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arXiv:1605.07639
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Manin’s Arithmetical Physics

Yuri I. Manin, Reflections on Arithmetical Physics,
pp. 293–303, Perspectives in Physics, Academic Press, 1989.

• Observation: Polyakov measure for bosonic string and the
Faltings height function at algebraic points of the moduli space of
curves . . . Is there an adelic Polyakov measure? An arithmetic
expression for the string partition function?

• General Questions: Are the fundamental laws of physics adelic?
Does physics in the Archimedean setting (partition functions,
action functionals, real and complex variables) have p-adic
shadows? Do these provide convenient “discretized models” of
physics powerful enough to recover the Archimedean counterpart?
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AdS/CFT Holographic Correspondence

bulk/boundary spaces

hyperbolic geometry in the bulk (Lorentzian AdS spaces,
Euclidean hyperbolic spaces Hd+1)

conformal boundary at infinity:
∂H3 = P1(C) (AdS3/CFT2) or
∂H2 = P1(R) (AdS2/CFT1)

AdS/CFT correspondence: a d-dimensional conformal field
theory on the boundary related to a gravitational theory on
the d + 1 dimensional bulk

AdS/CFT Holography developed in String Theory since the 1990s

E. Witten, Anti-de Sitter space and holography,
arXiv:hep-th/9802150
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Schottky Groups and Holography

Yuri I. Manin, 3-dimensional hyperbolic geometry as ∞-adic
Arakelov geometry’, Invent.Math. 104 (1991) N.2, 223–243

Yuri I. Manin, M. Marcolli, Holography principle and
arithmetic of algebraic curves, Adv. Theor. Math. Phys. 5
(2001), no. 3, 617–650.

• Holography on Riemann surfaces:

Conformal boundary: X (C) Riemann surface genus g
Schottky uniformization X (C) = ΩΓ/Γ with Γ ∼ Z?g
ΩΓ = P1(C) r ΛΓ domain of discontinuity (ΛΓ limit set)

Bulk space: hyperbolic handlebody XΓ = H3/Γ with
X (C) = ∂XΓ

Green function on X (C) in terms of geodesic lengths in the
bulk space XΓ
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• Green function on X with Schottky uniformization:

g((a)− (b), (c)− (d)) =
∑
h∈Γ

log |〈a, b, hc , hd〉|

−
g∑
`=1

X`(a, b)
∑

h∈S(g`)

log |〈z+(h), z−(h), c , d〉|

S(γ) conjugacy class of γ in Γ
〈a, b, c , d〉 = cross ratio
• In terms of geodesics in the handlebody XΓ

−
∑
h∈Γ

ordist(a ∗ {hc , hd}, b ∗ {hc , hd})

+

g∑
`=1

X`(a, b)
∑

h∈S(g`)

ordist(z+(h) ∗ {c , d}, z−(h) ∗ {c , d}).

Coefficients X`(a, b) also in terms of geodesics
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Example: Bañados–Teitelboim–Zanelli black hole (Euclidean)

• Genus one: Xq = H3/(qZ) and Xq(C) = C∗/(qZ) (Jacobi
uniformization); action: q : (z , y) 7→ (qz , |q|y)

• mass and angular momentum of black hole:

q = exp

(
2π(i |r−| − r+)

`

)
r2
± =

1

2

(
M`±

√
M2`2 + J

)
with −1/`2 = cosmological constant

• higher genus Euclidean black holes bulk XΓ boundary genus g
Riemann surface X (C)

Kirill Krasnov, Holography and Riemann surfaces, Adv.
Theor. Math. Phys. 4 (2000) no. 4, 929–979.
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Bañados–Teitelboim–Zanelli black hole (Euclidean)
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p-adic version of AdS/CFT Holography

K finite extension of Qp

bulk space ∆K Bruhat-Tits building; boundary ∂∆K = P1(K)

p-adic Schottky groups Γ ⊂ PGL(2,K)

Schottky–Mumford curve boundary XΓ = ΩΓ/Γ

bulk: graph ∆K/Γ; central finite graph G = ∆Γ/Γ
∆Γ ⊂ ∆K tree spanned by axes of hyperbolic γ ∈ Γ

