

- Arbitrary Cartesian products of sets

usual product of two sets $A \times B = \{(a, b) \mid a \in A \text{ & } b \in B\}$

$= \{ \text{functions } f: \{1, 2\} \rightarrow A \cup B \text{ st. } f(1) \in A \text{ and } f(2) \in B \}$

$\{A_\alpha\}_{\alpha \in I}$ family of sets define Cartesian prod $\prod_{\alpha \in I} A_\alpha$

$\prod_{\alpha \in I} A_\alpha = \{f: I \rightarrow \bigcup_{\alpha \in I} A_\alpha \mid \forall \alpha \in I \ f(\alpha) \in A_\alpha\}$

$x \in \prod_{\alpha \in I} A_\alpha$

$x = (x_\alpha)_{\alpha \in I}$

$x_\alpha = f(\alpha)$ w/ notation above

Note: if index set I finite clear that $\prod_{\alpha \in I} A_\alpha \neq \emptyset$ iff all $A_\alpha \neq \emptyset$
 if set I is infinite? (axiom of choice)

- More set theory basics

finite set $A = \exists \text{ bijection } f: A \rightarrow \{1, \dots, n\} \text{ for some } n \in \mathbb{N}$

$n = \#A$ cardinality of A

well defined i.e. property of A i.e. cannot have bijections
 $A \xrightarrow{\cong} \{1, \dots, n\}$ and $A \xrightarrow{\cong} \{1, \dots, m\}$
 w/ $n \neq m$

otherwise would have bijection

$\{1, \dots, n\} \xrightarrow{h} \{1, \dots, m\}$ injective & surjective

injective $\Rightarrow m \geq n$ $h(1), \dots, h(n)$ n different pts in $\{1, \dots, m\}$

surjective $\Rightarrow m \leq n$ for each $j \in \{1, \dots, m\} \ \exists i \in \{1, \dots, n\} \ f(i) = j$

② in particular if $B \subsetneq A$ proper subset and there is $\exists f: B \xrightarrow{\text{bijection}} A$ finite nonempty there is no

bijection $f: B \xrightarrow{\sim} A$

• $\exists f: A \xrightarrow{\sim} \{1, \dots, n\}$ bijection

$\exists a \in A \quad a \notin B \quad \text{then } B \not\subseteq A$

$f(a) \in \{1, \dots, n\} \quad f(B) \subseteq \{1, \dots, n\} \setminus \{f(a)\}$

\exists bijection $\{1, \dots, n\} \setminus \{f(a)\} \xrightarrow{\sim} \{1, \dots, n-1\}$
(permutation)

$$\Rightarrow \# f(B) = \# B \leq n-1$$

$f \uparrow \text{bijection}$

Infinite sets a set is finite \Rightarrow no bijection to a proper subset

\exists bijection of finite sets $A \xrightarrow{\sim} B$ if same cardinality $\# A = \# B$

• infinite sets have bijections to proper subsets

e.g. $2\mathbb{N} \hookrightarrow \mathbb{N}$ map $f(2k) = k$ is bijection (injective & surjective)

• A countably infinite (countable) iff

\exists bijection $f: A \rightarrow \mathbb{Z}_+ = \{0, 1, 2, 3, \dots\}$

e.g. $\mathbb{Z}_+ \times \mathbb{Z}_+$ countable through diag. enumeration:

also through

$$\mathbb{Z}_+ \times \mathbb{Z}_+ \rightarrow \mathbb{Z}_+$$

$$f(n, m) = 2^n 3^m \quad \text{injective}$$

• there are ~~infinite~~ sets that are not countable (uncountable)

• countable unions of countable sets are countable

$$f_\alpha: \mathbb{Z}_+ \rightarrow A_\alpha$$

$$h: \mathbb{Z}_+ \rightarrow J$$

$$\{A_\alpha\}_{\alpha \in J}$$

Surjective

$$\mathbb{Z}_+ \times \mathbb{Z}_+ \xrightarrow{(n, m) \mapsto f_{h(n)}(m)} \bigcup_{\alpha \in J} A_\alpha$$

