Homotopy Theoretic and Categorical Models of Neural Information Networks

Matilde Marcolli (Caltech)

Topological Insights in Neuroscience, MSRI 2021

• • = • • =

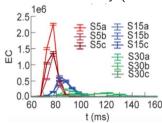
• based on ongoing joint work with Yuri I. Manin (Max Planck Institute for Mathematics)

- Yuri Manin, Matilde Marcolli Homotopy Theoretic and Categorical Models of Neural Information Networks, arXiv:2006.15136
- related work:
 - M. Marcolli, *Gamma Spaces and Information*, Journal of Geometry and Physics, 140 (2019), 26–55.
- this work partially supported by FQXi grants: FQXi-RFP-1804, SVCF 2018-190467 and FQXi-RFP-CPW-2014; SVCF 2020-224047

向下 イヨト イヨト

Motivation N.1: Nontrivial Homology

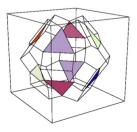
• Kathryn Hess' applied topology group at EPFL: topological analysis of neocortical microcircuitry (Blue Brain Project)



- formation of large number of high dimensional cliques of neurons (complete graphs on *N* vertices with a directed structure) accompanying response to stimuli
- formation of these structures is responsible for an increasing amount of nontrivial Betti numbers and Euler characteristics, which reaches a peak of topological complexity and then fades
- proposed functional interpretation: this peak of non-trivial homology is necessary for the processing of stimuli in the brain cortex... but why?

Motivation N.2: Computational Role of Nontrivial Homology

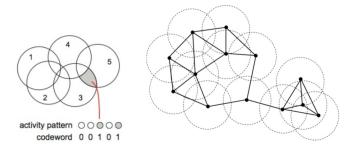
- mathematical theory of concurrent and distributed computing (Fajstrup, Gaucher, Goubault, Herlihy, Rajsbaum, ...)
- initial, final states of processes vertices, d + 1 mutually compatible initial/final process states d-simplex



- distributed algorithms: simplicial sets and simplicial maps
- certain distributed algorithms require "enough non-trivial homology" to successfully complete their tasks (Herlihy–Rajsbaum)
- this suggests: functional role of non-trivial homology to carry out some concurrent/distributed computation

Motivation N.3: Neural Codes and Homotopy Types

• Carina Curto and collaborators: geometry of stimulus space can be reconstructed *up to homotopy* from binary structure of the neural code



- overlaps between place fields of neurons and the associated simplicial complex of the open covering has the same homotopy type as the stimulus space
- this suggests: the neural code *represents* the stimulus space through homotopy types, hence homotopy theory is a natural mathematical setting

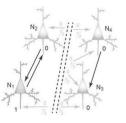
Motivation N.4: Informational and Metabolic Constraints

- neural codes: rate codes (firing rate of a neuron), spike timing codes (timing of spikes), neural coding capacity for given firing rate, output entropy
- metabolic efficiency of a transmission channel ratio $\epsilon = I(X, Y)/E$ of the mutual information of output and input X and energy cost E per unit of time
- optimization of information transmission in terms of connection weights maximizing mutual information I(X, Y)
- requirement for homotopy theoretic modelling: need to incorporate constraints on resources and information (mathematical theory of resources: Tobias Fritz and collaborators, categorical setting for a theory of resources and constraints)

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation N.5: Informational Complexity

 measures of informational complexity of a neural system have been proposed, such as integrated information: over all splittings X = A∪B of a system and compute minimal mutual information across the two subsystems, over all such splittings



- controversial proposal (Tononi) of integrated information as measure of consciousness (but simple mathematical systems from error correcting codes with very high integrated information!)
- some better mathematical description of organization of neural system over subsystems from which integrated information follows?

Main Idea for a homotopy theoretic modeling of neural information networks

- Want a space (topological) that describes all consistent ways of assigning to a population of neurons with a network of synaptic connections a concurrent/distributed computational architecture ("consistent" means with respect to all possible subsystems)
- Want this space to also keep track of constraints on resources and information and conversion of resources and transmission of information (and information loss) across all subsystems
- Want this description to also keep track of homotopy types (have homotopy invariants, associated homotopy groups): topological robustness
- Why use category theory as mathematical language? because especially suitable to express "consistency over subsystems" and "constraints over resources"
- also categorical language is a main tool in homotopy theory (mathematical theory of concurrent/distributed computing already knows this!)

