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A mathematical model of transformational grammars is presented
which incorporates most current versions. Among other things, the
model has a formal definition of transformations and a general
scheme for ordering them. Numerous examples are given to illustrate
the theory.

INTRODUCTION

One of the primary goals of linguistics is to find a suitable model of
natural (human) language. Among the models proposed, one of them,
the transformational grammar (abbreviated T-grammar) seems very
promising and, in the past decade, has received considerable attention
from linguists. At present, there are numerous alternative forms of the
model under serious consideration, In fact, there is a noticeable lack of
unanimity among linguists with respect to a number of aspects of the
theory. As yet, no mathematical model has been given which encom-
passes most of these different versions of a T-grammar.! The purpose of

* Research sponsored in part by the Air Force Cambridge Research Labora-
tories, Office of Aerospace Research, USAT, under Contract F1962867C0008, and
by the Air Force Office of Scientific Research, Office of Aerospace Research,
USAF, under AFOSR Grant No. AF-ATOSR-1203-67.

1 A formalization of one particular version has been made in a forthcoming
paper (Peters and Ritchie). Some extensions of this version and some con-
sequences have been explored in Kimball (1967). A computer model has recently
been proposed by Friedman (1968).
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this paper is to propose one such mathematical model. In particular,
a model is presented which appears to incorporate most current versions
of transformational theory.? As would be expected from linguistic ex-
perience, the model is general enough to yield all recursively enumerable
sets as its generated languages. It appears likely that speéeial natural
restrictions on the model will yield many new types of formal languages
of interest to the mathematician, linguist, and formal language theorist.
In particular, because of the richness of the model, it seems reasonable to
hope that appropriate restrictions will provide “grammars” for a num-
ber of families of formal languages introduced in the past few years by
families of acceptors.

The paper is divided into four sections. In Section 1 we present a
linguistic example to motivate the need for, and some underlying con-
cepts of, T-grammars. In Section 2 we abstract some of the ideas of
Section 1 and present a mathematical model of T-grammars. Section 3
contains some examples illustrating the ordering of T-rules and an ex-
ample of a T-grammar in its entirety. Section 4 contains a number of
possible restrictions on the general model. Taken in various combina-
tions, these restrictions provide submodels which correspond to certain
descriptions of T-grammars in the literature.

Stylistically, the paper has been written for the mathematical linguist,
the mathematician, and the formal language theorist. In this way we
hope to (1) make some of the issues more precise to the linguist and
(2) make accessible to the mathematician and formal language theorist
a number of definitions and concepts deeply embedded in the linguistic
literature.

INFORMAL LINGUISTIC NOTIONS

As mentioned in the introduction, the purpose of the present paper is
to obtain a formal definition of T-grammars. In this section we present an
example to motivate the need for, and informally determine some fea-
tures of, a T-grammar. The linguist will find nothing new here and we
suggest he skip to Section 2.

Consider the following five English sentences:

(1) The dog chased the cat
(2') The cat ate the mouse
(3") The mouse was eaten by the cat

2 One important exeeption is the notion of “syntactic features” described in
Chomsky (1965) and included in most subsequent T-grammars.
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(4") The cat that the dog chased ate the mouse
(5') The mouse was eaten by the cat that was chased by the dog
Using certain morphophonemic rules (of no concern to us here), sen-
tences (1')-(5") can be derived from the following forms:
(1) $ the dog P.s: chase the cat §
(2) § the cat P eat the mouse §
(3) § the mouse Py be K, eat by the cat §
(4) $ the cat that the dog Pas chase P, eat the mouse $
(5) $ the mouse P,y be E, eat by the cat that P, be E, chase by
the dog $
In the remainder of this seetion, we shall construct a sample T-gram-
mar, which generates ‘‘sentences” (1)-(5) (and other sentences as
well ).
Sentences (1) and (2) are generated by the following CF rules‘:

S — 838 Vi — chase
8" — NpALY, Vi, — eat
V, — VuN, N, — dog
N, — the N, N, — cat
Aux — Thas N. — mouse

Tns —> Fast

The nonterminals 8, Ny, Aux, Vp, Vi, Na, and Ty abbreviate “sen-
tence,” ‘““noun phrase,” ‘‘verb auxiliary,” ‘“verb phrase,” “verb,” “noun,”
and “tenge,” respectively. The S is the start symbol. The terminal sym-
bols are P, ,° the, chase, eat, dog, cat, mouse, and the boundary marker
$. Clearly the rules generate (1) and (2) from S. If we were concerned
only with sentences (1) and (2), then the above rules could be simplified.
However, the rules as given provide linguistic structure needed to deal
with sentences (3), (4), and (5).

The passive sentence (3) cannot be generated by these CF rules.
Clearly we could add extra rules to generate (3). However, this would
complicate the grammar considerably and would not indicate that (3)

? The symbol $ is used as a sentence boundary marker.

* We assume that the reader has a working knowlecge of both context-sensitive
(abbreviated CS) rules and context-free (abbreviated CF) rules.

¢ The symbols “Pasi ,”” “the,” “‘chase,”” etc., are to be regarded as single sym-
bols.
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is related to (2). For linguistic purposes it is thus necessary to introduce
a different kind of rule. The type of rule suggested by Chomsky (1957)
and currently receiving much attention is the “transformation rule”
(abbreviated “T-rule”). Roughly described, a T-rule is a procedure
which operates on “structured” sentences to form other structured sen-
tences. This leads to the notion of a postulated set of “simple” structured
sentences (in the current example, the set of sentences generated by the
CF rules), and T-rules to generate more complicated structured sen-
tences from them.

To see how a T-rule is used to generate (3), let us consider how passive
sentences are formed. Loosely described, a passive sentence is formed
from its corresponding active sentence (e.g., (3) from (2)) by inter-
changing subject and object, adding “by” before the original subject,
and changing the verb to passive form. Linguistically speaking, a sen-
tence of the form

(6) $N;° Ty VuN;”$
is made into a passive sentence by converting it to°
(7) $N{ Ty, be E, Vs, by N{°8.

byt A
In sentence (2), Nf,l) is “the cat,” Ty is “Pasi,” Vp is “eat,” and N
is “the mouse.” Restructuring (2) as above gives (3).

The mapping that converts sentences of the form (6) into sentences
of the form (7) is a T-rule, called Ty.s, which can be symbolically
written as follows:

T,s : Domain statement: X © § N T, V, N® ¢ x@
a1 ds Qg Qi Oy O A1 Og
Structural change statement: @-@-®~® be E~E-by@-O-®
NS and N are noun phrases’ not necessarily identical to each other.
X ® and X ® are variables representing arbitrary strings that are not
necessarily identical to each other. In general, if a symbol oceurs more
than once in a domain statement, then each occurrence of the string it
represents must be the same. In (6), each of the distinet symbols X
and X @ is the empty string . The domain statement specifies the form
of the sentences to which the rule may be applied. The structural change

¢ B, is a new terminal symbol which morphophonemically converts the verb
following it to passive (i.e., past participle) form.

