-(~)-~). 
Tt = (D, C), where D = D x  = ala2aa = X ( ~ ) m X  (2) and 

c = 

Then Tx inserts the marker m adjacent to S in both Fig. 23 and Fig. 25, 
obtaining the trees in Fig. 26 and Fig. 27, respectively. T2 applies only 
to the tree of Fig. 26, changing it to the tree in Fig. 24. T3 removes the 
marker m from the tree of Fig. 27, restoring it to its original form (Fig. 
25). 

p p' p 

FIG. 2.% FIG. 24. FIG. 2-5. 
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FIG. 26. FIG. 27. 

The above rules illustrate a type of procedure which can be used when- 
ever two nodes, one below the other with no "branching" between, are 
both to be involved in a structural change. However, this technique does 
not allow one of two identically labeled nodes, one directly above the 
other, to be pruned. I t  was to avoid this situation that the agreement in 
Section 2A was made. 

(7) For our last example, we present a T-grammar in its entirety. 
The grammar is ~ = ((B, A, R, f~), where (~, A, R, and ~ are given below. 

(a) ~ = (B, V, Z), where 
(i) Z = {$, P,,~, the, eat, chase, dog, eat, mouse, recently, 

yesterday}. 
(ii) V = Z U {S, S', N , ,  Au~, V , ,  Ad~, Vb, N~, Tn~}. 

(iii) B is the set of trees generated by the following set of CF 
rules, where S is the start symbol: 

S ~ $S'$ 

S' ~ NpA~V~ 

S' ~ NI, A~,~VpAd~ 

Vp ~ VbN~ 

N,  --~ the N,,$S'$ 

Nv --~ the N~ 

Au~ -+ Tn, 

Tn, --*. Past 

Vb --+ chase 

Vb --+ eat 

I Nn --+ dog 

~'N~ ~ cat 

INn mouse 

{ Aa~ --~ recently 

Aa~ ~ yesterday 
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(b) A = (Z', Z~', X, V"),  where 
(i) ~ '  = ~ U {be, E~,  by, that,  itself, #} 

(i~) ~ '  = ~ '  - {#} 
(iii) V" = V U ~'  U {Z} U {X m, . . .  , X a0), N~l), N(2)} 

(c) R = {Tpa~, T,o~lo~, Taa~, T,el, T~in, Tbouna}, where 
(i) Tpas is the rule (D, C), with D = D~ ^ D o ,  where 

Dr a~ a9 X (1)~T(1)r~ XT ~T(2)V (7)$X (2), 

DO = Otl0 ° ° °  O/14 h "~:0t15 " o  or21 h ~0~22 "** 0130 A r'~a31 " ' '  0'39 "~- 
X (1)~S '$X (2) h ~ X  (1)~X (8)$X (4)~X (2) h ~ X  (5)$S/~X (6)~S/$X (2) A 
~ X  (1)~TxT(1)q~ ~r ~ r ( 1 ) ~  ( 7 ) ~  (2) w~p ~n~Vb~p ~ O~ , and C = f ~ l ' " B 9  = ~ b e  

E~-@-by  @ - Q - ( ~ @  
All but  the last conjunct of Do are conditions designed to insure that  

the T-rule operate within the leftmost "lowest S'  flanked by $ markers" 
in the tree (see Footnote 23). Since these conditions will also be imposed 
on T,¢(l~, T~d~, and T,,~, we shall abbreviate them as "LLS"  (leftmost 
lowest S ' ) .  Thus, LLS is Do above without N X  (1)~(1)mv±~p lnsYb±~PXr ~T(1)~r~_ (7) 

SX (2). Since LLS requires 21 symbols to state, we shall assign it  to 
a~ l  • • • a~21, where nx = a~ • • • a~. 

The last conjunct of D o ,  in combination with Dz,  asserts tha t  the two 
noun phrases involved in the rule must be different. 