Categories of Resources

- mathematical theory of resources
 - B. Coecke, T. Fritz, R.W. Spekkens, A mathematical theory of resources, Information and Computation 250 (2016), 59–86. [arXiv:1409.5531]
- Resources modelled by a symmetric monoidal category $(\mathcal{R}, \circ, \otimes, \mathbb{I})$
- objects A ∈ Obj(R) represent resources, product A ⊗ B represents combination of resources, unit object I empty resource
- morphisms f : A → B in Mor_R(A, B) represent possible conversions of resource A into resource B
- convertibility of resources when $\operatorname{Mor}_{\mathcal{R}}(A, B) \neq \emptyset$

・ 同 ト ・ ヨ ト ・ ヨ ト

Measuring semigroups of categories of resources (Coecke, Fritz, Spekkens)

- preordered abelian semigroup (R, +, ≥, 0) on set R of isomorphism classes of Obj(R) with A + B the class of A ⊗ B with unit 0 given by the unit object I and with A ≥ B iff Mor_R(A, B) ≠ Ø
- (same for category ${\mathcal C}$ with sum and zero object)
- maximal conversion rate $\rho_{A \rightarrow B}$ of resources

$$\rho_{A \to B} := \sup\{\frac{m}{n} \mid n \cdot A \succeq m \cdot B, \ m, n \in \mathbb{N}\}$$

number of copies of resource A are needed on average to produce B

- measuring semigroup: abelian semigroup with partial ordering and semigroup homomorphism M : (R, +) → (S, *) with M(A) ≥ M(B) in S when A ≽ B in R
- satisfy $\rho_{A \to B} \cdot M(B) \leq M(A)$

A D D A D D A D D A D D A

Summing functors

- C a category with sum and zero-object (binary codes, transition systems, resources, etc)
- (X, x₀) a pointed finite set and P(X) a category with objects the pointed subsets A ⊆ X and morphisms the inclusions j : A ⊆ A'
- a functor $\Phi_X : \mathcal{P}(X) \to \mathcal{C}$ summing functor if

 $\Phi_X(A \cup A') = \Phi_X(A) \oplus \Phi_X(A')$ when $A \cap A' = \{x_0\}$

and $\Phi_X(\{x_0\})$ is zero-object of C

- Σ_C(X) category of summing functors Φ_X : P(X) → C, morphisms are *invertible* natural transformations
- Key idea: a summing functor is a *consistent assignment* of *resources* of type C to *all subsystems* of X so that a combination of independent subsystems corresponds to combined resources • $\Sigma_C(X)$ parameterizes all possible such assignments

A 3 1 A 3 1 A

Segal's Gamma Spaces

- construction introduced in homotopy theory in the '70s: a general construction of (connective) *spectra* (generalized homology theories)
- a Gamma space is a functor $\Gamma : \mathcal{F} \to \Delta$ from finite (pointed) sets to (pointed) simplicial sets

- a category ${\mathcal C}$ with sum and zero-object determines a Gamma space $\Gamma_{\mathcal C}: {\mathcal F} \to \Delta$
 - for a finite set X take category of summing functors Σ_C(X) and simplicial set given by nerve N(Σ_C(X)) of this category

向下 イヨト イヨト

Meaning in homotopy theory (loop-deloop)

- take case where C is an abelian category, then (Quillen) the higher K-theory K(C) is the K-theory of an infinite loop space
- the category of summing functors Σ_C(X) provides a delooping of this infinite loop space (Carlsson)
- a Gamma space defines an associated spectrum, by extending the functor $\Gamma : \mathcal{F} \to \Delta$ to an endofunctor $\Gamma : \Delta \to \Delta$ and applying it to spheres
- \bullet when $\mathcal{C}=\mathcal{F}$ with $\Gamma_{\mathcal{F}}:\mathcal{F}\to\Delta$ get the sphere spectrum
- all connective spectra are obtained through this construction for C a symmetric monoidal category (Thomason)
- hence nerves $\mathcal{N}(\Sigma_{\mathcal{C}}(X))$ are topologically very nontrivial

