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The unreasonable effectiveness of deep learning

This lecture is based entirely on the paper:

Reference:

Henry W. Lin and Max Tegmark, Why does deep and cheap
learning work so well?, arXiv:1608.08225

General Question: Why does deep learning work so well?
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Summary

Theorems proving that neural networks can approximate
arbitrary (smooth) functions

However, one expects large complexity

Observed behavior: “cheap learning”, exponentially fewer
parameters than “generic case”

Proposed explanation: the laws of physics select a particular
class of functions that are sufficiently “mathematically simple”
to allow “cheap learning” to work.

Similarities between Deep Learning and Statistical Mechanics
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Characteristics of a neural network

Expressibility: the class of functions the neural network can
compute/approximate

Efficiency: the number of parameters required to
approximate a given function (or amount of resources used)

Learnability: time required for the network to learn good
parameters for approximating a function

Apparent paradox: neural networks approximate functions well in
practice, even though set of functions much larger than set of
possible networks
Plausible Answer: the functions we need to compute to describe
the real world only come from a much smaller subset
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First Step: Shallow Neural Networks

• this case already shows simplifications that occur due to
symmetries, locality, and algebraicity (polynomial functions)

• goal: compute a probability distribution p given data sets for
random vectors x and y : viewing y as stochastic function of x and
estimating p(x |y) or p(y |x), or approximate joint distribution
p(x , y) without causality assumptions

(Figure from Lin–Tegmark)
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Simplifying features of the probability distribution

• expect p(y |x) to have a simpler form than p(x |y)

random vector y refers to what is measured (pixels in an image;

magnetization values of a physical system; etc.) usually subject to

symmetries and follows a simple physical model, while x (a category of

images like “cats”, ”dogs”, ”faces”; a type of metal in a physical system)

does not have any special shape or symmetry

• Bayes’ theorem

p(x |y) =
p(y |x)p(x)∑
x ′ p(y |x ′)p(x ′)

with p(x) a priori probability distribution of x
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• Consider the quantities

Hx(y) = − log p(y |x) and µx = − log p(x)

Hamiltonian in physics or self-information in information theory

• Boltzmann form of the probability distribution

px(y) = p(x |y) =
1

Z (y)
e−(Hx (y)+µx ), with Z (y) =

∑
x

e−(Hx (y)+µx )

recasting of Bayes formula as statistical physics

• assemble as a vector p = (px)x∈X over finite set X

p(y) =
1

Z (y)
e−(H(y)+µ),

with notation e−v = (e−v1 , . . . , e−vn) for v = (v1, . . . , vn)
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How well is p(y) approximated by a neural network?

• n-layered feedforward neural network maps vectors through a
sequence of linear and non-linear transformations

f (v) = σnAnσn−1 · · ·σ2A2σ1A1 v

Ai = affine transformations Aiv = Miv + bi , matrices Mi and
“bias vectors” bi ;
σi = nonlinear transformations

• different possible choices of σi : the softmax case

σ(v) =
ev∑
i e

vi

• Boltzmann form as softmax:

p(y) = σ(−H(y)− µ).
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Computing the Hamiltonian

• this reduces the question to computing Hamiltonian in a neural
network

• if can get Hamiltonian, also get p(y) by adding a softmax layer
to the network

• when is a Hamiltonian computable by a neural network?

• first reasonable assumption: approximation by polynomials in the
form of power series expansion

Hx(y) = h +
∑
i

hiyi +
∑
i≤j

hijyiyj +
∑

i≤j≤k
hijkyiyjyk + · · ·

if y has n components yi , then there are (n + d)!/(n!d!) terms of
degree up to d
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• to efficiently approximate a polynomial in a neural network need
an efficient approximation of multiplication using a small number
of neurons, then repeated additions and multiplications give
polynomials

• case with continuous input variables

• Using a smooth non-linearity, for instance the sigmoid activation
function

σ(u) =
1

1 + e−u

consider a neural network of the form

f = A2σA1

input layer dim=2; hidden layer dim=4; output layer dim=1

• Taylor expansion of σ

σ(u) = σ0 + σ1u + σ2u
2 + · · ·

assume σ2 6= 0
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• the quantity m(u, v) given by

m(u, v) =
σ(u + v) + σ(−u − v)− σ(u − v)− σ(−u + v)

8σ2
is an approximation to multiplication because it is

m(u, v) = uv(1 +O(u2 + v2))