[discuss below]

in fact sufficient to see \exists surjection $\mathbb{Z}_+ \rightarrow A$ (3)

to see A countable: to get bijection choose a preimage for each $a \in A$

get bijection to \mathbb{Z}_+ (infinite subset of \mathbb{Z}_+ (countable))

Note: equivalent facts

$\left\{ \begin{array}{l} A \text{ (at most finite set or countable)} \\ \exists \text{ injection } A \hookrightarrow \mathbb{Z}_+ \\ \exists \text{ surjection } \mathbb{Z}_+ \rightarrow A \end{array} \right.$

subset of countable set
countable or finite

$f: \mathbb{Z}_+ \rightarrow A$ \Rightarrow $g: A \rightarrow \mathbb{Z}_+$ $g(a) = \text{smallest element in } \mathbb{Z}_+^m \text{ with } f(n) = a$

$\mathbb{f}: A \hookrightarrow \mathbb{Z}_+$ \Rightarrow g bijection to a subset $g(A) \subset \mathbb{Z}_+$
all ~~subsets~~ subsets of \mathbb{Z}_+ either finite or countably infinite
count pts of C in order in which occur in \mathbb{Z}_+
(get enumeration of C)

set of all functions

$\left\{ \text{functions } f: \mathbb{N} \rightarrow \{0,1\} \right\} = \{0,1\}^{\mathbb{N}}$

$f = (a_1, a_2, a_3, \dots, a_n, \dots)$ $a_i \in \{0,1\}$
all possible infinite sequences of 0's and 1's

the set $\{0,1\}^{\mathbb{N}}$ is not countable

show there is no surjection $f: \mathbb{N} \rightarrow \{0,1\}^{\mathbb{N}}$

$$(4) \quad g(n) = (a_{n,1}, a_{n,2}, \dots, a_{n,m}, \dots)$$

each digit in $\{0,1\}$

take $y = (y_1, y_2, \dots, y_n, \dots)$ element in $\{0,1\}^N$

defined by

$$y_n = \begin{cases} 0 & \text{if } a_{nn} = 1 \\ 1 & \text{if } a_{nn} = 0 \end{cases}$$

$$y \notin g(N)$$

for each map $g: N \rightarrow \{0,1\}^N$ can construct such a $y \notin g(N)$ so no surjections

Note: $\{0,1\}^N \cong \mathcal{P}(N)$ set of all subsets of N

General procedure for jumping "cardinality" of infinite sets X and $\mathcal{P}(X)$

given any map $g: X \rightarrow \mathcal{P}(X)$ g is not surjective

$\forall x \in X \quad g(x)$ is a subset of X (which may or not contain pt x)

define another subset of X by rule

$$B = \{x \in X \mid x \notin g(x)\}$$

$\Rightarrow g$ is not surjective $\Rightarrow g_{\text{ac}} \text{ this } B \notin g(A)$

is $B \in g(A)$? if so there would be $a_0 \in A$

s.t. $B = g(a_0)$ but ~~by construction~~

$\begin{matrix} \nearrow \\ \text{no} \end{matrix}$
 $\begin{matrix} \nearrow \\ \text{B} \notin g(A) \end{matrix}$

if $a_0 \in B$ then $a_0 \in g(a_0)$ contradicts $x \in B$ iff $x \notin g(x)$

if $a_0 \notin B$ then $a_0 \notin g(a_0)$ contradicts $x \in B$ iff $x \notin g(x)$

the axiom of choice and infinite sets

(5)

- A infinite set $\Rightarrow \exists f: \mathbb{N}_0 \hookrightarrow A$ injection

choose $a_1 \in A$ set $f(1) = a_1$

suppose already defined $f(k) \quad \forall k \in \{1, \dots, n-1\}$

$A \setminus \{f(1), \dots, f(n-1)\}$ nonempty (because A infinite)

choose $a_n \in A \setminus \{f(1), \dots, f(n-1)\}$ and set $f(n) = a_n$

inductively construct injective map $f: \mathbb{N} \hookrightarrow A$

- A infinite set $\Rightarrow \exists$ bijection A to proper subset of A

use previous $f: \mathbb{N}_0 \hookrightarrow A \quad B = f(\mathbb{Z}_+) \subseteq A$