G dual graph of closed fiber of min model over OK

Analogous result on geodesics on the bulk and correlation
functions on the boundary based on

Yu.I. Manin, V. Drinfeld, Periods of p-adic Schottky groups,
J. Reine u. Angew. Math., vol. 262–263 (1973) 239–247
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Bruhat–Tits tree of K = Q2 and geodesics
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p-adic Bañados–Teitelboim–Zanelli black hole with K = Q3
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More Recent Developments in AdS/CFT: Quantum Information

Instead of correlation functions of a CFT on the boundary
matched with geodesics (classical gravity) on the bulk, focus
on Information (Entanglement Entropy) of quantum states on
the boundary and geometry (classical gravity) on the bulk.

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290–293
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Entanglement between quantum fields in regions A and B
decreases when corresponding regions of bulk space are pulled
apart: dynamics of spacetime geometry (= gravity) constructed
from quantum entanglement

from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290–293
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Ryu–Takayanagi Formula:
Entanglement Entropy and Bulk Geometry

• Entanglement Entropy: H = HA ⊗HB

ρA = TrHB
(|Ψ〉〈Ψ|), SA = −Tr(ρA log ρA)

• Entanglement and Geometry: (conjecture)

SA =
A(Σmin)

4G

area of minimal surface in the bulk with given boundary ∂A = ∂B

from T.Nishioka,S.Ryu,T.Takayanagi, “Holographic entanglement entropy:

an overview”, J.Phys.A 42 (2009) N.50, 504008
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Tensor Networks, Quantum Codes, and Geometry from Information

Fernando Pastawski, Beni Yoshida, Daniel Harlow, John
Preskill, Holographic quantum error-correcting codes: Toy
models for the bulk/boundary correspondence, JHEP 06
(2015) 149

Main Idea: Bulk spacetime geometry is the result of entanglement
of quantum states in the boundary through a network of quantum
error correcting codes

quantum codes by perfect tensors: maximal entanglement
across bipartitions

network of perfect tensors with contracted legs along a
tessellation of hyperbolic space

uncontracted legs at the boundary (physical spins), and at the
center of each tile in the bulk (logical spins)

holographic state: pure state of boundary spins

logical inputs on the bulk: encoding by the tensor network
(holographic code)
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from R.Cowen, “The quantum source of space-time”, Nature 527 (2015) 290–293
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Pentagon tile holographic code [PYHP]

• perfect tensors: Ti1,...,in such that, for {1, . . . , n} = A ∪ Ac with
#A ≤ #Ac , isometry T : HA → HAc ; perfect code (encodes one
qbit to n − 1)

• six legs perfect tensor Ti1...,i6 : five qbit perfect code
[[5, 1, 3]]2-quantum code:

C ⊂ H⊗5, C = {ψ ∈ H⊗5 : Sjψ = ψ}

S1 = X ⊗ Z ⊗ Z ⊗ X ⊗ I

X ,Y ,Z Pauli gates and S2, S3,S4,S5 = S1S2S3S4 cyclic perms,
with H = C2 one qbit Hilbert space
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from F.Pastawski, B.Yoshida, D.Harlow, J.Preskill, Holographic quantum error-correcting codes: Toy models for

the bulk/boundary correspondence, JHEP 06 (2015) 149
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Discretization of the AdS/CFT Correspondence

• Can a p-adic AdS/CFT correspondence deliver a discretized
version of Holography, compatible with the Archimedean
AdS3/CFT2 (complex) and AdS2/CFT1 (real) versions and with
the tensor networks idea?

• What is p-adic AdS/CFT?

at the level of boundary field theory?

at the level of bulk gravity?

in terms of tensor networks and holographic quantum codes?

• is there an adelic AdS/CFT that combines p-adic and
Archimedean?
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p-adic AdS/CFT: boundary field theory

• Literature on p-adic CFT

L. O. Chekhov, A. D. Mironov, and A. V. Zabrodin, Multiloop
calculations in p-adic string theory and Bruhat– Tits Trees,
Communications in Mathematical Physics 125, (1989), pp.
675–711.