7 Actually, NS and N9 are not noun phrases; they are symbols representing
trees that generate noun phrases. The meaning attached to these symbols is
discussed rigorously in C of Section 2.

" 8 An instance will shortly be given (Fig. 5), where neither X® nor X® is the
empty string.
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statement indicates the effect of the rule in a manner to be precisely
explained in section two.

Since a T-rule applies to any sentence which can be parsed into the
form given in the domain statement, in effect it applies to the tree asso-
ciated with the CF derivation of the sentence.” The T-rule maps that

I

- ealt the mouse
the cat Past

F1a. 1.20

tree into a new one in accordance with the specifications of the structural
change statement in a manner to be desecribed in Section 2. In our ex-
ample, the tree in Fig. 1 is mapped into the tree in Fig. 2.

As noted above, the result of applying a T-rule to a tree structure is
again a tree structure. This allows an iteration of the procedure, that is,
allows T-rules to be applied in sequence (in a manner more fully de-
seribed later). Thus, for example, the “question” T-rule (not given in
the present paper) can be applied to passive sentences.

Consider sentence (4). Intuitively, sentence (4) is a combination of
sentences (1) and (2). It turns out that we need another CF rule and
another T-rule to generate (4). Let us add to our CF rules the CF rule

N, — the N,$ §'§.

The CF rules then generate
(4”) $ the cat $ the dog P.s chase the cat $ Pa eat the mouse $

? In Section 2 and thenceforth, we regard a T-rule as mapping a tree into a
tree. In this section we occasionally speak loosely of a T-rule operating
on a sentence.

10 We write trees from top to bottom; i.e., the root is at the top.



302 GINSBURG AND PARTER

the mouse Pt e E eat by the cat
Fiq. 2.
3
$ $
e
N \Z
P P
Aux
V.
- SI $ b 19
the n $ Tns
13
V. ast ea the "mouse
P
N A
D ux
N
is
Nn ] rTns "Vb
n
@ L] [ [ L p
cat the dog P the cat

agt chase

Fia. 3.



MATHEMATICAL, MODEL OF TRANSFORMATIONAL GRAMMARs 303
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Fia. 4.

with the tree structure in Fig. 3. To derive (4), we need a T-rule which
will convert the embedded sentence into a relative clause. The T-rule
which aceomplishes this is Ty . In particular, Ty, checks to see that there
is a noun in the embedded sentence which is identical to the noun im-
mediately preceding the embedded sentence. If there is, then the noun
in the embedded sentence is replaced by “that”", and the word “that”
moved to the front of the embedded sentence. In a manner similar to
Tpas , Tret may be symbolically written as follows:
Te1 : Domain statement: X " NP $§ X P the NP X® ¢ x @

(251 Oy Q3 ¢4 O O Q7 Qg Oy.

Condition: N, generates asos .

Structural change statement: O-@-that-@-F-F-@D-&

The condition is a constraint on the domain of the T-rule. This par-

1t The noun may also be replaced by ‘“who’ or “which,” or it may even be
deleted. For simplicity, only one case is considered here.
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ticular condition means that in Fig. 3, N, generates ases with superseripts
removed. The fact that the superseripts on the two oceurrences of N,
are the same means that the subtrees they generate must be the same.

In the structural change statement, & denotes the empty tree
(generating the empty string ). Its occurrence results in the deletion of
the corresponding subtree designated by the domain statement. Thus,
in this example, the second boundary marker $ and the noun phrase
“the cat” of the inner sentence are deleted (replaced by the empty
tree), and “that” is substituted for the first boundary marker $ of the
inner sentence.

The terminal string associated with the tree in Fig. 3 generated by the
CF rules satisfies the domain statement of T in the following way:

$ the cat $ the dog P. chase the cat ¢  $ P.; eat the mouse $

x® NP § x® the N® Xx© g x®

o1 Ol az Q4 &y O ar Og Oy

Therefore, T:a1 can be applied to the tree in Fig. 3 to derive the tree in
Fig. 4. The terminal string of the tree in Fig. 4 is the sentence (4).

3 L > J;
ezt the mouse

the catb the dog Pt chase the cat Pt

Fia. 5.
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Finally, consider sentence (5). Sentence (5) requires no additional
rules, Its derivation involves Tpas, Tre1, and Ty as follows: The CF
rules generate the tree in Fig. 5. The tree in Fig, 5 satisfies the domain
statement of T, as follows:

$thecat $§ thedog P.s chase thecat $ P.. eat the mouse §

(231 oy O3 [+ 7} 8431 K (244 ag

The T,.s converts the tree in Fig. 5 into the tree in Fig. 6. The tree in
Fig. 6 satisfies the domain statement of Tt as follows:

$the cat § € the cat P,y be E, chase by the dog §

[ 1} [24) az O4 ap Og (444 ¢

Pt eat the mouse $

a9

The Ty converts the tree in Fig. 6 into the tree in Fig. 7. The tree in
Fig. 7 satisfies the domain statement of T,.s as follows:

e $ the cat that P,y be E, chase by the dog P, eat the mouse

—_— —

a1 Og a3 [+7] (41 g

3 e

—

o7 Og

The Tpas converts the tree in Fig. 7 into the tree in Fig. 8. The terminal
string of the tree in Fig. 8 is sentence (5), so that the derivation is now
complete.

In the above example, we included a set of CF rules as part of the
T-grammar. Since our main concern in the sequel is with T-rules and
their usage, we are interested in CI or CS rules only insofar as they
define a set of trees which serve as input to the T-rules. Now the
linguistic literature generally includes ordered sets of CF or CS rules,
ordered, frequently, in quite special ways (Chomsky, 1965). Therefore,
we shall simplify our discussion by assuming that part of the T-grammar
consists of a “base,” i.e., set of finite trees. We shall not be concerned
with the mechanism that generates this set of trees.

In summary, then, the above example illustrates the utility of a gram-
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the cat the catp Past be En chase by the dog ast eat the mouse

Fia. 6.
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the mouse P . be En eat by the cat that Past be En chese by the dog

Fia. 8.

mar with the following features:

(1) The grammar contains a base eonsisting of trees with asso-
ciated terminal strings.

(2) The grammar contains T-rules which map trees onto trees. In
particular, they apply to trees of the base to yield structures to which
further T-rules can apply, ete.

(3) Each T-rule is specified by a domain statement and a structural
change statement.