$f(n) = a_n \in A \quad a_n \neq a_m \text{ for } n \neq m$ (injective)

define $g: A \rightarrow A \setminus \{a_1\}$ by $\begin{cases} g(a_n) = a_{n+1} & a_n \in B \\ g(x) = x & x \notin B \end{cases}$

is a bijection

Note used choices of a_n 's to construct $f: \mathbb{Z}_+ \hookrightarrow A$

Axiom of choice: given an arbitrary (finite or infinite)

collection $\mathcal{A} = \{A_\alpha\}_{\alpha \in I}$ of disjoint nonempty sets

\exists a set C that consists of exactly one element from each A_α

\exists choice function $c: \mathcal{A} \rightarrow \bigcup_\alpha A_\alpha \quad C = \{c(A_\alpha)\}_{\alpha \in I}$

s.t. $c(A_\alpha) \in A_\alpha$

⑥ Order relations and well ordered sets

- binary relation $R \subset X \times X$
is a preorder if
- reflexive $\forall x (x, x) \in R$
- $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$
transitive

(unlike equivalence not symmetric)

$x \xleftarrow{R} y$ if $(x, y) \in R$ preorder

- (an equiv. rel. a particular case of preorder that also symmetric)
- on \mathbb{R} $x \leq y$ is preorder
- $P(X)$ wth inclusion $A \subseteq B$ of subsets is preorder

- partial ordering is a preordering w/ additional condition

$$(x \xleftarrow{R} y) \wedge (y \xleftarrow{R} x) \Rightarrow x = y$$

(i.e. only case w/ symm property holds is if $x = y$)

- total ordering partial ordering R
when $\forall x, y \in X$ either $x \xleftarrow{R} y$ or $y \xleftarrow{R} x$
- partially ordered set X is well ordered if
each $B \subset X$ $B \neq \emptyset$ has a first element $b_0 \in B$ s.t. $b_0 \xleftarrow{R} b \forall b \in B$

- a well ordered set X is totally ordered:

take $\{a, b\} \subset X$ subset \exists min. el. so either $a \stackrel{R}{\preceq} b$ or $b \stackrel{R}{\preceq} a$ (7)

Equivalent statements:

- 1) axiom of choice
- 2) Zorn's lemma
- 3) Zermelo's well ordering

Zorn's lemma:

X preordered set: if each subset $B \subseteq X$ totally ordered
~~has maximal element~~
 has upper bound $\Rightarrow X$ has at least one maximal element
 (chain)
 some x s.t.
 $b \stackrel{R}{\preceq} x \quad \forall b \in B$

Zermelo's well ordering: every set admits a $\stackrel{R}{\preceq}$ that is a well-ordering

This proof not covered in class: added here for completeness

Outline of proof: preliminaries:

1) φ -towers X set $\mathcal{F} \subseteq \mathcal{P}(X)$ family
 $\varphi: \mathcal{F} \rightarrow X$ function

- $\emptyset \in \mathcal{F}$
- $\{A_\alpha\}_{\alpha \in I}$ totally ordered (by inclusion) $A_\alpha \in \mathcal{F}$
- $\Rightarrow \bigcup_\alpha A_\alpha \in \mathcal{F}$
- $A \in \mathcal{P} \Rightarrow A \cup \{\varphi(A)\} \in \mathcal{F}$
- ~~if~~ M minimal φ -tower (intersection of all still φ -tower)

2) \mathcal{F} φ -tower: $\exists A \in \mathcal{F}$ st. $\varphi(A) \in A$

show M totally ordered by inclusion then $A = \bigcap_{M \subseteq \mathcal{F}} M$
~~A~~ $A \in M \Rightarrow A \cup \{\varphi(A)\} \in M \Rightarrow A \cup \{\varphi(A)\} \subseteq A \Rightarrow \varphi(A) \in A$

⑧ then Axiom choice \Rightarrow Zorn :

- $F \subset P(X)$ set of all chains in X (totally ordered subsets)
- $A \in F$, $A \neq \emptyset$, q_A an upper bound (assuming each chain has an upper bound)

$$T_A = \{x \in X : (q_A \prec x) \wedge (x \prec q_A)\}$$

want to show there has max)