イロト イポト イヨト イヨト

Meaning in our setting

- nerve N(Σ_C(X)) of category of summing functors organizes all assignments of C-resources to X-subsystems and their transformations into a single topological structure that keeps track of equivalence relations between them (invertible natural transformations as morphisms of Σ_C(X) and their compositions become simplexes of the nerve)
- view N(Σ_C(X)) as a topological parameterizing space for all such consistent assignments of resources of type C to subsets of X

(日本)(日本)(日本)

From finite sets to networks: directed graphs

- category 2 has two objects V, E and two morphisms s, t ∈ Mor(E, V)
- *F* category of finite sets: objects finite sets, morphisms functions between finite sets
- a directed graph is a functor $G: 2 \rightarrow \mathcal{F}$
 - G(E) is the set of edges of the directed graph
 - G(V) is the set of vertices of the directed graph
 - $G(s): G(E) \rightarrow G(V)$ and $G(t): G(E) \rightarrow G(V)$ are the usual source and target maps of the directed graph
- category of directed graphs Func(2, \mathcal{F}) objects are functors and morphisms are natural transformations

(4月) トイヨト イヨト

Systems organized according to networks

- instead of finite set X want a directed graph (network) and its subsystems
- directed graph as functor $G: 2 \rightarrow \mathcal{F}$ and functorial assignment $X \mapsto \Sigma_{\mathcal{C}}(X)$
- Σ_C(E_G) summing functors Φ_E : P(E_G) → C for sets of edges and Σ_C(V_G) summing functors Φ_V : P(V_G) → C for sets of vertices
- source and target maps s, t : E_G → V_G transform summing functors Φ_E ∈ Σ_C(E_G) to summing functors in Σ_C(V_G)

$$\Phi^{s}_{V_{G}}(A) := \Phi_{E_{G}}(s^{-1}(A)) \quad \Phi^{t}_{V_{G}}(A) := \Phi_{E_{G}}(t^{-1}(A))$$

assigns to a set of vertices $\mathcal C\text{-resources}$ of in/out edges

 categorical statement: source and target maps s, t : E_G → V_G determine functors between categories Σ_C(E_G) and Σ_C(V_G) of summing functors, hence map between their nerves

Expressing constraints and optimization in categorical form

- limits and colimits in categories
 - diagram F : J → C and cone N, limit is "optimal cone" (dual version for colimits)

• special cases of limits and colimits: equalizers, coequalizers

- Example: thin categories (S, ≤) set of objects S and one morphism s → s' when s ≤ s'
 - diagram in (S, \leq) is selection of a subet $A \subset S$
 - limits and colimits greatest lower bounds and least upper bounds for subsets A ⊆ S
- Key idea: functors compatible with limits and colimits describe constrained optimization

向下 イヨト イヨト

Conservation laws at vertices

- source and target functors $s, t : \Sigma_{\mathcal{C}}(E_G) \rightrightarrows \Sigma_{\mathcal{C}}(V_G)$
- equalizer category $\Sigma_{\mathcal{C}}(G)$ with functor $\iota : \Sigma_{\mathcal{C}}(G) \to \Sigma_{\mathcal{C}}(E_G)$ such that $s \circ \iota = t \circ \iota$ with universal property

$$\begin{split} \Sigma_{\mathcal{C}}(G) & \stackrel{\iota}{\longrightarrow} \Sigma_{\mathcal{C}}(E_G) \xrightarrow{s}{t} \Sigma_{\mathcal{C}}(V_G) \\ \exists u \bigwedge^{q} & \swarrow^{q} \\ \mathcal{A} \end{split}$$