E. Melzer, Nonarchimedean conformal field theories, Int. J. of
Modern Physics A 4, no. 18 (1989), 4877–4908.

• important differences with respect to Archimedean:

global PGL2(Qp)-symmetries (primaries)

no local conformal algebra (no descendants)

correlation function between two primary fields inserted at x
and y (scaling dimension ∆n)

〈φm(x)φn(y)〉 =
δn,m

|x − y |2∆n
p

because ultrametric: 3-point and 4-point functions determined
exactly by operator product expansion (OPE) coefficients
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Classical (complex valued) p-adic fields

mode expansion (Archimedean)

φ(x) =

∫
R
e2ikx φ̂(k) dx

χk(x) = e2πi{kx} additive characters of Qp with {·} : Qp → Q
fractional part truncation

{
∞∑

k=m

akp
k} =

−1∑
k=m

akp
k

mode expansion (p-adic) with Haar measure on Qp

φ(x) =

∫
Qp

e2i{kx}φ̂(k) dµ(x)

non-local Valdimirov derivative

∂spf (x) =

∫
Qp

f (x ′)− f (x)

|x ′ − x |s+1
p

dµx ′

like a Cauchy formula for derivatives as contour integrals
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quantizing classical fields

quadratic action for a scalar field (first Vladimirov derivative)

Sp[φ] = −
∫
Qp

φ(s)∂pφ(x) dµ(x)

conformal symmetry: conformal dimension ∆n

φn(x) 7→ |cx + d |2∆n
p φn(x)

free boson: dim ∆ = 0; Vladimirov derivative ∂pφ(x) weight
|cx + d |2p, conformal dim 1

functional integral: C-valued fields so usual form
Zp =

∫
Dφ e−Sp [φ]

Zp[J] =

∫
Dφ exp

(
−Sp[φ] +

∫
Qp

J(x ′)φ(x ′)dx ′

)

Matilde Marcolli Non-Archimedean Holography



Green functions

Green functions for Vladimirov derivative
∂(p)G (x − y) = −δ(x − y)

Momentum space: G̃ (k) = −χ(ky)
|k|p

G (x − y) = −
∫
Qp

χ(k(y − x))

|k |p
dk = −

∫
Qp

χ(ku)

|k |p
dk

Regularization at k → 0 and p-adic Gamma function:

lim
α→0

∫
Qp

χ(ku)|k|α−1
p dk = lim

α→0
Γp(α)|u|−αp

obtain 2-point function behavior (with a→ 0)

〈0|φ(x)φ(y)|0〉 ∼ log

∣∣∣∣x − y

a

∣∣∣∣
p
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scalar fields on the bulk Bruhat–Tits tree T = TQp

φ(v) over vertices C 0(T ); ψ(e) over edges C 1(T )

d : C 0(T )→ C 1(T ), (dφ)(e) = φ(te)− φ(se)
d† : C 1(T )→ C 0(T ), (d†ψ)(v) =

∑
e ±ψ(e)

Laplacian ∆φ(v) =
∑

d(v ,v ′)=1 φ(v ′)− (p + 1)φ(v) and

∆ψ(e) =
∑

e′ ±ψ(e ′)− 2ψ(e) (sum over 2p adjacent edges)
massless quadratic action S [φ] =

∑
e |dφ(e)|2

wave equation ∆ψ = 0 and massive (∆−m2)ψ = 0
(Zabrodin)
plane waves εκ,x(v) = p−κdx (v) with dx(v0) = 0 at root vertex
and dx(v)→ −∞ as v → x boundary point

∆εκ,x = m2
κεκ,x = ((pκ + p1−κ)− (p + 1))εκ,x

when <(κ) > 0 plane wave solution → 0 on boundary except
at x (where divergent)
for κ real, min of m2

κ at κ = 1/2: bound on mass of AdS fields

m2
κ ≥ −(

√
p − 1)2
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bulk fields reconstruction from boundary field theory

bulk harmonic functions

φ(v) =
p

p + 1

∫
dµ0(x)φ0(x) ε1,x(v)

dµ0(x) is Patterson-Sullivan measure on P1(Qp)