In the next section, we shall formalize the definition of a T-grammar
on the basis of the above three properties. We shall also incorporate
some properties not exemplified in the sample grammar. For example,
the ordering of the T-rules and the definition of the languages generated
are concepts which require specification.

2. FORMALIZATION

In this section we present a mathematical model of T-grammars. In
particular, we shall define T-rules, the operation of T-rules, the order in
which the T-rules may be applied (i.e., the “traffic rules”), and the
language generated by the grammar.
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A. Base

As was mentioned in the preceding section, T-grammars are com-
monly said to have a set of CF or CS rules that generate trees to which
T-rules apply. In actual practice, special orders are imposed on the
use of these rules (Peters, 1966), so that their usage differs from that
given in either CF or CS grammars. Since our interest in this paper is
in the T-rules and not the schemes used for deriving an original set of
trees, we shall ignore such schemes and assume the existence of a given
set of trees, called a “basge.”’1?

In order to discuss “bases,” we first consider “finite trees with labeled
nodes,” henceforth abbreviated ‘“trees.” We assume each non-empty
tree has a “root.”’8 Following the convention in the linguistic literature,
we draw trees with the root at the top. We also need

Agreement. All trees in this paper are assumed to have the property
that if a node has exactly one node immediately below it, then the two
nodes have different labels. ach tree not of this form is to be auto-
matically identified with the tree obtained by identifying such pairs of
nodes in the obvious manmner.

As an example, the tree in Fig. 1 is automatically considered to be
the tree in Fig. 2.

The agreement is included because the T-rules as defined in our model
cannot distinguish between such identified configurations. The condi-
tion is linguistically reasonable (and its equivalent has always been
included in linguistic definitions of CF and CS grammars). It may be
regarded as a special case of tree pruning. (See Ross (1965; 1967, Chap-
ter 3) and Section 3, Example 6, below.)

We now briefly describe a base and the type of trees in it.

DEFINITION. A base ® is a triple (B, V, 2), where V is a finite non-
empty set, = (the set of terminal symbols) is a subset of V, and B is a
set of non-empty trees, each of which (i) has its terminal nodes labeled
with symbols of = (so that terminal nodes are labeled with terminals™)
and (i) has its nonterminal nodes labeled with symbols of V' — Z.

12 A suggestion for specifying the set of base trees by a means other than CF
or CS rules appears in MeCawley (1968). .

18 We assume the reader is familiar with the concept of a finite tree with labeled
nodes and a root.

14 For some purposes it might be desirable to allow terminal nodes to be labeled
with symbols of = U {e}, but for the purposes of this paper there is no need to doso.
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DeriniTioN. The associated word or the terminal string of a tree 7
satisfying (i) and (ii) above, whether or not in B, is the word formed by
concatenating the labels of the terminal nodes of + in the usual left-to-
right order.

B. TRANSFORMATION RuULms

As already noted, a T-rule is a rule which transforms trees into other
trees. It has two parts: a “‘domain statement” and a “structural change
statement.” In this subsection we shall formally define T-rules, and in
the next subsection we shall specify how they operate on trees.

Notation. Given @ = (B, V, Z), let =’ denote a finite superset of =
such that =’ and V — = are disjoint. Let X denote a new symbol (a
“dummy variable”) and let V' = V UZ" U {X]. Let V" denote a set
consisting of V' plus a finite number of new symbols of the form ¥ @,
where Y is in ¥’ and 7 is a nonnegative integer.

We now define the notion of a “domain statement.”

DrrintrioN. A Boolean domain statement is any expression formed as
follows:
(1) Eachstring a; - -+ ax, k > 1, every a;in V7, is a Boolean domain
statement.
(2) If Dy and D, are Boolean domain statements, then (D; V D,),
(D1 A D2), and ~D; are Boolean domain statements.
We shall omit parentheses whenever no ambiguity results.

DerINiTION. A domain staiement is any expression of the form D,
or Dr A Do, where D;is a string oy -+ az, k > 1, every a;in V", and
D, is a Boolean domain statement.
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A typical domain statement is written as either D, D = D;, or
D = D; A Dy, with Dy and D, as above.

We now define the notion of a “structural change statement.”

DrrmvirioN. Let D = D;or D = Dy A Do be a domain statement,
with D; = a1 +++ a.. A structural change statement (on D) is a string
C = By -+ B, such that for each 7 z, ® is a new symbol, 8; = @ if 7isin
H and Bﬂsm (@' Uiy, @, , @}) — H)™if {is not in H, where

= {j/a;in {X, X' X P, ...}

It will be subsequently seen that the above conditions on H guarantee
that a T-rule cannot alter or move any parts of the tree that are desig-
nated by one of the variables X, X ®, etc. The manner in which the
structual change statement produces new constituent structure from
old is specified in the next subsection.

Note that whereas D = D;orD = D; A Dy, C is defined only with
respect to D; . Intuitively deseribed, the role of Dy is only to add further
conditions, beyond those specified in Dy, which a tree must satisfy in
order for the T-rule to be applicable to it. (See Section C below.) The
role of Dy is both to impose conditions which must be satisfied by a tree
and to define the structure on which the changes specified by C will
operate. ’ '

We are now able to formally define a T-rule.

DEFINTTION. A transformation rule T is an ordered pair (D, C), where
D is a domain statement and C is a structural change statement on D.
We illustrate the eoncept of a T-rule by examining Ty, and Ty .

Exampre. Consider T,... The domain statement is Dy, where
r=ay e oy = X VNPTV NPEX @ The structural-change state-
ment is 1 -+ fs = @-@-E@-@ be E—~B-by @-0-®.”

Exampre. Consider Tri . A first thought is that the domain statement
is Dy, where D; = oy -+- a9 = X PNP$X @ the NP X P$X . How-
ever, this does not provide for the restriction that asas must be generated
by N, . The solution is to have the condition that asas is generated by
N, expressed in a Boolean domain statement. In particular, the domain

15 For each set E, Et is the set of all non-empty strings of elements from E
and B* = Et U {¢}.

16 The dash symbol,~, is used to separate the 8; . Thus, for example, 8 = ©®
and Bs = @ be E, .
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statement is D; A Dy, where
Dr=oar+ - ag = XONP$X @ the NPX P$x @,
and Do = ag -+ - oy = X PNLEX ON, X Ogx @,

We shall see in C below how the new domain statement requires oo to
be generated by Ny . The structural change statement is 8y --- gy =

O-@-that-D-F-F-O-F-®.
C. Use or T-RuLes

We now turn to the problem of how to apply a T-rule. Hereafter, each
tree mentioned is assumed to (i) have its terminal nodes labeled with
symbols of =’, and (ii) have its nonterminal nodes labeled with symbols
of V — 2’. We shall see that a T-rule is applied to certain trees to yield
other trees. In particular, 2 T-rule may be applied to a given tree 7 if 7
“gatisfies” the domain statement of the T-rule in a manner defined below.