• this is category of summing functors $\Phi_E : P(E_G) \to C$ with conservation law at vertives: for all $A \in P(V_G)$

$$\Phi_E(s^{-1}(A)) = \Phi_E(t^{-1}(A))$$

in particular for all $v \in V_G$ have inflow of *C*-resources equal outflow

$$\oplus_{e:s(e)=v}\Phi_E(e)=\oplus_{e:t(e)=v}\Phi_E(e)$$

• another kind of conservation law expressed by coequalizer

Gamma spaces for networks

- $\mathcal{E}_{\mathcal{C}}$: Func $(2, \mathcal{F}) \to \Delta$ with $\mathcal{E}_{\mathcal{C}}(G) = \mathcal{N}(\Sigma_{\mathcal{C}}(G))$ nerve of equalizer of $s, t : \Sigma_{\mathcal{C}}(E_G) \rightrightarrows \Sigma_{\mathcal{C}}(V_G)$ (equalizer of nerves)
- more general types of Gamma networks besides equalizers $\Sigma_{\mathcal{C}}^{eq}(G)$ (and coequalizers)
 - for G ∈ Func(2, F) take category P(G) with objects (pointed) subgraphs G'_{*} of G_{*} and morphisms (pointed) inclusions
 ι : G'_{*} → G''_{*}
 - category $\Sigma_{\mathcal{C}}(G)$ of summing functors $\Phi_G: P(G) \to \mathcal{C}$
 - now value of functor Φ_G ∈ Σ_C(G) on a subnetwork G' ⊂ G not just sum of values on edges in the subnetwork
 - possible more complicated dependence on network structure (beyond conservation at vertices): general inclusion-exclusion type properties
- focus on equalizer case for simplicity

イロト イヨト イヨト

Category of binary codes

- C be a $[n, k, d]_2$ binary code of length n with $\#C = q^k$
- category $\operatorname{Codes}_{n,*}$ of pointed codes of length n
 - objects codes that contain 0-word $c_0=(0,0,\ldots,0)$
 - exclude code consisting only of constant words
 c₀ = (0, 0, ..., 0) and c₁ = (1, 1, 1, ..., 1) (for reasons of non-trivial information)
 - morphisms f : C → C' functions mapping the 0-word to itself (don't require maps of ambient 𝔽ⁿ₂)
 - sum as for pointed sets $C \vee C'$ (glued along the zero-word)
 - · zero-object: code consisting only of the zero word
 - role of zero-word is like reference point (for neural code, baseline when no activity detected)

• Note: in coding theory often other form of categorical sum (decomposable codes), but changes code length *n*

$$C\oplus C':=\{(c,c')\in \mathbb{F}_2^{n+n'}\,|\,c\in C,\,c'\in C'\}$$

A D D A D D A D D A D D A

neural codes

- T > 0 time interval of observation, subdivided into some basic units of time, Δt
- code length $n = T/\Delta t$: number of basic time intervals considered
- number of nontrivial code words: neurons oberved
- each code word: firing pattern of that neuron, digit 1 for each time intervals Δt that contained a spike and 0 otherwise
- zero-word baseline of no activity (for comparison)
- a neural code for N neurons is a sum $C_1 \vee \cdots \vee C_N$ with $C_i = \{c_0, c\}$ with zero-word c_0 and firing pattern c of i-th neuron

(日本)(日本)(日本)

Category of weighted codes

- category of weighted binary codes WCodes_{n,*}
- objects pairs (C, ω) of a code C of length n containing zero-word c₀ and function ω : C → ℝ assigning (signed) weight to each code word, with ω(c₀) = 0
- morphisms φ = (f, λ) : (C, ω) → (C', ω') with f : C → C' mapping the zero-word to itself and f(supp(ω)) ⊂ supp(ω') and weights λ_{c'}(c) for c ∈ f⁻¹(c')
- sum $(C, \omega) \oplus (C', \omega') = (C \vee C', \omega \vee \omega')$ with $\omega \vee \omega'|_C = \omega$ and $\omega \vee \omega'|_{C'} = \omega'$
- zero object ({*c*₀}, 0)

