
Why is Deep Learning so effective?

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017
Geometry of Neuroscience

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

The unreasonable effectiveness of deep learning

This lecture is based entirely on the paper:

Reference:

Henry W. Lin and Max Tegmark, Why does deep and cheap
learning work so well?, arXiv:1608.08225

General Question: Why does deep learning work so well?

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Summary

Theorems proving that neural networks can approximate
arbitrary (smooth) functions

However, one expects large complexity

Observed behavior: “cheap learning”, exponentially fewer
parameters than “generic case”

Proposed explanation: the laws of physics select a particular
class of functions that are sufficiently “mathematically simple”
to allow “cheap learning” to work.

Similarities between Deep Learning and Statistical Mechanics

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Characteristics of a neural network

Expressibility: the class of functions the neural network can
compute/approximate

Efficiency: the number of parameters required to
approximate a given function (or amount of resources used)

Learnability: time required for the network to learn good
parameters for approximating a function

Apparent paradox: neural networks approximate functions well in
practice, even though set of functions much larger than set of
possible networks
Plausible Answer: the functions we need to compute to describe
the real world only come from a much smaller subset

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

First Step: Shallow Neural Networks

• this case already shows simplifications that occur due to
symmetries, locality, and algebraicity (polynomial functions)

• goal: compute a probability distribution p given data sets for
random vectors x and y : viewing y as stochastic function of x and
estimating p(x |y) or p(y |x), or approximate joint distribution
p(x , y) without causality assumptions

(Figure from Lin–Tegmark)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Simplifying features of the probability distribution

• expect p(y |x) to have a simpler form than p(x |y)

random vector y refers to what is measured (pixels in an image;

magnetization values of a physical system; etc.) usually subject to

symmetries and follows a simple physical model, while x (a category of

images like “cats”, ”dogs”, ”faces”; a type of metal in a physical system)

does not have any special shape or symmetry

• Bayes’ theorem

p(x |y) =
p(y |x)p(x)∑
x ′ p(y |x ′)p(x ′)

with p(x) a priori probability distribution of x

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• Consider the quantities

Hx(y) = − log p(y |x) and µx = − log p(x)

Hamiltonian in physics or self-information in information theory

• Boltzmann form of the probability distribution

px(y) = p(x |y) =
1

Z (y)
e−(Hx (y)+µx), with Z (y) =

∑
x

e−(Hx (y)+µx)

recasting of Bayes formula as statistical physics

• assemble as a vector p = (px)x∈X over finite set X

p(y) =
1

Z (y)
e−(H(y)+µ),

with notation e−v = (e−v1 , . . . , e−vn) for v = (v1, . . . , vn)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

How well is p(y) approximated by a neural network?

• n-layered feedforward neural network maps vectors through a
sequence of linear and non-linear transformations

f (v) = σnAnσn−1 · · ·σ2A2σ1A1 v

Ai = affine transformations Aiv = Miv + bi , matrices Mi and
“bias vectors” bi ;
σi = nonlinear transformations

• different possible choices of σi : the softmax case

σ(v) =
ev∑
i e

vi

• Boltzmann form as softmax:

p(y) = σ(−H(y)− µ).

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Computing the Hamiltonian

• this reduces the question to computing Hamiltonian in a neural
network

• if can get Hamiltonian, also get p(y) by adding a softmax layer
to the network

• when is a Hamiltonian computable by a neural network?

• first reasonable assumption: approximation by polynomials in the
form of power series expansion

Hx(y) = h +
∑
i

hiyi +
∑
i≤j

hijyiyj +
∑

i≤j≤k
hijkyiyjyk + · · ·

if y has n components yi , then there are (n + d)!/(n!d!) terms of
degree up to d

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• to efficiently approximate a polynomial in a neural network need
an efficient approximation of multiplication using a small number
of neurons, then repeated additions and multiplications give
polynomials

• case with continuous input variables

• Using a smooth non-linearity, for instance the sigmoid activation
function

σ(u) =
1

1 + e−u

consider a neural network of the form

f = A2σA1

input layer dim=2; hidden layer dim=4; output layer dim=1

• Taylor expansion of σ

σ(u) = σ0 + σ1u + σ2u
2 + · · ·

assume σ2 6= 0
Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• the quantity m(u, v) given by

m(u, v) =
σ(u + v) + σ(−u − v)− σ(u − v)− σ(−u + v)

8σ2
is an approximation to multiplication because it is

m(u, v) = uv(1 +O(u2 + v2))