• multiplication approximation is good when u, v are small: can
make them small by scaling A1 7→ λA1, then compensate the
scaling with A2 7→ λ−2A2; better approximations for λ→∞

(Figure from Lin–Tegmark)
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• case with discrete input variables

• take y = (yi )
n
i=1 vector of binary variables yi ∈ {0, 1}; since

y2i = yi simpler form of Hamiltonian

Hx(y) = h +
∑
i

hiyi +
∑
i<j

hijyiyj +
∑

i<j<k

hijkyiyjyk + · · ·

(with other coefficients); finite sum of 2n terms, final term
h1···ny1 · · · yn
• parameters hi1···ik completely determine Hx(y)

• in continuous case multiplication approximation two variables at
a time: many multiple layers to approximate polynomials
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• discrete binary variables case: H(y) in only three layers (second
layer evaluates bit products, third layer linear combinations)

• multiplication approximators here takes product of an arbitrary
number n of bits in one step: finite number ≤ n4 of polynomial
coefficients

• basic idea: for binary variables information on product from sum:
e.g. y1y2y3 = 1 if and only if y1 + y2 + y3 = 3
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• using sigmoid function σ(u) = (1 + e−u)−1 compute product of
a set K of bits, with k = #K , by

∏
i∈K

yi = lim
β→∞

σ

(
−β(k − 1

2
−
∑
i∈K

yi )

)

(Figure from Lin–Tegmark)

square= apply σ; circle= add; labelled line= multiply by label constant;

1= bias term
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• Summary: approximation of Hamiltonian in neural network with
number of neurons proportional to number of multiplications
(continuous case) or to number of terms (discrete binary case)

• still too large a class of functions: continuous case
(n + d)!/(n!d!) coefficients for degree d in n variables; discrete
binary case all functions are polynomial

• additional reasonable requirements:

Low order polynomials

Locality

Symmetry
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• Low order:

many probability distributions can be approximated by
multivariable Gaussians

p(y) = eh+
∑

i hiyi−
∑

ij hijyiyj

So can consider Hamiltonians that are quadratic polynomials

maximum entropy probability distribution with assigned
constraints on lower momenta, expectation values
〈yα1

1 · · · yαn
n 〉 gives polynomial Hamiltonian degree ≤

∑
i αi

translations, rotations, scaling are linear operations; Fourier
transform also
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• Locality:

in discretization of physical systems: nearest neighbor
approximations

degree d of Hamiltonian no greater than the number of
neighbors in a spin system (binary variables)

• Markov networks: spins at vertices, edges= dependencies, Nc =
min number of cliques whose union covers network, Sc = size of
largest clique: number of required neurons ≤ Nc2Sc

• for fixed Sc linear in Nc ∼ number of vertices, so locality:
number of neurons scales linearly in number of spin variables n
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• Symmetry:

further reduces number of parameters that describe
Hamiltonian

typical invariance of probability distribution: translations and
rotation

example: f (v) linear vector valued, if translation invariant
then implementable by a convolution (just n log2(n) instead of
n2 parameters, via Fast Fourier Transform)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?



Second Step: Increasing Depth of Neural Network

• Depth improvements related to:

hierarchical/compositional structure

no good way of “flattening” neural networks reflecting these
structures

• Dynamics in classical statistical physics well described by
Markov processes

so it is reasonable to assume have a set of data vectors xi
with probability distributions pi = (pi )x = p(xi ) determined by
a Markov process

pi = Mipi−1, ⇒ pn = MnMn−1 · · ·M1p0

generative process is a matrix product Mn · · ·M1
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• Reversing generative hierarchy: goal is to obtain information on
the input x0 from the output xn, when the generative process is a
Markov process pi = Mipi−1, to obtain best estimate of
p(x0|xn) = p(x |y)

• generative process depends on a limited number of parameters
(parameters of the Markov model, Mi )

• while most functions are indistinguishable from random
functions, most images look like noise, most numbers look like
random numbers, etc.

