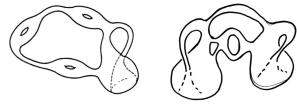
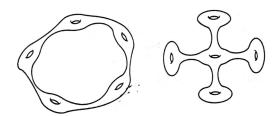
HOMEWORK N.5

MA109A: FALL 2021

- (1) Let X be the space obtained by removing a small disk from a torus \mathbb{T}^2 and Y the space obtained by removing three small disks from a sphere S^2 . Show X is not homeomorphic to Y but the products $X \times \mathcal{I}$ and $Y \times \mathcal{I}$, with $\mathcal{I} = [0, 1]$, are homeomorphic.
- (2) Standard form of topological surfaces:
 - Give a standard form presentation of the following topological surfaces, according to the classification theorem:



• Are the following two surfaces homeomorphic? Explain why.



- (3) Curves on surfaces:
 - Let K be the Klein bottle: find a closed curve γ on K such that cutting along γ produces two Möbius bands.
 - \bullet Let X be a surface given in standard form by a connected sum of g tori,

$$X = \underbrace{\mathbb{T}^2 \# \cdots \# \mathbb{T}^2}_{q-\text{times}}$$

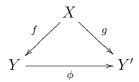
show that there is a collection $\{\gamma_i\}_{i=1}^h$ of pairwise disjoint closed curves on X such that cutting along them gives $X \setminus \bigcup_i \gamma_i$ a disjoint union of k connected components, each homeomorphic to a "pair of pants" (a sphere S^2 with three small disks removed), with h = 3(g-1) and k = 2(g-1).

- 2
- (4) The Stone–Čech compactification is the left adjoint functor of the inclusion functor CHaus → Top from the category of compact Hausdorff spaces to the category of topological spaces.
 - A coseparating object in **CHaus** is an object \mathcal{I} such that for any pair of morphisms $f \neq g$,

$$X \xrightarrow{f} Y$$

there is a morphism $h: Y \to \mathcal{I}$ such that $h \circ f \neq h \circ y$. Show that the interval $\mathcal{I} = [0, 1]$ with the Euclidean topology is a coseparating object. (Note that here the source X can also be in **Top**, while Y is in **CHaus**)

• Given an object X in **Top** the **CHaus**-under-category of X is the category $X \downarrow \mathbf{CHaus}$ whose objects are **Top**-morphisms $f: X \to Y$ with Y in **CHaus** and morphisms $\phi \in \mathrm{Mor}_{X \downarrow \mathbf{CHaus}}(f: X \to Y, f: X \to Y')$ are morphisms $\phi: Y \to Y'$ of **CHaus** that fit in a commutative diagram



Show that the product of all morphisms from X to the coseparating object $\mathcal{I} = [0, 1]$ defines an object of $X \downarrow \mathbf{CHaus}$

$$X \xrightarrow{\eta} \prod_{\operatorname{Mor}_{\mathbf{Top}}(X,\mathcal{I})} \mathcal{I}$$
.

• Show that the intersection of all compact Hausdorff subspaces

$$K \subset \prod_{\operatorname{Mor}_{\mathbf{Top}}(X,\mathcal{I})} \mathcal{I}$$

containing the image of η is the closure $\beta(X) := \overline{\eta(X)}$ of the image $\eta(X)$ in $\prod_{\text{Mor}_{\textbf{Top}}(X,\mathcal{I})} \mathcal{I}$.

- Show the resulting $X \to \beta(X)$ is an initial object of $X \downarrow \mathbf{CHaus}$.
- Show that this $\beta(X)$ is the Stone-Čech compactification, by showing that the property above implies that β is a left adjoint to **CHaus** \hookrightarrow **Top**.