・ 何 ト ・ ヨ ト ・ ヨ ト

3

Equalizer: linear model

 \bullet a summing functor Φ in the equalizer of source and target functors

$$\Sigma^{eq}_{W\mathrm{Codes}_{n,*}}(G) := \mathrm{eq}(s, t : \Sigma_{W\mathrm{Codes}_{n,*}}(E_G) \rightrightarrows \Sigma_{W\mathrm{Codes}_{n,*}}(V_G))$$

is a summing functor $\Phi \in \Sigma_{WCodes_{n,*}}(E_G)$ with conservation laws $\Phi(s^{-1}(A)) = \Phi(t^{-1}(A))$ for $A \subset V_G$

• If directed graph G has a single outgoing edge at each vertex, $\{e \in E_G \mid s(e) = v\} = \{\operatorname{out}(v)\}$, then equalizer condition

$$(C_{\operatorname{out}(v)}, \omega_{\operatorname{out}(v)}) = \oplus_{t(e)=v} (C_e, \omega_e),$$

 can be seen as a kind of categorical version of linear neuron model

・ 同 ト ・ ヨ ト ・ ヨ ト …

Discrete and continuous Hopfield dynamics

• discrete version (binary neurons)

$$u_j(n+1) = \begin{cases}
1 & \text{if } \sum_k T_{jk} \nu_k(n) + \eta_j > 0 \\
0 & \text{otherwise}
\end{cases}$$

• continuous version (neuron firing rates as variables and threshold-linear dynamics)

$$\frac{dx_j}{dt} = -x_j + \left(\sum_k W_{jk}x_j + \theta_j\right)_+$$

 W_{jk} real-valued connection strengths, θ_j constant external inputs, and $(\cdot)_+ = \max\{0, \cdot\}$ threshold function

finite difference version

$$\frac{x_j(t+\Delta t)-x_j(t)}{\Delta t}=-x_j+(\sum_k W_{jk}x_k(t)+\theta_j)_+$$

(versions with or without "leak term" $-x_j$ on r.h.s.)

Categorical Hopfield dynamics: Step 1

- as above $\Sigma_{\mathcal{C}}^{eq}(G)$ for a network G and category of resources \mathcal{C}
- $\rho: \mathcal{C} \to \mathcal{R}$ functor to another category of resources (maybe same) with respect to which dynamics is measured
- $(R, +, \succeq)$ preordered semigroup of category $\mathcal R$
- will use relation r_C ≥ 0 for class of ρ(C) for threshold-dynamics
- \$\mathcal{E}(\mathcal{C})\$ = Func(\$\mathcal{C}\$,\$\mathcal{C}\$)\$ category of monoidal endofunctors of \$\mathcal{C}\$, morphisms natural transformations
- sum of endofunctors defined pointwise $(F \oplus F')(C) = F(C) \oplus F'(C)$ for all $C \in Obj(C)$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Categorical Hopfield dynamics: Step 2

- bisumming functors T : P(E) × P(E) → E(C) summing in both arguments
- coordinates: $T_{ee'}$ with $T_{A,B} = \bigoplus_{e \in A, e' \in B} T_{ee'}$
- Σ⁽²⁾_{ε(C)}(E) category of bisumming functors with invertible natural transformations
- $\Sigma_{\mathcal{E}(\mathcal{C})}^{(2)}(G)$ equalizer of functors

$$s, t: \Sigma^{(2)}_{\mathcal{E}(\mathcal{C})}(E)
ightarrow \Sigma^{(2)}_{\mathcal{E}(\mathcal{C})}(V)$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Categorical Hopfield dynamics: Step 3

- initial condition $\Phi_0 \in \Sigma_{\mathcal{C}}^{eq}(G)$: set $X_A(0) := \Phi_0(A)$ (or just $X_e(0) := \Phi_0(e)$)
- fixed summing functor $\Psi \in \Sigma^{eq}_{\mathcal{C}}(G)$: set $\Theta_e = \Psi(e)$
- take $Y_e(n) := \oplus_{e' \in E} T_{ee'}(X_{e'}(n)) \oplus \Theta_e$
- $r_{Y_e(n)}$ the class in $(R, +, \succeq)$ of the object $\rho(Y_e(n))$ in \mathcal{R}
- threshold $(\cdot)_+$: $(Y_e(n))_+ = \bigoplus_{e' \in E} T_{ee'}(X_{e'}(n)) \oplus \Theta_e$ if $r_{Y_e(n)} \succeq 0$ and zero-object of C otherwise