DEFINITION. A graph-assignment f is a function over V" defined as
follows:
(i) Forf = yort = 4%, vin V' — {X}, f(£) is a tree with root
labeled 7.
(ii) For each ¢ in {X, X®, X® ...}, 7(¢) is an arbitrary con-
catenation of (possibly null) trees.”

Derinrrion. (1) A tree 7 salisfies a siring a1 --- ax for a graph-
assignment f if f(er) - - - flow) is a cofinal residual proper subgraph of 7'
(2) A tree 7 satisfies a conjunction Dy A -+ A D, A ~Dpy
A --- ~ Dyin(p, m > 0, each D; astring ), if there exists a graph assign-
ment f such that 7 satisfies each D;, 1 < 7 < p, for f, and there exists no
graph assignment f; such that (a)r satisfies each D;, 1 < 4 < p, for f;
and (8)r satisfies at least one Dy, 1 < 5 < m, for fy.
(8) A tree r satisfies a disjunction®; V --- V ®,,¢ > 1,each D; a
conjunction of form (2) above, if 7 satisfies at least one ©;,1 < 7 < ¢.
For a given tree v and a given string D, there may be zero, one, or
more than one graph assignment for which 7 satisfies D.

" Let n1, --- , n be subgraphs of a tree. Then 1 --- ns, the concatenation of
the f(e), is the graph obtained by placing the 7; next to each other in the order
given, taking the nodes of the 7; as pairwise disjoint.

18 A subgraph 7, of a tree 75 is cofinal residual, if (a) for each node »; in 75 there
is a node # in 7; which is either »; itself or below ». , and (b) if »1 is a node of 7;
and »3 is a node of 72 below »1 , then »2 is in +; .

A subgraph of 7, is proper if it is not r, itself.
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The adjective “proper” in condition (1) rules out the root of any of
the trees f(a;) being the root of the given tree r. The necessity for having
the root of no f(a;) be the root of the tree = arises in the description of
the effect of a structural change, which could otherwise replace a tree
with a sequence of trees having no common root.

We mention without proof that any two disjunctions of form (3)
above, which are logically equivalent, are either both satisfied or both
not satisfied for a given tree. Because of this, we shall say that a tree 7
satisfies a domain statement if 7 satisfies some equivalent domain state-
ment of form (3) above.

Exampie. Let D = J PXUJ . Let f; be the following function on
V" (@) is the tree in Fig. 3, f1(U) is the tree in Fig. 4, f; (X) is the
structure in Fig. 5, and f; is irrelevant elsewhere. Let 71, 72, and 73 be
the trees in Figs. 6, 7, and 8, respectively.

Then 7 satisfies D for f; , 72 does not satisfy D for fi (but does for some
other graph assignment f), and 73 does not satisfy D for any graph assign-
ment f.

d U M P

a b L ( b d d h
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F1a. 3. Fi1a. 4. Fia. 5.

Fia. 6.
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Exampre. Let r, 7, and 73 be as above. Let D = D; A D, =
JOXT® A (JPXTP A JPE vV (JLE A ~JMFE)). Then r, and
73 satisfy D but 7; does not.

We are now ready to define how a T-rule changes a tree r into a tree 7,
written symbolically r =7 7 or 7 = 7.

Notation. Given a T-rule, T = (D, C'), where D = D;orD = D; A Do,
Dr=ar-+-ay,and ¢ = B; - -+ B, and given a graph assignment f for
which 7 satisfies D, let g7 ; , abbreviated g when 7 and f are understood,
be the function on ({&, @, --- , @} UZ')* defined as follows:

(i) &) = flow), for £ = ®, ®in (D, -+ , @}

(i) -g (¢) is the one-node tree with label £, for ¢ in P
(iii) ¢ (&) is the empty tree; and
) g - &) =g@&)---g&), forallé, -, &in

{g,@):""@} UE,-

Notation. Let T = (D, C) be a T-rule and = a tree which satisfies D for
assignment f. Let D = D; A DoorD = D;,withD; = a1 - - - @, . Then
flar) -+ - f(an) is a cofinal residual subgraph of 7. Let 7o be the structure
formed from 7 by replacing, for each 7 such that 8; = @, fla;) with
g(8:) in the obvious manner. Write r =, 7 or r = 7, where 7’ is the
largest tree (possibly the empty tree) contained in =4 .*°

Clearly there always exists a unique such tree 7 (for a given f).

To illustrate the relation of 7' to 7o , if 7, is the structure in Fig. 9 then
7 is the tree in Fig. 10. Thus, 7 need not coincide with 7, .

19 Recall that as used here, a tree must have each of its terminal nodes labeled
with terminals. The structure 7o need not have its terminal nodes labeled with
terminals. (See Fig. 9.)
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ExamprEs. (a) Tyes changes the tree in Fig. 7 of section one into the

tree in Fig. 8 of Section 1.

(b) Let T = (D, C), where D = Dy, Dy = ay -+ -

s =JOXUT®

and C = By - - - B4 = @O-@—Z-bb. Let f be defined (in part) by f(J ©)
being the tree in Fig. 11, f(X) = &, and f(U) being the tree in Fig. 12.
The tree = in Fig. 7 above satisfies D for f. For the function gr, =
g, 9 (81) = g(®O) is the structure in Fig. 13, ¢(8;) is &, ¢ (8;) is &, and
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g(Bs) = g(bb) is the sequence of trees b *b. Then 7, =3y 7', where 7 is
the tree in Fig. 14.

() Let T = (D, C), where D = Dy = ajopas = LXU, and
C = BiBfs = F~@—F. Then 7 =57 7, where 7 is in Fig. 15 and 7 is in
Fig. 16.

D. TRANSFORMATIONAL (GRAMMAR

We are now ready to formally define the concept of a T-grammar. In
addition to the underlying base and the T-rules, the grammar will also
have (i) a set =, of distinguished symbols over which the language
generated by the grammar is defined, and (ii) a specification of the order-
ing of the T-rules. We shall diseuss this last component after presenting
the definition of the grammar.