• multiplication approximation is good when u, v are small: can
make them small by scaling A1 7→ λA1, then compensate the
scaling with A2 7→ λ−2A2; better approximations for λ→∞

(Figure from Lin–Tegmark)
Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• case with discrete input variables

• take y = (yi)
n
i=1 vector of binary variables yi ∈ {0, 1}; since

y2i = yi simpler form of Hamiltonian

Hx(y) = h +
∑
i

hiyi +
∑
i<j

hijyiyj +
∑

i<j<k

hijkyiyjyk + · · ·

(with other coefficients); finite sum of 2n terms, final term
h1···ny1 · · · yn
• parameters hi1···ik completely determine Hx(y)

• in continuous case multiplication approximation two variables at
a time: many multiple layers to approximate polynomials

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• discrete binary variables case: H(y) in only three layers (second
layer evaluates bit products, third layer linear combinations)

• multiplication approximators here takes product of an arbitrary
number n of bits in one step: finite number ≤ n4 of polynomial
coefficients

• basic idea: for binary variables information on product from sum:
e.g. y1y2y3 = 1 if and only if y1 + y2 + y3 = 3

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• using sigmoid function σ(u) = (1 + e−u)−1 compute product of
a set K of bits, with k = #K , by

∏
i∈K

yi = lim
β→∞

σ

(
−β(k − 1

2
−
∑
i∈K

yi)

)

(Figure from Lin–Tegmark)

square= apply σ; circle= add; labelled line= multiply by label constant;

1= bias term
Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• Summary: approximation of Hamiltonian in neural network with
number of neurons proportional to number of multiplications
(continuous case) or to number of terms (discrete binary case)

• still too large a class of functions: continuous case
(n + d)!/(n!d!) coefficients for degree d in n variables; discrete
binary case all functions are polynomial

• additional reasonable requirements:

Low order polynomials

Locality

Symmetry

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• Low order:

many probability distributions can be approximated by
multivariable Gaussians

p(y) = eh+
∑

i hiyi−
∑

ij hijyiyj

So can consider Hamiltonians that are quadratic polynomials

maximum entropy probability distribution with assigned
constraints on lower momenta, expectation values
〈yα1

1 · · · yαn
n 〉 gives polynomial Hamiltonian degree ≤

∑
i αi

translations, rotations, scaling are linear operations; Fourier
transform also

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• Locality:

in discretization of physical systems: nearest neighbor
approximations

degree d of Hamiltonian no greater than the number of
neighbors in a spin system (binary variables)

• Markov networks: spins at vertices, edges= dependencies, Nc =
min number of cliques whose union covers network, Sc = size of
largest clique: number of required neurons ≤ Nc2Sc

• for fixed Sc linear in Nc ∼ number of vertices, so locality:
number of neurons scales linearly in number of spin variables n

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• Symmetry:

further reduces number of parameters that describe
Hamiltonian

typical invariance of probability distribution: translations and
rotation

example: f (v) linear vector valued, if translation invariant
then implementable by a convolution (just n log2(n) instead of
n2 parameters, via Fast Fourier Transform)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Second Step: Increasing Depth of Neural Network

• Depth improvements related to:

hierarchical/compositional structure

no good way of “flattening” neural networks reflecting these
structures

• Dynamics in classical statistical physics well described by
Markov processes

so it is reasonable to assume have a set of data vectors xi
with probability distributions pi = (pi)x = p(xi) determined by
a Markov process

pi = Mipi−1, ⇒ pn = MnMn−1 · · ·M1p0

generative process is a matrix product Mn · · ·M1

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• Reversing generative hierarchy: goal is to obtain information on
the input x0 from the output xn, when the generative process is a
Markov process pi = Mipi−1, to obtain best estimate of
p(x0|xn) = p(x |y)

• generative process depends on a limited number of parameters
(parameters of the Markov model, Mi)

• while most functions are indistinguishable from random
functions, most images look like noise, most numbers look like
random numbers, etc.