• equation

$$X_e(n+1) = X_e(n) \oplus (\oplus_{e' \in E} T_{ee'}(X_{e'}(n)) \oplus \Theta_e)_+$$

or variant $X_e(n+1) = (\bigoplus_{e' \in E} T_{ee'}(X_{e'}(n)) \oplus \Theta_e)_+$ (leaking term or not)

イロト イポト イヨト イヨト

3

Some properties of the dynamics

- X_A(n) =: Φ_n(A) defines a sequence of summing functors in Σ^{eq}_C(G)
- assignment $\mathcal{T} : \Phi_n \mapsto \Phi_{n+1}$ defined by solution defines endofunctor $\mathcal{T} : \Sigma_{\mathcal{C}}^{eq}(G) \to \Sigma_{\mathcal{C}}^{eq}(G)$
- induced discrete topological dynamical system τ on realization $|\mathcal{N}(\Sigma_{\mathcal{C}}^{eq}(G))| = B\Sigma_{\mathcal{C}}^{eq}(G)$
- for C = WCodes_{n,*} with a measuring semigroup, categorical Hopfield dynamics induces usual (finite difference) Hopfield dynamics on the weights
- Question: general results in categorical setting about existence of solutions and behavior?

・ 同 ト ・ ヨ ト ・ ヨ ト

Category of concurrent/distributed computing architectures

- category of transition systems
 - G. Winskel, M. Nielsen, *Categories in concurrency*, in "Semantics and logics of computation (Cambridge, 1995)", pp. 299–354, Publ. Newton Inst., 14, Cambridge Univ. Press, 1997.
- models of computation that involve parallel and distributed processing
- objects τ = (S, ι, L, T) with S set of possible states of the system, ι initial state, L set of labels, T set of possible transitions, T ⊆ S × L × S (specified by initial state, label of transition, final state)
- directed graph with vertex set S and with set of labelled directed edges \mathcal{T}

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\operatorname{Mor}_{\mathcal{C}}(\tau, \tau')$ of transition systems pairs (σ, λ) , function $\sigma: S \to S'$ with $\sigma(\iota) = \iota'$ and (partially defined) function $\lambda: \mathcal{L} \to \mathcal{L}'$ of labeling sets such that, for any transition $s_{in} \xrightarrow{\ell} s_{out}$ in \mathcal{T} , if $\lambda(\ell) \in \mathcal{L}'$ is defined, then $\sigma(s_{in}) \xrightarrow{\lambda(\ell)} \sigma(s_{out})$ is a transition in \mathcal{T}'
- categorical sum

$$(S,\iota,\mathcal{L},\mathcal{T})\oplus(S',\iota',\mathcal{L}',\mathcal{T}')=(S\times\{\iota'\}\cup\{\iota\}\times S',(\iota,\iota'),\mathcal{L}\cup\mathcal{L}',\mathcal{T}\sqcup\mathcal{T}')$$

$$\mathcal{T} \sqcup \mathcal{T}' := \{(s_{\textit{in}}, \ell, s_{\textit{out}}) \in \mathcal{T}\} \cup \{(s'_{\textit{in}}, \ell', s'_{\textit{out}}) \in \mathcal{T}'\}$$

where both sets are seen as subsets of

$$(S \times {\iota'} \cup {\iota} \times S') \times (\mathcal{L} \cup \mathcal{L}') \times (S \times {\iota'} \cup {\iota} \times S')$$

• zero object is given by the stationary single state system $S = \{\iota\}$ with empty labels and transitions

• • = • • = •

Grafting

- τ_i = (S_i, ι_i, L_i, T_i) for i = 1, 2 objects in category C of transition systems
- a choice of two states $s \in S_1$ and $s' \in S_2$
- grafting $\tau_{s,s'} = (S, \iota, \mathcal{L}, \mathcal{T})$ in C with $S = S_1 \cup S_2$, $\iota = \iota_1$, $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \cup \{e\}$ and $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 \cup \{(s, e, s')\}$
- $\mathcal{C}' \subset \mathcal{C}$ subcategory of transition systems au with a single final state $q \in S$
- then grafting τ₁ * τ₂ given by τ_{q1,t2} with final state of τ₁ grafted to initial state of τ₂
- G finite acyclic directed graph and ω a topological ordering vertex set V_G then given {τ_ν}_{ν∈V} objects of C' there is a well defined grafting τ_{G,ω} of the τ_ν that is also an object in C'