DEriNITION. A transformational grammar is a 4-tuple G = (®, A, R, Q)
satisfying the following eonditions:
(1) ® = (B, V, Z) is a base of trees.
2)a= 2/, X, V"), where
(a) 2’ is a finite set of abstract symbols such that £ € =, and
¥’ is disjoint from V — .
(b) X is an abstract symbol notin V U 3’
(C) z A, Q_ 2,.
(d) V" is a set containing ¥ U= U {X} plus a finite number of
new symbols of the form ¥ ) where ¥ isin V U= U {X}, and ¢ is a
nonnegative integer.
(3) R is afinite set of T-rules (D, C') with respect to V", 2, and X.
4) ¢ = (K, q, 8, &), where
(a) K is a finite set (of states) and s, (the start state) is in K.
(b) 0 = {N(s)/sin K}, where each N (s) is a partially ordered
set over R U {stop}, sTor being a special symbol occurring only as a
maximal element.”
(¢) 8 is a mapping from a subset of K X R into K (next state
function).

The components ®, A, and R have already been discussed. (As noted
above, =, is the set of symbols over which the language generated by
the grammar is defined.) The component @ pertains to the order of
application of the T-rules. In general, it is not true that a T-rule may be

% Given a partially ordered set (Y, <), z is mazimal (minimal) if, for y in ¥,
y < z (y 2 ) implies ¥y = z. An element z is isolated if there is no y = z such
that either z < yory < z.
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applied any time its domain statement is satisfied. In fact, all T-gram-
mars in the literature which we have seen have restrictions on the order
of application of the T-rules. We now show how © effects restrictions on
the use of the rules, and we shall see that the restrictions in the literature
can be obtained by appropriate Q.

Informally, K is a set of states which record the past history of the
use of the rules. Call a T-rule, T, “applicable” to a given tree 7 at state
sif (i) 7 satisfies the domain statement of 7', (ii) T occurs in N (s), and

il) T is not preceded in N (s) by a T-rule whose domain statement =
satisfies. A “derivation” consists of either
(a) a sequence of T-rules Ty, ---, Tk, states sy, +++, 842, and
trees i, ++ , Ty Such that for each 7,1 < ¢ < k&, T'; is applicable to 7; at
8;, yielding 7541, and siy1 = 8(s;, T:); or
(8) a sequence of T-rules 7%, -+, Tk, states &1, -+, s, and
trees 71, -+ - , 7 such that for each 7, 1 < ¢ < k, T; is applicable to 7; at
8;, yielding 7i41, S = 8(si, T:), and srop is in N (s;) and is not
preceded by any T-rule applicable to 7 at s .
We now make the preceding motions more precise.

Notation. Let ¢ = (®, A, R, ) be a T-grammar and |- the relation
between pairs (7, s), where 7 is a tree and s is in K, defined as follows:
Write (r, 8) (T s') if there exists some T in R such that

() 7=207,
(i1) T oceurs in N (s),
(iii) thereisno 7”in N (s) and 7, with T’ < T, such that 7 = 7,
and
(1v) § =a8(s, T).

Let ™ be the transitive, reflexive closure of |-, i.e., (7, s) I—- («,s)
if thereexistsn > land = 7,80 = 8, -+ -, 7 = r' s, = § such that
(15, 8¢) b (7441, Siy1) foreach 4, ¢ < n. erte (r, 8)| I sToP, if sToP is
in N (.s) and there is no 7 in N (s) and 7, with T < srop, such that
T =r 'r

Using the above notation, we now define the “language generated by
a T-grammar.”

DernitioN. A word w is said to be generated by a T-grammar
g = (® A R, Q), where® = (B, V,2), A= (2, 2/, X, V'), and
Q= (K, 3, 6, s) if

@) wisin =4)F and
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(i) there exist 7, 7, and s’ such that risin B, (r, 8) =" (v, §')| —
sToP, and w is the terminal string of 7.
The language generated by G, denoted by L(G), is the set of all words
generated by G.

The purpose of sTop and of the distinetion between acceptable termi-
nals (=,') and unacceptable terminals (&' — =,’) is to eliminate from
the language of a T-grammar, by methods akin to the methods in
the linguistics literature, certain words generated by the rules of the
grammar. The sToP symbol is primarily used to allow only certain
words, derived at intermediate stages of words in the language, to also
be in the language. The unacceptable terminals (ef. the use of # in
[Chomsky (1965)]) are used primarily in those derivations which never
lead to a word in the language. These uses are not mutually exclusive,
however; i.e., each of these mechanisms may ocecasionally be used to
perform the function of the other. In Section 4, we discuss some meth-
ods for reducing this “filter power.”

In passing, we mention that the model as defined, with CF base,
generates all recursively enumerable sets. The analogous theorem, for a
different model, is proved in Kimball (1967).

3. ORDERING AND GRAMMAR EXAMPLES

We now present some examples to illustrate the above notions. The
first five give some indication of the variety and generality of the use of
partially ordered sets to specify the order of rule applications. The sixth
illustrates the operation of “tree-pruning.” The last one is a simple ex-
ample of a T-grammar.

(1) The set of T-rules in virtually every T-grammar extant is
linearly ordered, in part. The rules in a linearly ordered set of rules are
divided into two types, “obligatory’ and “optional.” An obligatory rule
is one which must be applied if its domain statement is satisfied at the
appropriate point in the derivation; an optional rule is one which need
not be. (See, for example, Chomsky, 1957.) If B = {Ty, .-, T} is
linearly ordered, in the order given, with 7', , ---, T optional, then
the ordering system € can be constructed as follows:

(1) K = {807 e ,Sn}.
(11) 6(853 TJ) = Sj’fora'ui7j:0 <z S n, 1 S] < n.
(i) In N (s0), the obligatory rules are linearly ordered, with the
last of them immediately preceding sTop. Each optional rule T';; is repre-



318 GINSBURG AND PARTEE

sented in N (so) as a maximal node, which is directly preceded by the last
(in RB) preceding obligatory rule, if there is one, and isolated if there is no
preceding obligatory rule.

(iv) Forall 4,1 < ¢ < m, N(s;) is formed from N (s;_;) by re-
moving T; .

To illustrate, let B = {T1, Ts, Ts, T4, Ts} be linearly ordered, in the
order given, with 7:, T,, and T; optional. Then Q is as follows:
K= {s, -,s}andd(s;, T;) = s;,foralls,;,0<i< 5and1<j <5,
and N (so), - -+, N(s5) are in Fig. 1-Fig. 6, respectively.

(2) Recent versions of T-grammars, starting with Chomsky (1965),
have assumed a cyclic order of application of T-rules. In this example,
we ignore the linguistic problems involved in setting up the domain
statement and simply show how a cyeclic ordering is represented by our
ordering scheme. If B = {T1, ---, T,} is cyclically ordered (i.e., the
rules are applied in the order given, but starting over with T} after T,),
with each rule obligatory, and the derivation halts whenever there is
no rule that can be applied, then @ is as follows:

(1) K = {so, -+, 8a}.
@) 6(s:, T;) = s;,foralld,j,0<7<nandl <j<m
(i) Forallé, 1 < ¢ < n,N(s;)isin Fig. 7, and N (s0) = N (s4).
To illustrate, let B = {T4, T», Ts}. This cyclic ordering, with the rules
obligatory, is represented as follows:
i) K = {8, &1, 82, 83}.
(i) 6(s:, T;) = sj,foralls,j,0<2<3,1L57<L3.
(i) N(so) = N(s3) is in Fig. 8. The N (s;) is in Fig. 9. The
N(Sz) is in Fig. 10.