Want to show $T_A = \emptyset$

(because this means either no x with $q_A \prec x$ or if $q_A \prec x$ then also $x \prec q_A$ so q_A is maximal)

Suppose $T_A \neq \emptyset$ and assuming axiom of choice so \exists choice function ~~c~~ $c: \bigcup_{A \in F} T_A \rightarrow \bigcup_{A \in F} T_A$ that chooses an element in each T_A

and $c(\emptyset) = x_0$

then show $F' = F \cup \{\emptyset\}$ is a c-tower

• $\emptyset \in F'$

• $A_\alpha \in F' \Leftrightarrow \{A_\alpha\}$ is a chain (by inclusion)

then $\bigcup_{A_\alpha \in F'} A_\alpha \in F'$: $a, b \in \bigcup_{A_\alpha \in F'} A_\alpha$

so a, b related

to $\bigcup_{A_\alpha \in F'} A_\alpha$ tr. ordered

• $A \in F' \Rightarrow A \cup \{c(A)\} \in F'$

$a \prec q_A$ and $c(A) \prec q_A$

enough to see
 $a \in A$ and $c(A)$ related

$\in T_A \Rightarrow q_A \prec c(A)$

apply previous lemma: $\exists A \in F' : c(A) \in A$ hence $c(A) \prec q_A$
but contradiction because $c(A) \in T_A \Rightarrow \neg (c(A) \prec q_A)$

$T_A = \emptyset$

Well ordering \Rightarrow axiom of choice :

$\{A_\alpha\}$ family, take well ordering on $\bigcup_{A_\alpha} A_\alpha$,
define choice function $c(A_\alpha) =$ first element in A_α
w/ resp. to this well ordering

(9)

Zorn \Rightarrow Well ordering

E set Some subsets can be well ordered
want to show E itself can also

- \mathcal{F} family of all ~~order~~ pairs (A, \preceq_A)
 $A \in E$ \preceq_A is a well ordering on A
i.e. all subsets that can be well ordered
- put an ordering on \mathcal{F}

$$(A, \preceq_A) \leq (B, \preceq_B) \quad \text{if}$$

* $A \subset B$

* \preceq_B restricted to A induces \preceq_A

* $y \in B \setminus A \& x \in A \Rightarrow x \preceq_B y$

is a partial ordering (\mathcal{F}, \leq)

check partially ordered set (\mathcal{F}, \leq) satisfies requirements
of Zorn's lemma

$\{(A_\alpha, \preceq_\alpha)\}$ a chain in (\mathcal{F}, \leq)

$\Rightarrow \bigcup_\alpha A_\alpha$ has a well ordering \preceq_U (i.e. is in \mathcal{F})

so that $(\bigcup_\alpha A_\alpha, \preceq_U)$ is upper bound for

this works if define \preceq_U to be:

$a, b \in \bigcup_\alpha A_\alpha \Rightarrow$ there is some $A_\alpha \ni a, b$
(because ordered by inclusion)

then $a \preceq_U b$ iff $a \preceq_\alpha b$ in this well defined because in a layer
one would be same
so \preceq_U well def. partial ordering

\prec_U is also well-ordering because of \circledast (10)

because \prec_U satisfies $(y \in A_\alpha) \wedge (x \prec_U y) \Rightarrow x \in A_\alpha$

\Rightarrow if $Q \subset \bigcup_\alpha A_\alpha$ $Q \neq \emptyset$ there is a first A_α w/ $Q \cap A_\alpha \neq \emptyset$
and first element in $Q \cap A_\alpha$ is also first element in Q

So $(\bigcup_\alpha A_\alpha, \prec_U) \in \mathcal{F}$ and $(A_\alpha, \prec_\alpha) < (\bigcup_\alpha A_\alpha, \prec_U)$

so $\underbrace{\bigcup_\alpha A_\alpha}$ is an upper bound ~~and~~ in \mathcal{F}

From $\Rightarrow \mathcal{F}$ has a maximal element (A, \prec_A)

(\mathcal{F}, \prec) thus must have $A = E$

otherwise if $a_0 \in E \setminus A$

could get $(A, \prec_A) < (A \cup \{a_0\}, \prec')$

where in \prec' a_0 is last element
and \prec_A on A

and would not be maximal