イロト 不得 トイヨト イヨト

Strongly connected components, condensation graph, and computational architecture functor

- finite directed graph G: subset V' ⊂ V_G is a strongly connected component if each vertex in V' reachable through oriented path in G from any other
- condensation graph \bar{G} is a directed acyclic graph: obtained from G by contracting each subgraph of a strongly connected component to a single vertex
- $\mathcal{G}:=\operatorname{Func}(2,\mathcal{F})$ category of finite directed graphs
- $\Delta_{\mathcal{G}}$ category with objects pairs (G, Φ) with $G \in \operatorname{Obj}(\mathcal{G})$ and $\Phi \in \Sigma_{\mathcal{C}}(V_G)$, morphisms (α, α_*) with $\alpha : G \to G'$ and $\alpha_*(\Phi)(A) = \Phi(\alpha_V^{-1}(A))$
- Δ'_G subcategory of Δ_G with objects (G, Φ) where summing functor Φ takes values in C'
- functor $\Xi_0 : \Delta'_{\mathcal{G}} \to \mathcal{C}'$ assigning to an object (G, Φ) the grafting $\tau_{\overline{G}, \overline{\omega}}$ along the condensation graph \overline{G} of the $\Phi(V_{G_i})$ with G_i the strongly connected components of G

Modeling computational architectures of neuronal networks

- local automata model (discretized) individual neurons with pre-synaptic and post-synaptic activity
- grafting of these automata where their inputs and outputs are connected model connectivity of the network
- can adapt this setting to model non-local neuromodulation effects (distributed computing models of neuromodulation: Potjans-Morrison-Diesmann)

白 ト イ ヨ ト イ ヨ ト

Keeping track of associated measures of informational complexity

Information and codes

- probability distribution associated to neural codes through it firing rate
- word of length *n* recording a digit 1 for each time interval Δt that contains a spike and a 0 otherwise
- (Σ_2^+, μ_P) with $\Sigma_2^+ = \{0,1\}^{\mathbb{N}}$ and μ_P Bernoulli measure
- $\mu_P(\Sigma_2^+(w_1,\ldots,w_n)) = p^{a_n(w)}(1-p)^{b_n(w)}$ with $a_n(w)$ number of 1's and $b_n(w) = n a_n(w)$ the number of zeros
- for large *n* neural code *C* in Shannon Random Code Ensemble of (Σ⁺₂, μ_P)

$$\lim_{n\to\infty}\frac{a_n(w)}{n}\stackrel{a.e.}{=}p$$

(日本)(日本)(日本)

- category *P_f* of finite probabilities with fiberwise measures (not normalized) as morphisms
- $\phi = (f, \Lambda) : (X, P_X) \to (Y, P_Y)$ with $f : X \to Y$ pointed map $f(\operatorname{supp}(P_X)) \subset \operatorname{supp}(P_Y)$ and $\Lambda = \{\lambda_y\}$ on fibers $f^{-1}(y) \subset X$, with $\lambda_{y_0}(x_0) > 0$ and $P_X(A) = \sum_{y \in Y} \lambda_y(A \cap f^{-1}(y)) P_Y(y)$
- \mathcal{P}_f has zero object and sum
- functor $P : \operatorname{Codes}_{n,*} \to \mathcal{P}_f$

$${\sf P}_{\sf C}(c) = \left\{ egin{array}{c} rac{b(c)}{n(\#{\sf C}-1)} & c
eq c_0 \ 1 - \sum_{c'
eq c_0} rac{b(c')}{n(\#{\sf C}-1)} & c = c_0 \end{array}
ight.$$