13
STOP STOP 5 STO! » 5
Ty, Ty Ty
T3 T3 o2 T3
Fra. 2. F1e. 3.
STOPe UI'B STOP e

Fi1a. 5. Fia. 6.
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STOP

STOP STOP STOP

T
Tl T2 3

Fra. 8. Fra. 9. Fia. 10.

(3) In some grammars (e.g., Mitre Corp., 1964) the rules are
cyclically ordered, except that certain rules are optionally and others
obligatorily reapplied as often as possible before going to the next rule.
(Such provisions are implicit in many grammars which appear to be
cyclically ordered.) Here K, 8, and N (so) are as in Example 2. If T, is
obligatorily reapplied as often as possible before going to the next (in R)
rule, then N (s;) is in Fig. 11. If T is optionally reapplied indefinitely be-
fore going to the next rule, then N (s;) is as in Fig. 12.

To illustrate, let R = {T1, T», T3, T4} be cyclically ordered, with all
rules obligatory, with T obligatorily reapplied as many times as possible
before going to T’;, and with T’; optionally reapplied indefinitely before
going to Ts. Then K = {so, 81, %2, 83, 8a}, 6(5s, T;) = s; forall ¢, j
0<7<4and1<j<4,N(s) = N(s)isin Fig. 13, N(s1) = N(s2) is
in Fig. 14, and N (s;) is in Fig. 15.

(4) Recently the notion of an “anywhere” rule has been proposed
(Ross, 1967). Roughly described, an “anywhere” rule is one which must
(or may) be applied whenever its domain statement is satisfied. We con-
sider only the case where B = {7, --- , T, , T}, with T; to T, obliga-



320 GINSBURG AND PARTEE

STOP : STOP
Tiz Ti1 l
: .
I Ty
T T
n n
I, 4 Tiv1 & 0’1
Fia. 11. Fia. 12,
STOP STOP STCP
® ®
m 1l
L Tl [ rl.2 )
T3 LTI T, %
T
2 T3 s RIS ® 3
Tl TE 2
Fia. 13. Fia. 14. Fia. 15.

tory and eyclically ordered, and T, an obligatory anywhere rule. (We
assume that T4 is a reapplicable rule as in the preceding example; vari-
ations such as nonreapplicable anywhere rules, more than one anywhere
rule, and optional anywhere rules, could all be represented by fairly
obvious modifications.) Then K = {sq, * -+ , 8,}. The next state function
plays a more significant role in this case; 6(s:, T;) = s; for ¢, j with
0<i<n1<j<m,and d(s;,T4) = s forall 2,0 < ¢ < n. The sets
N (s;) are as in the cyclic case except that T4 is added to each set as a
zero element.®

For example, let B = {T:, T, T3, T4}, with T to T’; obligatory and
cyelic, and T, an obligatory anywhere rule. Then K = {so, &1, 82, s},
6(si, T;) = s;for all ¢ and all T'; except T, and §(s;, T4) = s; for all

2 Given a partially ordered set (¥, <), z is a zero element if 2z < y for all y.
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%, N(so0) = N{(s;) is in Fig. 16, N(s;) is in Fig. 17, and N(s;) is in
Fig. 18.

(5) The sror symbol can be used in several ways to filter words
from the language. The previous examples have illustrated its use in pre-
venting words which oceur in intermediate stages of certain derivations
from being in the language. As another instance of its use, suppose a
certain partially ordered set N (s) contains no occurrence of stop. Then
any tree r occurring at state s to which no rule in ¥ (s) can be applied
is eliminated, since (r, s)| - sToP is false and there is no 7, &’ such that
(r, 8) = (', §'). (For more drastic filtering, N (s) may be empty for
some states s.)

To illustrate the implications of the absence of stop, let R =
{Ty, Ty, T} be linearly ordered, let K = {s, 81,8, 83}, let 8 (s;, T;) = s;
forallZ,7,0 <7< 3,1 <7< 3,andlet N(s) be ag in Fig. 19, N (s;) as
in Fig. 20, N (s;) as in Fig. 21, and N (s;) as in Fig. 22. Then any tree to
which T fails to apply as the last rule in the derivation is eliminated.

STOP STOP sTOP
s
!

T T T

3 1 2
T, Tg T,
Tl T2 T3
Ty Ta Th 6
Fia. 16, Fia. 17; Fia. 18,
T3 ’1‘3 ‘1'3 ° STOP
T To
Ty

Fi1a. 19. Fia. 20. Fia. 21. Fia. 22,
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(6) We now present a simple example of “tree-pruning” (Ross,
1967; 1967, Chp. 3), and [R2, Chapter 3].

Suppose that the trees in Figs. 23 and 24 arise as subtrees in deriva-
tions. Furthermore, suppose we want to (a) “prune” the S-node in Fig.
23, i.e., to delete the S-node without deleting the subtree under it,
thereby obtaining the tree in Fig. 24, and (b) leave unchanged the tree
in Fig. 25. This cannot be accomplished by one application of a T-rule
for the following two reasons:

(i) The domain statement D = D; A Dy, = aionas A cuasos =
X (UNPX @ A XP8X® is satisfied by the trees in both Fig. 23 and
Fig. 25.

(ii) Even if the treesin Fig. 23 and Fig. 25 could be distinguished
by some domain statement, there is no way to substitute the N,-subtree
for the S-subtree (for both subtrees cannot be included in one D;, and
only subtrees mentioned in D; are affected by the structural change.)

The problem can be resolved by using the following sequence of
T-rules, which are obligatory and linearly ordered with respect to each
other. (We ignore here the question of how they might relate to the other
rules of a grammar):

T: = (D, C), where D = D; A Do = anoars A onsarsors = X V8X @
A XONX®, ¢ = @-@m-G), and m is a new element of 2.

Tz = (D, C), where D = DI A Do = 1020304 A Qe =
XONmX® A XP8X P and ¢ = Q-F-@-0.

Ts = (D, C), where D = D; = asaga; = X PmX? and
¢ = O-2-®.

Then T inserts the marker m adjacent to S in both Fig. 23 and Fig. 25,
obtaining the trees in Fig. 26 and Fig. 27, respectively. T, applies only
to the tree of Fig. 26, changing it to the tree in Fig. 24. T's removes the
marker m from the tree of Fig. 27, restoring it to its original form (Fig,.
25).