δ(a→ b, c → d) overlap (with sign) of the two oriented paths
in the tree

〈v , x〉 = δ(v0 → v , v0 → x) + δ(v → x , v0 → v)

ball Bw determined by rays from vertex w

φw (v) =

∫
∂Bw

dµ0(x) pκ〈v ,x〉

cases v 6∈ Bw and v ∈ Bw (with x ∈ Bv or x /∈ Bw ) sum to

φw (v) =

(
p−2κ − 1

p1−2κ − 1

)
p(κ−1)d(v0,v)+

p − 1

p

(
p(2κ−1)d(v0,w)

p2κ−1 − 1

)
p−κ d(v0,v)

Matilde Marcolli Non-Archimedean Holography



bulk reconstruction: massive fields

behavior φ(v) ∼ p(κ−1)d(v0,v)φ0(x) as v → x

φ(v) =
p1−2κ − 1

p−2κ − 1

∫
dµ0(x)φ0(x)pκ〈v ,x〉

near the boundary 〈v , x〉 = −d(v0, v) + 2ordp(x − y)

φ(v) =

(
p1−2κ − 1

p−2κ − 1

)
p−κ d(v0,v)

∫
dµ(x)

φ0(x)

|x − y |2κp

Vladimirov derivative as a “normal” derivative on the
boundary: rate of change in holographic direction of
reconstructed bulk function

lim
v→y

(φ(v)− φ(y))pκd(v0,v) =

(
p1−2κ − 1

p−2κ − 1

)
∂2κ−1

(p) φ0(y)
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Holographic correspondence

• formulation as in Archimedean case of

E. Witten, Anti-de Sitter space and holography,
arXiv:hep-th/9802150

classical scalar fields in a non-dynamical AdS background
(fixed equal lengths of all tree edges)
relate asymptotics (and mass) of bulk fields to conformal
dimension of boundary operators
existence and uniqueness solution of generalized Dirichlet
problem for bulk equations of motion with given boundary
conditions

• Ryu–Takayanagi formula (conjectural) entanglement entropy
proportional to regularized length of infinite geodesic

d(x , y) = lim
ε→0

2

log p
log

∣∣∣∣x − y

ε

∣∣∣∣
p

cutting off tree distance a from center v0 with a = ordp(ε) with

da(x , y) = 2a + 2
log p log |x − y |p
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p-adic AdS/CFT: bulk gravity

Combinatorial curvatures on simpicial complexes

Combinatorial Ricci and scalar curvatures

Dynamics of edge lengths and curvatures on graphs

Nonisotropic solutions
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Combinatorial Laplacian on simplicial complexes

X locally finite simplicial complex dimension D

Ck(X ) abelian group compactly supported k-cochains of X

bilinear forms 〈·, ·〉k : Ck(X )× Ck(X )→ R

〈f1, f2〉k =
∑

σ : dimσ=k

ω(σ) f1(σ) f2(σ)

assigned weights ω(σ) ∈ R∗+
operators d : Ck(X )→ Ck−1(X ) and δ : Ck(X )→ Ck+1(X )

df (σ) =
∑
γ

ε(γ, σ) f (γ)

δf (σ) =
∑
τ

ε(σ, τ)
ω(τ)

ω(σ)
f (τ)

ε-signs relative orientations

combinatorial Laplacians ∆k : Ck(X )→ Ck(X ) with
∆ = δd + dδ
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Combinatorial Weitzenböck formula (Forman)

decomposing symmetric matrix A = B(A) + F (A)
non-negative definite B(A)ij = Aij for i 6= j and
B(A)ii =

∑
j 6=i |Aij | and diagonal F (A)ii = Aii −

∑
j 6=i |Aij |

apply to Laplacian ∆k as matrix in o.n. basis
(wrt bilinear form)

for σ = e (edges) Weitzenböck curvature F1(e):
combinatorial Ricci curvature

for vertices Weitzenböck curvature F0(v):
combinatorial scalar curvature

F1(e) involves adjacent vertices and faces
(no faces in tree/graph case)

