HOMEWORK N.1

MA109A: FALL 2021

- (1) Construct explicitly a bijection $f:(0,1)\to\mathbb{R}$.
- (2) Let A be an infinite set and B a countable (finite or countably infinite) set.
 - Show that there exists a bijection $f: A \cup B \to A$
 - Show that if A is a continuum and $B \subset A$ is countable then $A \setminus B$ is a continuum

(assume validity of the axiom of choice)

- (3) Let $A \subset \{0,1\}^{\mathbb{N}}$ be the subset of all sequences that are eventually periodic, i.e. sequences $x = (x_n)$ such that, for some n_0 and k (depending on x), $x_{n+k} = x_n$ for all $n > n_0$.
 - Show that the set A is countable
 - Construct a bijection $f: \{0,1\}^{\mathbb{N}} \setminus A \to \mathbb{R} \setminus \mathbb{Q}$
- (4) Let E be a set and $\{A_n\}_{n\in\mathbb{N}}$ a family of subsets of E. Define the limsup and liminf of the family as

$$\limsup_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} (\bigcup_{k=0}^{\infty} A_{n+k}), \quad \liminf_{n} A_n = \bigcup_{n=0}^{\infty} (\bigcap_{k=0}^{\infty} A_{n+k}).$$

- Show that $\limsup_n A_n = \{x \in E \mid x \in A_n \text{ for infinitely many } n\}$
- Show that $\liminf_n A_n = \{x \in E \mid x \in A_n \text{ for all but finitely many } n\}$
- Show that $\cap_n A_n \subseteq \liminf_n A_n \subseteq \limsup_n A_n \subseteq \cup_n A_n$
- Show that $\liminf_n A_n^c = (\limsup_n A_n)^c$
- Show the following properties:

 $\liminf_{n} A_n \cap \liminf_{n} B_n = \liminf_{n} (A_n \cap B_n)$ $\liminf_{n} A_n \cup \liminf_{n} B_n \subseteq \liminf_{n} (A_n \cup B_n),$

 $\limsup_{n} A_{n} \cup \limsup_{n} B_{n} = \limsup_{n} (A_{n} \cup B_{n}), \quad \limsup_{n} A_{n} \cap \limsup_{n} B_{n} \supseteq \limsup_{n} (A_{n} \cap B_{n})$ • Show that if $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{n} \cdots$ or $A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n} \cdots$ then

- $\limsup_{n} A_n = \lim \inf_{n} A_n$
- (5) Describe initial object, terminal object, products and coproducts in the categories **Grps** (of groups and group homomorphisms) and \mathbf{Vec}_k (of finite dimensional vector spaces over a field k and linear maps); explain why they satisfy the required properties.
- Show that the category of finite groups does not have a coproduct. (6)

- Give an example (other than the opposite category of the previous example) of a category without products and explain why.
- Show that the category of fields has no initial and no terminal object.
- Show that the category of fields of characteristic a given prime p has an initial object.
- Show that the category **AbGrps** of abelian groups is a full subcategory of **Grps**, but the coproduct of two abelian groups in **AbGrps** is not the same as their coproduct in **Grps**.
- (7) Describe the category \mathbf{SSet}_X of subsets of a given set X; show that the union is the coproduct in this category; explain why the union cannot be the coproduct in \mathbf{Sets} .
- (8) Let \mathbf{Eucl}_* be the category of pointed Euclidean spaces with objects the pairs (\mathbb{R}^n, x) with $x \in \mathbb{R}^n$ (Euclidean spaces with a distinguished vector) and morphisms $f: (\mathbb{R}^n, x) \to (\mathbb{R}^m, y)$ be differentiable functions with f(x) = y. Consider the assignment $D: (\mathbb{R}^n, x) \to \mathbb{R}^n$ (forgetting the distinguished point) and $D: f \mapsto Df|_x$ (the derivative seen as the linear map $\mathbb{R}^n \to \mathbb{R}^m$ given by the Jacobian of f). Show this gives a functor $D: \mathbf{Eucl}_* \to \mathbf{Vect}_{\mathbb{R}}$.
- (9) Let (X, \leq) be a poset. Show that one can view (X, \leq) as a category with objects the points of X and a morphism $x \to y$ iff $x \leq y$.
 - A diagram in a category \mathcal{C} is a functor $F: \mathcal{J} \to \mathcal{C}$ from a small category \mathcal{J} . Show that, because between any two objects in (X, \leq) there is at most one morhisms, to construct limits and colimits it suffices to consider diagrams in (X, \leq) determined by the choice of a subset $S \subset X$.
 - Show that the limit of the diagram S is the greatest lower bound of S and the colimit is the least upper bound of S.