(ii) R~¢flo~ is the rule (D, C), with D = Dx ^ D o ,  where 
DI al ~9 X (1)~,'~T(1)A ~r ~T(1)%7* (7)~.-~ (2) 

and C = ~ " " ~  = ( ~ - @ - ( ~ - @ - i t s e l f - ~  
(iii) T~d~ is the rule (D, C), with D = D~ h D o ,  where 

Dr = ai . . .  a7 = X a)$ NpX (VAa~$X (2), 
Do = as " "  ai2 h N aia " "  al~ Y ,"a~o " .a~  = LLS, 

and C = ~1" '"  ~ = ( ~ - ( ~ - ( ~ ) - @ - ( ~ ~  
(iv) T,el is the r u b  (D, C), with D = Dr h D o ,  where 

Dz ai al~ X mSX (~)N~#X (~) the N~X (9)#X a°)$X (2) 
Do = a ~  . - .  a~s h N a l ~  . . .  a2~ h ~Ot26 " ' "  Ot84 A a$1f " '"  a4o 

---- L L S  h X m S X  (VNn#X (S)NpX (~)#X a°)$X (2), 
and C = ~ . . .  ~1~ = ~ ® - t h a t - f f ) - Z - Z - ~ - ~ - @ - @  

(v) T~o~a is the rule (D, C), with D = D~ ^ D o ,  where 
D ~  = a~ . - -  a~ = X m $ X  (~)$X (2), 

Do = a o " "  Otl0 A ~Otll " ' "  OQ7 h c~0~18 " ' "  0~26 = LLS, 
and C = ~ - - -  ~ = ® - # - ( ~ / / - ®  

(vi) T ~  is the rule (D, C), with D = Dz,  where 
Dz = aia2aa = # X #  
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and C = ~ 3  = ~ - ~ - ~ f  
(d) ~ = (K, 9Z, ~, Sbound), where K = {Srol, Sr~, S~efIox, Sadv, 

Sbound, S~i.}, 9Z = { N ( s ~ ) / s ~ i n K } ,  with N(s~e~) asin Fig. 28, N(sp~) in 
Fig. 29, N(sr~f~,x) in Fig. 30, N(s~d~) in Fig. 31, N(Sbo,nd) in Fig. 32, 
N (s~i,) in Fig. 33, and ~ is defined by ~(s~, T~) = s~for all x and y. 

Note that this T-grammar includes all the rules of the example in 
Section 1 (with the T-rules expressed formally here) as well as several 
others. In addition, this T-grammar includes adverbs (i.e., "recently", 
and "yesterday"). The CF-rules introduce adverbs at the end of a 
sentence, as in "the cat ate the mouse yesterday." The T-rule T~d~ moves 
adverbs to the beginning of the sentence, as in "yesterday the cat ate 
the mouse." The inclusion of T~o~ permits such sentences as "the 
mouse chased itself." Tbound converts the original boundary marker $ to 
# (at the end of each cycle). The provision that each rule apply within 
the leftmost lowest S',  with $ markers, combines (using the order of the 
rules) with the conversion of $ to #. The effect is that the subtrees headed 
by S' in the tree are operated on one at a time, from bottom to top (and 
left to right). At the end of the last cycle, T~n deletes the outermost 
occurrence of #, which is the "unacceptable terminal" (i.e., 

_ = {#} ). 

Treflex~S Tpas Trefle x 

Tre 1 
FxG. 28. Fm. 29. Fm. 30. 

Tadv 
@ 

'~o~ 
Tb ound 

Treflex 
• STOP 

Fm. 31. Fm. 32. FIG. 33. 
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The ordering of the rules consists essentially of a cycle on the linear 
sequence T~el, T,a,, T,o~lox, Tadv, and Tbound, plus a T-rule T~in, which 
is the last to be applied. Tpa, and Taav are optional rules. T,e~ is reap- 
plicable (obligatorily). 

We illustrate the operation of the T-grammar with the derivation of 
the sentence "the mouse that recently chased itself was eaten by the cat 
yesterday." 

