Theory of Information Measurement and Sauce Coding

Xinyao Ji

November 2, 2011

Information theory is a branch of applied mathematics which deals with the measurement and transmission of information through a channel. A typical model of communication involves three steps: (1) coding a message at its source, (2) transmitting the message through a channel, (3) decoding the message at its destination. In this talk, I will focus on the first step. I want to find a quantitative way to measure the disorder of an information sauce and a corresponding method to code it with the least uncertainty.

Let F be the set of sauce alphabets. A message is defined as a string of the elements in set A. let B be the set of code alphabets. Let G_B be the set of all strings of the elements in set B. A code is defined as a map f from F to G_B .

Definition1: a code is decipherable or unique decodable if every string in G_B is the image of one message.

Definition 2: A string x is a prefix in a string y if there exists a string z, such that xz=y.

A prefix-free code is decipherable because we can always find the first codeword in a message, peel it off, and continue decoding.

Theorem 1: If F is a set of sauce alphabets, $B = \{0,1\}$, f is a prefix-free code form F to G_B , for $F = \{X1, X2,....Xn\}$, f(Xi) = Ci, Li = |Ci|, then we have the following inequality: $\sum 2^{-Li} \le 1$ (carft inequality)

In real information transmission, usually we don't know which sauce alphabet is under transmission. What we only know is the probability that an alphabet emerges at a certain time. Suppose $F=\{X1, X2,....Xn\}$, $P(Xi)=p_i$, and $\Sigma p_i=1$. To cut down the cost in transmission, we hope the length of a message is as short as possible. So we use the expectation $E(X)=\Sigma \operatorname{Lip}_i$ as the stickyard. Our purpose is to minimize E(X) with the condition that $\Sigma 2^{-Li} \leq 1$.

Let $q_i=2^{-Li}$. The question equals to maximizing $\sum p_i \log_2 q_i$, such that $\sum q_i=1$

Lemma: if $p_i \ge 0$, $q_i \ge 0$, $\sum p_i = \sum q_i = 1$, then $\sum p_i \log_2(p_i/q_i) \ge 0$

Thus, $\sum p_i log_2(p_i) \ge \sum p_i log_2(q_i)$, "=" holds iff p_i = q_i , Li=log $_2(1/p_i)$

Remark: $E=-\sum p_i log_2(p_i)$ is actually the definition of entropy in information theory. It's always non-negative. And it can be viewed as a measure of the average uncertainty associated with a random variable F.

The next question is how to use a string of 0,1 to represent Ci, such that Li= $log_2(1/p_i)$.

The following process, called Huffman coding, provides a method to find Ci 's

 $F = \{X1, X2, ..., Xn\}, P(Xi) = p_i$, create n nodes corresponding to these n alphabets, probability of a alphabet is assigned to be equal to the node weight. Let set M be the collection of these n nodes.

Step1: Find and remove two nodes with smallest weights. Mark nodes A and B.

Step 2: Create a new node C. weight [C] = weight [A] + weight [B]. Create a subtree that has these

two nodes as leaves, C as root. Then insert C into the set M.

Repeat Step 1 and 2 until there is only node in the set M

For the whole binary tree, left edge is labeled 0; right edge is labeled 1. Path from root to leaf is codeword for the corresponding message

We can proof that a Huffman code is optimal.