F0(v) involves adjacent edges
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Curvatures on Bruhat–Tits trees

F1(e) = Ric(e) = ω(s(e))

(
1−

q∑
i=1

√
ω(e)

ω(ei )

)
+ω(t(e))

1−
q∑

j=1

√
ω(e)

ω(ej)



F0(v) = R(v) = ω(v)2
q+1∑
i=1

1

ω(ei )

(
1−

√
ω(vi )

ω(v)

)

• naive version of Einstein equation Rµν − 1
2Rgµν + Λgµν = 0

Ric(e)− 1

2
(R(s(e))R(t(e)))1/2 ω(e) + Λω(e) = 0

constant metric ω(v) = ω and ω(e) = ω′ has F0(v) ≡ 0 and
Ric(e) = ω2(1− 2q); solutions with non-zero cosmological
constant Λ = ω

ω′ 2(1− 2q)

• better approach: natural action functionals for edge lengths
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Dynamics of Edge Length curvatures on graphs

Y. Lin, L. Lu, and S.-T. Yau, Ricci curvature of graphs, Tohoku
Math. J. (2) 63 (2011), no. 4 605–627

Ricci without Riemann tensor in terms of transport distance
(Wasserstein distance of measures) between nearby balls: for
graphs probability distribution ψx0(t) (small t)

ψx(t) =


1− dJ (x0)

Dx0
t x = x0

Jx0x

Dx0
t x ∼ x0

0 otherwise

Dx0 lapse function and dJ(x0) =
∑

x∼x0
Jx0x normalization factor
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Ricci curvature on a graph: edge lengths ae = axy

κxy =
1

Dxaxy

(
1

axy
−
∑
i

1

axxi

)
+

1

Dyaxy

(
1

axy
−
∑
i

1

ayyi

)
= κx→y+κy→x

directed half of Ricci curvature: with cJ(x) =
∑

y∼x
√
Jxy

κx→y =

√
Jxy

dJ(x)

(
2
√
Jxy − cJ(x)

)
uniform tree of valence q + 1 with all edges of equal length
ae = a and Dx = D, get negatively curved

κxy = − 2

Da2
(q − 1)

with Dx = dJ(x) and uniform lengths D = (q + 1)/a2 and

κxy = −2
q − 1

q + 1

independent of scale a
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Action functional for gravity

S =
∑
x ,y

(κxy − 2Λ)

sum over adjacent vertices, with Dx = dJ(x)

need cutoff on size of graph (finite large graph) and
Gibbons–Hawking type boundary term for gravity action (so
variation in interior region with fixed boundary condition)
require that for each vertex x on boundary ∂Σ only one
nearby vertex x ′ ∈ Σ, not on boundary
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Variational Problem: Discrete Einstein Equation for trees

SΣ =
∑
x ,y∈Σ

(κxy − 2Λ) +
∑
x∈∂Σ

kx

kx = k0 +
∑

y∼x ,y 6=x ′

κx→y

edge lengths ae = axy and Je = Jxy = a−2
xy “bond strength”

Jxy = 1 + jxy perturb around uniform metric
cJ(x) =

∑
y∼x

√
Jxy and dJ(x) =

∑
y∼x Jxy

γx→y =
√
Jxy

cJ(x)2

dJ(x)2 − cJ(x)
dJ(x)

discrete Einstein equations γxy = γx→y + γy→x = 0 (directed
halves of variation of edge length action)
constant solutions Jxy = J constant for all edges
use Λ and k0 to regularize the action so finite in limit of
infinite tree

Λ = −1

3

q − 1

q + 1
, k0 =

q

3

3q + 1

q + 1
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Anisotropic solutions

Rewrite discrete Einstein equation as(
λx→y −

1

2

)2

+

(
λy→x −

1

2

)2

=
1

2

λx→y =
1

2σx→y
:=

√
JxycJ(x)

dJ(x)

λx→y =
1

2
+

1√
2

cos θxy , λy→x =
1

2
+

1√
2

sin θxy

case all θx→y = π
4 recovers constant solution

different angles α and α̃ = π
2 − α and θx→xi = α for i even

and α̃ for i odd get anisotropic solutions with Jxy determined
in terms of β = (σ̃/σ)2
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p-adic AdS/CFT: holographic codes

Can simulate the holographic pentagon code using codes on a
uniform tree?