- consistent assignments of codes to a network \Rightarrow assignment of probabilities
- information: P_{f,s} subcategory with f : X → Y surjections and λ_y(x) for x ∈ f⁻¹(y) probability measures, then Shannon entropy is a functor S : P_{f,s} → ℝ (with (ℝ, ≥) thin category)

Integrated Information (Tononi)

- G. Tononi G (2008) Consciousness as integrated information: A provisional manifesto, Biol. Bull. 215 (2008) N.3, 216–242.
- M. Oizumi, N. Tsuchiya, S. Amari, Unified framework for information integration based on information geometry, PNAS, Vol. 113 (2016) N. 51, 14817–14822.
 - want to measure amount of informational complexity in a system that is not separately reducible to its individual parts
 - possibilities of causal relatedness among different parts of the system

・ 同 ト ・ ヨ ト ・ ヨ ト

Computing integrated information

- consider all possible ways of splitting a given system into subsystems
- the state of the system at a given time t is described by a set of observables X_t and the state at a near-future time by X_{t+1}
- partition λ into N subsystems \Rightarrow splitting of these variables $X_t = \{X_{t,1}, \ldots, X_{t,N}\}$ and $X_{t+1} = \{X_{t+1,1}, \ldots, X_{t+1,N}\}$ into variables describing the subsystems
- all causal relations among the $X_{t,i}$ or among the $X_{t+1,i}$, also causal influence of the $X_{t,i}$ on the $X_{t+1,j}$ through time evolution captured (statistically) by joint probability distribution $\mathbb{P}(X_{t+1}, X_t)$
- compare information content of this joint distribution with distribution where only causal dependencies between X_{t+1} and X_t through evolution within separate subsystem not across subsystems

A D D A D D A D D A D D A

• set \mathcal{M}_{λ} of probability distributions $\mathbb{Q}(X_{t+1}, X_t)$ with property that

$$\mathbb{Q}(X_{t+1,i}|X_t) = \mathbb{Q}(X_{t+1,i}|X_{t,i})$$

for each subset $i = 1, \ldots, N$ of the partition λ

- minimize Kullback-Leibler divergence between actual system and its best approximation in M_λ over choice of partition λ
- integrated information

$$\Phi = \min_{\lambda} \min_{\mathbb{Q} \in \mathcal{M}_{\lambda}} \operatorname{KL}(\mathbb{P}(X_{t+1}, X_t) || \mathbb{Q}(X_{t+1}, X_t))$$

 \bullet value Φ represents additional information in the whole system not reducible to smaller parts

(周) (日) (日)

Cohomological view of information (Bennequin, Badot, Vigneaux)

- *abelian* category describing probability data: category *IS* of finite information structures with random variables and simplicial set of associated probabilities, with functor to vector spaces: real valued measurable functions; resulting abelian category of modules over a sheaf of algebras
- Hochschild cochain complex and associated cohomology
- Shannon entropy, KL divergence, Tsallis entropy: all have interpretation as nontrivial 1-homology generators

Use this setting to construct:

- contravariant functor $\mathcal{I} : \operatorname{Codes}_{n,*} \to \mathcal{IS}$
- using above construction functor from Σ^{eq}_{Codes_{n,*}}(G) to cochain complexes and cohomology
- using Hochschild cocycle interpretation of KL divergence obtain cohomological interpretation for integrated information, with functorial map from Σ^{eq}_{Codes_n}(G)

・ 回 ト ・ ヨ ト ・ ヨ ト

Further steps

- neural codes generate homotopy types, in the form of the nerve simplicial set of an open covering associated to a (convex) code (Curto et al.)
- recover that homotopy type from the above setting with information structures
- combine the simplicial sets obtained in this way with those obtained via Gamma spaces describing assignments of resources to network
- simplicial sets K(G) given by clique complex of network G also realized as special case finite information structures

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion: proposed view

- working hypothesis: the brain *represents* the stimulus space through a *homotopy type*
- mathematical modeling of network architectures in the brain should include mechanisms that generates homotopy types (Gamma spaces, information structures)
- higher topological complexity in these homotopy types implies (but is not implies by) higher values of (cohomological) integrated information
- Question: is there a good model of a "qualia" in terms of homotopy types?

• (1) • (