(i) The CF rules generate the tree 70 given in Fig. 34. 
(it) (re, sbo~na) ~T~etl~ (rl, s~f1~), where T1 is the tree ob- 

tained by replacing the rightmost N~ in r0 with the symbol "itself." 
(iii) (rl, s~,~z~) [--T,av (r~, S~) ,  where r2 is in Fig. 35. 
(iv) (r2, s~d~) ~--Wbo~d (r3, Sbo.~a), where r3 is the tree obtained 

by replacing the two inner occurrences of $ with #. 
(v) (r3, Sbo~nd) t--T~l (n ,  Sr~I), where r4 is in Fig. 36. 
(vi) (T4, Srel) ~Tpas(T,, Spas) ~-- Tbound('/',, Sbound) ~'Tfin (T7, Sfin) 1 

[-- STOP, where r; is in Fig. 37. 
Since all the terminals of r7 are in Z~, the resulting word is in the lan- 
guage generated by the T-grammar. As in the example of Section 1, we 
assume that morphophonemic rules not shown here convert the ter- 
minal string "the mouse that recently Pa~t chase itself P~t be En eat by 
the cat yesterday" into "the mouse that recently chased itself was 
eaten by the cat yesterday." 

4. RESTRICTIONS 

The general model presented in Section 2 incorporates most of the 
important features of T-grammars described in the literature. ~ However, 
linguists are trying to determine the narrowest possible class of grammars 
adequate for describing natural languages. In this section, we present a 
number of restrictions on the general model. These restrictions, taken in 
various combinations, provide submodels which correspond to concep- 
tions of T-grammars already in the literature. 

A T-grammar has been defined as a quadruple 9 = ((B, h, R, ~), 
where (B is a base, A specifies the vocabulary and its subparts, R is a 
set of T-rules, and ~ is a specification of the order in which the T-rules 
can be applied. We therefore first list the various restrictions on 4, 
then those on R, and finally those on ~. 

~ See Footnote 2. 
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A. RESTRICTIONS ON A 

DEFINITION. ~ is t~rminal-preserving if ~ = ~, and in each rule (D, ¢} 
in R, each ~ is in {~,  O,  " " ,  @}+. 

In other words, a terminal-preserving grammar is one in which no 
T-rule can introduce a new terminal. This restriction is an extreme 
version of the notion that the trees of the base should contain all the 
semantically relevant material (Katz and Postal, 1964). 

DEFINITION. ~ is terminal-blocking if ~.~ # ~ ,  i.e., if some of the 
terminals are unacceptable. ~ is a-blocking if ~ '  -= ~'  - {a}. 

In Chomsky (1965), p. 138, the "boundary symbol" # appears to be 
the only unacceptable terminal. 

B. RESTRICTIONS ON R 

DEFINITION. ~ has weakly recoverable deletions (Katz and Postal, 
1964, p. 80) if, for each T-rule (D, C) and each i, ~ in C, at least one 
of the following holds: 

(a) for some fl~ in C, ~j = u(~)v, u and v in (~' [J {%?/, (~), " " , @}. 
(b) as = ak for some k # i, and for some ~ in C, ~j = u(~v, u and 

v in (~' (J {~,  Q,  . . .  , ~}  )+. 
(c) at is in ~'. 
having weakly recoverable deletions requires each a~ whose in- 

dex does not appear in the structural change statement to be either a 
terminal symbol (condition (c)), or identical to some ak whose index 
appears in the structural change statement (condition (b)). Its effect is 
that given a tree and the T-rule applied to produce it, the preceding 
tree is determined to within a finite set of trees. 

DEFINITION. ~ has strongly recoverable deletions if for each T-rule 
and each/~ in C, either condition (a) or condition (b) in the previous 
defmition holds. 