What kind of codes (classical and quantum) can be naturally
built on a Bruhat-Tits tree?

If replace the discretized bulk space (Bruhat-Tits tree) by the
Drinfeld p-adic upper half plane

Ω = P1(Cp) r P1(Qp)

what kind of holographic codes can be constructed there?

Relation to codes on Bruhat-Tits trees through the projection
map Υ : Ω→ TQp?
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Holographic codes on H2 via trees
• Answer to first question is positive... but it requires a choice of
planar embedding of the tree adapted to hyperbolic pentagon tiling
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• perfect tensor codes on the tree TK
single 3-ary qubit (qutritt) encodes to three 3-ary qubits

|0〉 7→ |000〉+ |111〉+ |222〉
|1〉 7→ |012〉+ |120〉+ |201〉
|2〉 7→ |021〉+ |102〉+ |210〉

polynomial codes fa(x) = axd + bd−1x
d−1 + · · ·+ b1x + b0

|a〉 7→
∑
b∈Fd

q

(
⊗x∈Fq |fa(x)〉

)
example: q = 5

|a〉 7→
∑

b0,b1∈F5

|b0, b0+b1+a, b0+2b1+4a, b0+3b1+4a, b0+4b1+a〉

perfect tensors Ti0...iq with q + 1-legs for K finite extension of
Qp with Fq residue field
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Classical and quantum codes on TK
fix a projective coordinate on P1(K) determines root vertex v0

vertex corresponds to mod m reduction P1(Fq) curve

start at v0 with an algebro-geometric code on P1(Fq)

propagate along the tree with other Reed-Solomon codes at
vertices taking some of input from previous vertices

build code with inputs at vertices of TK and outputs at
boundary P1(K)

pass from classical to quantum codes using
Calderbank–Rains–Shor–Sloane algorithm
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Algebro-geometric codes

algebraic points X (Fq) of a curve X over a finite field Fq

set A ⊂ X (Fq) and divisor D on X with supp(D) ∩ A = ∅
code C = CX (A,D) by evaluation at A of rational functions
f ∈ Fq(X ) with poles at D

bound on order of pole of f at D determines dimension of the
linear code

Reed-Solomon codes case X (Fq) = P1(Fq)

C = {(f (x1), · · · , f (xn)) : f ∈ Fq[x ], deg(f ) < k} gives an
[n, k , n − k + 1]q with n ≤ q

or homogeneous polynomials at points xi = (ui : vi ) ∈ P1(Fq)

Ĉ = {(f (u1, v1), . . . , f (un, vn)) : f ∈ Fq[u, v ], homog. deg(f ) < k}

generalized Reed-Solomon codes: w = (w1, . . . ,wn) ∈ Fn
q

Cw ,k = {(w1f (x1), · · · ,wnf (xn)) : f ∈ Fq[x ], deg(f ) < k}

Ĉw ,k = {(w1f (u1, v1), . . . ,wnf (un, vn)) : f ∈ Fq[u, v ], homog. deg(f ) < k}.
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Reed-Solomon codes on TK
encode inputs at each vertex to output at boundary P1(K)

algebraic points P1(Fq) of reduction curve (at v0 ∈ TK)

Reed-Solomon code Ĉw ,k maximal length n = q + 1

k-tuple of q-ary bits a = (a0, . . . , ak−1) ∈ Fk
q , output q-ary bit

fa(uj , vj) ∈ Fq at each point xj = (uj : vj) ∈ P1(Fq) with

fa(u, v) =
∑k

i=0 aiu
ivk−1−i

inductively at next vertices outward choice of root vertex v0

specifies one preferred edge at v (point ∞ ∈ P1(Fq)); next
input a = (a1, . . . , ak−1) ∈ Fk−1

q with a0 the q-bit deposited
at ∞ point by previous code
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From classical to quantum codes CRSS algorithm