• Hamiltonians of simple physical systems are very non-random;
Hamiltonians of probability distributions associated to data sets like
linguistic text/structured images/music are also far from random

• notions of complexity: Kolmogorov versus Gell-Mann complexity
(later discussion)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Sufficient Statistics: reversing the generative hierarchy

• given p(x |y) a sufficient statistics T (y) is defined by

p(x |y) = p(x |T (y)),

T (y) contains all the information about y that is needed to
determine all the information about x that depend on y

• minimal sufficient statistics Tmin(y) is a sufficient statistics for
any other sufficient statistics T (y)

• given a sufficient statistics T (y) there is a function f such that

Tmin(y) = f (T (y))

Tmin is an “information distiller” (optimal data compression
retaining all information relevant to x)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Sufficient statistics and Markov chains

• x0 7→ xi 7→ · · · xi 7→ · · · xn generated by Markov process

• Ti = minimal sufficient statistics for p(xi |xn)

• there are functions fi with Ti = fi ◦ Ti+1

• this means the generative hierarchy can be optimally reversed
one step at a time, with fi optimally undoing the i-th step

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

More details

• because Markov process, by Bayes formula have

p(xi |xi+k , xi+1) =
p(xi+k |xi , xi+1)p(xi |xi+1)

p(xi+k |xi+1)

=
p(xi+k |xi+1)p(xi |xi+1)

p(xi+k |xi+1)
= p(xi |xi+1)

• get from this

p(xi |xn) =
∑
xi+1

p(xi |xi+1, xn)p(xi+1|xn) =
∑
xi+1

p(xi |xi+1)p(xi+1|Ti+1(xn))

only depending on xn through Ti+1(xn), so Ti+1 sufficient
statistics for p(xi |xn)

• know Ti is minimal sufficient statistics, so there is a function
with Ti = fi ◦ Ti+1

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• with f0(T0(xn)) = p(x0,T0(xn)) and fn(xn) = Tn−1(xn) get

p(x0|xn) = f0 ◦ f1 ◦ · · · ◦ fn(xn)

• structure of inference process reflects structure of generative
process: neural network approximating p(x |y) approximates a
composition of functions f0 ◦ · · · ◦ fn
• here is the main reason why depth of neural network matters:
approximation of a composition of n functions works best in a
network with ≥ n hidden layers

• heuristic idea: the functions fi compress data into forms with
increasing invariance (eliminating irrelevant transformations)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Approximate Information Distillation

• minimal sufficient statistics are practically difficult to compute
(some optimal data compression problem) ⇒ characterization of
sufficient statistics via information theory

• mutual information random variables X ,Y

I(X ,Y) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)

• data processing inequality (data compression)

I(x , y) ≥ I(x , f (y))

sufficient statistics T (y) characterized by

I(x , y) = I(x ,T (y))

because retaining all the information about y that is relevant to x

• Note: sometimes useful f information distillation not sufficient
statistic, loss of mutual information but significant reduction in
complexity of Hamiltonian Hx(f (y)) (examples from cosmology)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

Renormalization

• Renormalization in statistical physics: vector y of random
variables (microscopic degrees of freedom) and R = coarse
graining operator that leaves Hamiltonian invariant up to change in
parameters

• probability distribution (Boltzmann) specified by Hamiltonian
Hx(y), with parameter vector x

• Hx(y) transformed to Hr(x)(R(y))

• iteration: Hrn(x)(R
n(y)) and probability distribution p(x |Rn(y))

(composition of functions)

• but ... more like “supervised learning”: specified features like
long wavelengths, large momenta, macroscopic degrees of
freedom...

• (more discussion on deep learning and renormalization to follow)

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

No flattening

• Markov generative models give p(x |y) as a composition of
simpler functions f0 ◦ f1 ◦ · · · ◦ fn(y)

• approximate each fi with a (shallow) neural network and (deep)
stack of those to approximate composition f0 ◦ f1 ◦ · · · ◦ fn
• this works, but is it optimal?

• if computed by shallower networks, does the flattening increase
cost decreasing efficiency?

• given an N-layered neural network f , a flattening f `ε is an
`-layered network with ` < N that approximates f up to an ε-error
(in a suitable norm)

• neuron-efficient flattening if dimension Nk of k-th inner layer of
f `ε (number of neurons in layer) is less than for f

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

• synapse efficient flattening if number Ns of non-zero entries of
weight matrices of f `ε smaller than for f

• flattening cost of a network

Cn(f , `, ε) = min
f `ε

Nn(f `ε)

Nn(f)
Cs(f , `, ε) = min

f `ε

Ns(f `ε)

Ns(f)

• no flattening for f if Cn > 1 or Cs > 1 (i.e. flattening always
comes at a cost and efficient flattening is not possible)

• several known examples: e.g. a family of multivariable
polynomials with exponential flattening cost; also exponential cost
for tree-like hierarchical compositional forms; differential geometric
methods used to shown flattening is exponentially inefficient

Matilde Marcolli and Doris Tsao Why is Deep Learning so effective?