This property, in slightly different form, is suggested in Chomsky 
(1965; p. 145, p. 222, fn 1; p. 225, fn 13). Chomsky suggests that in the 
general theory there be a requirement that deletion be effected only by 
identical structures, and that such a requirement would eliminate the 
need for quantifiers in domain statements. (In our model, quantifiers 
are implicit in the use of identical superscripts such as N~ 2), -.plv¢2) etc. ) 

C. RESTRICTIONS ON 

DEFINITION. ~ is naturally ordered if R = {7"1, . . . ,  T~}, 
K = Is0, . . .  , s~}, and ~(si, T~.) = s~.for all i , j ,  0 _< i < n, 1 _< j _< n. 
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Although ordering of T-rules is often not explicitly described, most of 
the literature implicitly conforms to the requirement of natural ordering. 
An exception is the "anywhere rule," given in Example 4 of Section 3. 
Note that 9 being naturally ordered imposes no restriction on the N (s~). 

Among the natural orderings, we now describe two important sub- 
cases, the "linearly ordered" and the "cyclically ordered." 

DEFINITION. 9 is linearly ordered if R = { T1, . - .  , T.} is naturally 
ordered and for each i, 1 < i < n, 

(i) T~ is a minimal element of N (Si_l), 
(ii) N(si) is formed by removing T~ from N(s~_l), and 

('fii) STOP is a maximal element of N (so) (and thus of each N (si)). 
Note that optional and obligatory rules, as described in Example 1 

of section three, may appear in a linearly ordered T-grammar. 

D~FINITION. ~ is cyclically ordered if, for R = { T1, . . .  , T.}, 9 has 
the following properties: 

(i) ~ is naturally ordered. 
(ii) N (So) = N (s~) and satisfies the following: the obligatory 

rules Til, "'" , T~0 of R are simply ordered, i.e., T~j < T~;+I for each 
< k, and each precedes STOP. For each optional rule T~, T~. < T~ 

if4.  < i. 
(iii) For all i, 1 ~_ i <_ n, N(s~-l) contains T, as a minimal element. 
(iv) Suppose T, is an isolated node in N(s~_l). Then T~ and sToP 

are incomparable in N (si). Furthermore, for each j, if T~ < STOP in 
N(S~l)  then Ts < T~ and Ts" < STOP in N(s~). 

(v) Suppose Ti is not an isolated node in N (s~l). Then T¢ < STOP 
in N (s~). Furthermore, for each j, if T~. < STOP in N (S~_l) then T~. < T~ 
in N (s~). 
'See  ChomSky (1965) p. 134-138 for a linguistic discussion and a 

somewhat different formulationY 

DEFINITION. ~ is unordered if R = {T1, . . . ,  T~}, K = {so}, 
~(s0, T~) = So, for all j, and in N(s0), for each i either T~ is an isolated 
node or T~ precedes STOP. (That is, optional rules are isolated, while 
obligatory rules precede STOP.) 

~8 A typical  rule of a cyclic g r am m ar  in  the  l i t e ra tu re  migh t  have  a domain  
s t a t e m e n t  which  appears  as # J L  #. Since our  model does not  incorpora te  the  
not ion  of a " lowest  sen tence , "  such  a domain  s t a t e m e n t  would be  r e s t a t ed  in our  
sys tem as Dz /k D o ,  where DI  = X(x)#JL#X (2}, and Do is s imilar  to  the  LLS 
s t a t e m e n t  of Example  6 of Sect ion 3. 
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To our knowledge an unordered T - g r a m m a r  has not  actually appeared 
in the literature, bu t  its possibility has been suggested in informal 
discussions, frequently under the name "intrinsically ordered." 

The  final two definitions concern the use of ordering to accomplish 
blocking as illustrated in Example  5 of Section 3. 

DEFINITION. ~ is order-blocking if for at  least one s in K, N (s) does 
not contain STOP as an isolated node. 

Thus,  a T - g r a m m a r  is order-blocking if i t  does not  permit  free choice 
of STOP at  every stage in every derivation. Such a g rammar  uses the 
ordering to prevent  certain words which arise in intermediate stages 
from being in the language. This application of ordering is implicit in 
most  generative grammars.  

DE~INITION. ~ is nonblocking if 9 is neither terminal-blocking nor 
order-blocking. 

Thus ~ is nonblocking if every word which arises in a derivation is a 
word in the language. This notion is a slight extension of the notion of 
"nonblocking" as used in Klima. 
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