• Hamiltonians of simple physical systems are very non-random;
Hamiltonians of probability distributions associated to data sets like
linguistic text/structured images/music are also far from random

• notions of complexity: Kolmogorov versus Gell-Mann complexity
(later discussion)
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Sufficient Statistics: reversing the generative hierarchy

• given p(x |y) a sufficient statistics T (y) is defined by

p(x |y) = p(x |T (y)),

T (y) contains all the information about y that is needed to
determine all the information about x that depend on y

• minimal sufficient statistics Tmin(y) is a sufficient statistics for
any other sufficient statistics T (y)

• given a sufficient statistics T (y) there is a function f such that

Tmin(y) = f (T (y))

Tmin is an “information distiller” (optimal data compression
retaining all information relevant to x)
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Sufficient statistics and Markov chains

• x0 7→ xi 7→ · · · xi 7→ · · · xn generated by Markov process

• Ti = minimal sufficient statistics for p(xi |xn)

• there are functions fi with Ti = fi ◦ Ti+1

• this means the generative hierarchy can be optimally reversed
one step at a time, with fi optimally undoing the i-th step
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More details

• because Markov process, by Bayes formula have

p(xi |xi+k , xi+1) =
p(xi+k |xi , xi+1)p(xi |xi+1)

p(xi+k |xi+1)

=
p(xi+k |xi+1)p(xi |xi+1)

p(xi+k |xi+1)
= p(xi |xi+1)

• get from this

p(xi |xn) =
∑
xi+1

p(xi |xi+1, xn)p(xi+1|xn) =
∑
xi+1

p(xi |xi+1)p(xi+1|Ti+1(xn))

only depending on xn through Ti+1(xn), so Ti+1 sufficient
statistics for p(xi |xn)

• know Ti is minimal sufficient statistics, so there is a function
with Ti = fi ◦ Ti+1
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• with f0(T0(xn)) = p(x0,T0(xn)) and fn(xn) = Tn−1(xn) get

p(x0|xn) = f0 ◦ f1 ◦ · · · ◦ fn(xn)

• structure of inference process reflects structure of generative
process: neural network approximating p(x |y) approximates a
composition of functions f0 ◦ · · · ◦ fn
• here is the main reason why depth of neural network matters:
approximation of a composition of n functions works best in a
network with ≥ n hidden layers

• heuristic idea: the functions fi compress data into forms with
increasing invariance (eliminating irrelevant transformations)
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Approximate Information Distillation

• minimal sufficient statistics are practically difficult to compute
(some optimal data compression problem) ⇒ characterization of
sufficient statistics via information theory

• mutual information random variables X ,Y

I(X ,Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)

• data processing inequality (data compression)

I(x , y) ≥ I(x , f (y))

sufficient statistics T (y) characterized by

I(x , y) = I(x ,T (y))

because retaining all the information about y that is relevant to x

• Note: sometimes useful f information distillation not sufficient
statistic, loss of mutual information but significant reduction in
complexity of Hamiltonian Hx(f (y)) (examples from cosmology)
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Renormalization

• Renormalization in statistical physics: vector y of random
variables (microscopic degrees of freedom) and R = coarse
graining operator that leaves Hamiltonian invariant up to change in
parameters

• probability distribution (Boltzmann) specified by Hamiltonian
Hx(y), with parameter vector x

• Hx(y) transformed to Hr(x)(R(y))

• iteration: Hrn(x)(R
n(y)) and probability distribution p(x |Rn(y))

(composition of functions)

• but ... more like “supervised learning”: specified features like
long wavelengths, large momenta, macroscopic degrees of
freedom...

• (more discussion on deep learning and renormalization to follow)
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No flattening

• Markov generative models give p(x |y) as a composition of
simpler functions f0 ◦ f1 ◦ · · · ◦ fn(y)

• approximate each fi with a (shallow) neural network and (deep)
stack of those to approximate composition f0 ◦ f1 ◦ · · · ◦ fn
• this works, but is it optimal?

• if computed by shallower networks, does the flattening increase
cost decreasing efficiency?

• given an N-layered neural network f , a flattening f `ε is an
`-layered network with ` < N that approximates f up to an ε-error
(in a suitable norm)

• neuron-efficient flattening if dimension Nk of k-th inner layer of
f `ε (number of neurons in layer) is less than for f
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• synapse efficient flattening if number Ns of non-zero entries of
weight matrices of f `ε smaller than for f

• flattening cost of a network

Cn(f , `, ε) = min
f `ε

Nn(f `ε )

Nn(f )
Cs(f , `, ε) = min

f `ε

Ns(f `ε )

Ns(f )

• no flattening for f if Cn > 1 or Cs > 1 (i.e. flattening always
comes at a cost and efficient flattening is not possible)

• several known examples: e.g. a family of multivariable
polynomials with exponential flattening cost; also exponential cost
for tree-like hierarchical compositional forms; differential geometric
methods used to shown flattening is exponentially inefficient
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