P
P20/ [\4133 P P
5 Mo
P
/K i 5
P
P, 5

Fia. 23. Fig. 24. Fia. 25.
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Fia. 26. Fia. 27.

The above rules illustrate a type of procedure which can be used when-
ever two nodes, one below the other with no “branching” between, are
both to be involved in a structural change. However, this technique does
not allow one of two identically labeled nodes, one directly above the
other, to be pruned. It was to avoid this situation that the agreement in
Section 2A was made.

(7) For our last example, we present a T-grammar in its entirety.
The grammaris ¢ = (®, A, R, @), where ®, A, R, and @ are given below.
(a) ® = (B, V, Z), where
(i) = = {$, Pass, the, eat, chase, dog, cat, mouse, recently,
yesterday}.
@) v=z U{S’ SI: Ny, Aus, Vo, Aav, Vi, Npy Tal.
(iii) B is the set of trees generated by the following set of CF
ruleg, where S is the start symbol:

§—85% Vi — chase

S, d NpAupr Vb — ea:t

SI - NpAqupAd‘U

V, — 73N, Na — dog
N.n — eat

Np — the N,$5'S N — mouse

N, — the N,

Aux — Ths {Adv — recently

Tos — Pt Ay — yesterday
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M) A= &, z),X, V"), where
(i) =’ = = U {be, E,, by, that, itself, #}
@) 2, =2 — {#
@) V' = vUSUXJUX?Y ..., X9 NP NP
(C) R = {Tpas 3 Treflex ’ Tadv y Trel 9 Tfin ’ Tbound}: where
(i) Tyas is the rule (D, C), with D = D; A Do, where
D; = a1 -y = X VNP TL VNP X O$X @,

= o o A ~ogcccan A ~oag a0 A ~am o ag =
(1)$S $X @) A ~X <1)$X (3)$X (4)$X @) A ~X (5)$S/$X (6)$SI$X 2) A
X PNPT,L VNP X P8X P, and € = -+ = be
En_®—by O-0-®-®
All but the last conjunct of Do are conditions designed to insure that
the T-rule operate within the leftmost “lowest 8’ flanked by $ markers”
in the tree (see Footnote 23). Since these conditions will also be imposed
ont Tretiex » Taav 5 and Tra , we shall abbreviate them as “LLS” (leftmost
lowest §'). Thus, LLS is D, above without ~X ®$NT, VNP X @
$X ®. Since LLS requires 21 symbols to state, we shall assign it to
Ol * 0 a,-+21,whereD1 = O " ;.
The last conjunct of Do , in combination with D; , asserts that the two
noun phrases involved in the rule must be different.
(1) Rreriex is the rule (D, C), with D = D; A Do, where
D; = a1+ ay = X P$NPPALVNDX VX @,
Do = a1 -au A ~oaps - an N ~otgg +++ az = LLS,
and C = 1 - - fr = O-O-O-O-G-itsel-O-E-®
(i) T,,dv is the rule (D, C), with D = D; A Dy, where

D= ar = XPENX PALL$X @, @
Do=o5:-- 0!12 A ~ag- - apV ~ay - ag = LLS,
and C = - ®—®—@—®-@-,®’

(iv) T,el is the rule (D, C), with D = D; A Do, where
Dy =ar- - a = X V$X ON#X © the N, X “”#X wex @
Do=oau- o N ~ogg--ass A ~azg--ass A ag--- cm
— LLS AX (1)$X (7)Nn#X (8)N X (9)#X (10)$X (2)
and C =B+ B = @—@—@—@—that~@—,®'—,®'—®—,®'—®-®-®
) Tbound is the rule (D, C), with D = D; A Do, where
Dy = a1+ a5 = X V$X (3)$X<2)
DO = Og 10 AN ~au-ccan N ~agg o = LLS,
and C =61 s = OF-OFO®
(vi) Tt is the rule (D, C), with D = D;, where
DI = q10dly = #X#
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and C = BiBfs = T~
(d) Q= (K, 5, 9, sbound); where K = {Srel; Spas ; Sretlex; Sadv,

Sbound 5 Stinf, N = {N (8;)/8; in K}, with N (sr1) as in Fig. 28, N (sps) In
Fig. 29, N (sret1ex) in Fig. 30, N (sagv) in Fig. 31, N (spouna) in Fig. 32,
N (stin) in Fig. 33, and & is defined by 6(sz, T,) = s, for all z.and y.

Note that this T-grammar includes all the rules of the example in
Section 1 (with the T-rules expressed formally here) as well as several
others. In addition, this T-grammar includes adverbs (ie., “recently”,
and “yesterday’’). The CF-rules introduce adverbs at the end of a
sentence, as in ‘“the cat ate the mouse yesterday.” The T-rule Tag, moves
adverbs to the beginning of the sentence, as in “yesterday the cat ate
the mouse.” The inclusion of Tieex permits such sentences as “the
mouse chased itself.” Tyoung converts the original boundary marker § to
# (at the end of each cycle). The provision that each rule apply within
the leftmost lowest S, with $ markers, combines (using the order of the
rules) with the conversion of $ to #. The effect is that the subtrees headed
by S’ in the tree are operated on one at a time, from bottom to top (and
left to right). At the end of the last cyele, Ty, deletes the outermost
occurrence of #, which is the “unacceptable terminal” (i.e.,
2 -z = {#)

Toouna ¢ T L ouna Toomd Todv
| a I/ﬂadv [} ®
7 Tpas

reflex T
reflex
l‘T"'I_"el
Fia. 28, F1a. 29. Fie, 30,
o Tfin
bound
T
bound
Tadv o STOP
Treflex
T
pas
Trel

Fie. 31. Fiq. 32. Fra. 33.
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The ordering of the rules consists essentially of a eycle on the linear
sequence Tre1, Tpasy Trotlex ; Tadv s a0d Thouna , plus a T-rule Ty, , which
is the last to be applied. Tyas and Tagv are optional rules. Ty is reap-
plicable (obligatorily ).

We illustrate the operation of the T-grammar with the derivation of
the sentence ‘“the mouse that recently chased itself was eaten by the cat
yesterday.”

(i) The CF rules generate the tree 7, given in Fig. 34.

(i) (70, Sbound) FTreflex (71, Sreflex), Where 7y is the tree ob-
tained by replacing the rightmost N, in 7o with the symbol “itself.”

(i) (71, Sreftex) Fragy (72, Sadn), Where 7. is in Fig, 35.

(iv) (72, Saav) FThound (73, 8 bouna ), Where 73is the tree obtained
by replacing the two inner occurrences of $§ with #.

(v) (73, Sbouna) FTre1 (74, Sre1), Where 7, is in Fig. 36.

(Vi) (74, Sre1) FTpas(7s  Spas) = Thouna(T6 » Sbound) Frin (77, Stin) |
- sTop, where 77 is in Fig. 37.
Since all the terminals of 77 are in =4, the resulting word is in the lan-
guage generated by the T-grammar. As in the example of Section 1, we
assume that morphophonemic rules not shown here convert the ter-
minal string “the mouse that recently Pa chase itself P. be E, eat by
the cat yesterday” into “the mouse that recently chased itself was
eaten by the cat yesterday.” '

4. RESTRICTIONS

The general model presented in Section 2 incorporates most of the
important features of T-grammars described in the literature.” However,
linguists are trying to determine the narrowest possible class of grammars
adequate for describing natural languages. In this section, we present a
number of restrictions on the general model. These restrictions, taken in
various combinations, provide submodels which correspond to concep-
tions of T-grammars already in the literature.

A T-grammar has been defined as a quadruple § = (&, 4, B, @),
where @ is a base, A specifies the vocabulary and its subparts, K is a
set of T-rules, and Q is a specification of the order in which the T-rules
can be applied. We therefore first list the various restrictions on A,
then those on R, and finally those on Q.

22 See Footnote 2.
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A. RESTRICTIONS ON A

DerInNTTION. G is ferminal-preserving if 3’ = 2, and in each rule (D, C)
in R; each B: is in {/®,5 @7 R @}+

In other words, a terminal-preserving grammar is one in which no
T-rule can introduce a new terminal. This restriction is an extreme
version of the notion that the trees of the base should contain all the
semantically relevant material (Katz and Postal, 1964).

DEFINITION. G is terminal-blocking if 2," # 2, i.., if some of the
terminals are unacceptable. G is a-blocking if 2. = =’ — {a}.

In Chomsky (1965), p. 138, the “boundary symbol” # appears to be
the only unacceptable terminal,

B. RestrICTIONS ON R

DuriNrrioN. G has weakly recoverable deletions (XKatz and Postal,
1964, p. 80) if, for each T-rule (D, C) and each 7, 8; in C, at least one
of the following holds:

(a) for some B;in C,B8; = uGw,uand vin &' U {&, @, -+, ®}.

(b) a; = ay for some k # 4, and for some 8;in C, 8; = u@®w, u and
vin (E’ U {,@,@, ’@})+-

(¢) a;isin =",

G having weakly recoverable deletions requires each o; whose in-
dex does not appear in the structural change statement to be either a
terminal symbol (condition (¢)), or identical to some o whose index
appears in the structural change statement (condition (b)). Its effect is
that given a tree and the T-rule applied to produce it, the preceding
tree is determined to within a finite set of trees.

DzriniTioN. G has sirongly recoverable deletions if for each T-rule
and each B; in C, either condition (a) or condition (b) in the previous
definition holds.

This property, in slightly different form, is suggested in Chomsky
(1965; p. 145, p. 222, fn 1; p. 225, fn 13). Chomsky suggests that in the
general theory there be a requirement that deletion be effected only by
identical structures, and that such a requirement would eliminate the
need for quantifiers in domain statements. (In our model, quantifiers
are implicit in the use of identical superseripts such as N, N& ete.)

C. RESTRICTIONS ON Q

DeriNrrioN. G is naturally ordered if R = {T,, .-, T.},
K = {so, "+, 8a},and 8(ss, T;) = s;for all 4,5,0 < i<n,1 < j < .
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Although ordering of T-rules is often not explicitly described, most of
the literature implicitly eonforms to the requirement of natural ordering.
An exception is the “anywhere rule,” given in Example 4 of Section 3.
Note that g being naturally ordered imposes no restriction on the N (s;).

Among the natural orderings, we now describe two important sub-
cases, the “linearly ordered” and the “cyclically ordered.”

DErFINITION. G is linearly ordered it B = {Ty, ---, T,} is naturally
ordered and for each 7, 1 < 7 < n,
(i) 7T;is a minimal element of N (s;-1),
(i) N (s;) is formed by removing T'; from N (s;—1), and
(iii) sTop is a maximal element of N (s,) (and thus of each N (s;)).
Note that optional and obligatory rules, as described in Example 1
of section three, may appear in a linearly ordered T-grammar.

DEFINITION. G 45 cyclically ordered if, for R = {Tv, ---, T.}, G has
the following properties:
. (i) gis naturally ordered.
(ii) N(so) = N(s.) and satisfies the following: the obligatory

rules Ty, -++, Ti, of R are simply ordered, ie., Ty; < T, for each
i < k, and each precedes sTop. For each optional rule T;, T;; < T
ife; < i

(iii) Foralls, 1 < ¢ < m, N (s;1) contains T'; as a minimal element.

(iv) Suppose T is an isolated node in N (s;—1). Then T'; and sTop
are incomparable in N (s;). Furthermore, for each j, if T; < srop in
N (si—1) then T; < T;and T; < sTop in N (8;).

(v) Suppose T is not an isolated node in N (s;—1). Then T'; < srop
in N (s;). Furthermore, for each j, if T; < sToP in N (si1) then T; < T
in N (s;). » ‘

“See Chomsky (1965) p. 134-138 for a linguistic discussion and a

somewhat different formulation.™

DerFiNITION. G is unordered if B = {Tv, ---, Ta}, K = {si},
8(se, T;) = so, for all , and in N (s), for each ¢ either T is an isolated
node or T; precedes stop. (That is, optional rules are isolated, while
obligatory rules precede srTop.)

28 A typical rule of a cyclic grammar in the literature might have a domain
statement which appears as # JL #. Since our model does not incorporate the
notion of a “lowest sentence,’’ such a domain statement would be restated in our
system as D; A Do, where Dy = XOAJLEX @, and D, is similar to the LLS
statement of Example 6 of Section 3.
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To our knowledge an unordered T-grammar has not actually appeared
in the literature, but its possibility has been suggested in informal
discussions, frequently under the name “intrinsically ordered.”

The final two definitions concern the use of ordering to accomplish
blocking as illustrated in Example 5 of Section 3.

DErFINITION. § is order-blocking if for at least one s in K, N (s) does
not contain sTOP as an isolated node.

Thus, a T-grammar is order-blocking if it does not permit free choice
of sToP at every stage in every derivation. Such a grammar uses the
ordering to prevent certain words which arise in intermediate stages
from being in the language. This application of ordering is implicit in
most generative grammars.

DeriniTioN. G is nonblocking if G is neither terminal-blocking nor
order-blocking.

Thus G is nonblocking if every word which arises in a derivation is a
word in the language. This notion is a slight extension of the notion of
“nonbiocking” as used in Klima.
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