H = Cq single q-ary qubit, o.n. basis |a〉 with a ∈ Fq

Quantum error correcting codes: subspaces C ⊂ Hn = H⊗n
error correcting for up to d “q-ary bit flip” and “phase flip”
errors E = E1 ⊗ · · · ⊗ En, ω(E ) = #{i : Ei 6= I} < d

PCEPC = λE PC

orthogonal projection PC onto C
q-ary bit flip and phase flip on Cp: TR = ξRT with ξp = 1

T =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 R =


1

ξ
ξ2

. . .

ξp−1


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Quantum Error Operators

Tr : Fq → Fp trace function Tr(a) =
∑r−1

i=0 ap
i

Tb|a〉 = |a + b〉, Rb|a〉 = ξTr(ab)|a〉,
b ∈ Fq as an Fp-vector space, q = pr

Ta := T a1 ⊗ · · · ⊗ T ar , Rb := Rb1 ⊗ · · · ⊗ Rbr

TaRb, a, b ∈ Fq, o.n. basis Mq×q(C) for 〈A,B〉 = Tr(A∗B),
generate all possible quantum errors on H = Cq

error operators Ea,b with Ep
a,b = I

Ea,b = TaRb = (Ta1 ⊗ · · · ⊗ Tan)(Rb1 ⊗ · · · ⊗ Rbn)

for a = (a1, . . . , an), b = (b1 . . . , bn) ∈ Fn
q

commutation and composition rules

Ea,bEa′,b′ = ξ〈a,b
′〉−〈b,a′〉Ea′,b′Ea,b

Ea,bEa′,b′ = ξ−〈b,a
′〉Ea+a′,b+b′ ,

where 〈a, b〉 =
∑

i 〈ai , bi 〉 =
∑

i ,j ai ,jbi ,j , with
ai = (ai ,j), bi = (bi ,j) ∈ Fq identified with Fp-vector space
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Quantum stabilizer codes

group Gn = {ξiEa,b, a, b ∈ Fn
q, 0 ≤ i ≤ p − 1} order pq2n

quantum stabilizer error-correcting code C ⊂ Hn joint
eigenspace of operators Ea,b in an abelian subgroup S ⊂ Gn
ϕ ∈ AutFp(Fr

p) automorphism

〈(a, b), (a′, b′)〉 = 〈a, ϕ(b′)〉 − 〈a′, ϕ(b)〉

C ⊂ F2n
q is a classical self-orhogonal code with respect to this

pairing ⇒ subgroup S ⊂ Gn of ξiEa,ϕ(b) with (a, b) ∈ C is
abelian

CRSS algorithm associates to self-orthogonal classical
[2n, k, d ]q code C stabilizer quantum [[n, n − k , dQ ]]q-code

dQ = min{ω(a, b) : (a, b) ∈ C⊥ r C}

ω(a, b) = #{i : ai 6= 0 or bi 6= 0} and
C⊥ = {(v ,w) ∈ F2n

q : 〈(a, b), (v ,w)〉 = 0, ∀(a, b) ∈ C}
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Holographic quantum codes on TK
Hermitian self-dual case: 〈v ,w〉H =

∑n
i=1 viw

q
i , with

v ,w ∈ Fn
q2

Hermitian-self-dual length n over Fq2 gives self-dual code C̃
length 2n over Fq then CRSS

Hermitian self-duality conditions for generalized
Reed–Solomon codes with w = (w1, . . . ,wn) ∈ (F∗q2)n

For wi = 1 and n = q2 with k = q, Hermitian-self-dual
Reed-Solomon code C = C1,q and associated
[[q2 + 1, q2 − 2q + 1, q + 1]]q-quantum Reed-Solomon code C
Extension L with residue field Fq2 , at each vertex of TL
quantum Reed-Solomon [[q2 + 1, q2 − 2q + 1, q + 1]]q-code C
a q-ary qubit stored at each of the legs surrounding vertex in
TL
quantum code C corrects quantum errors of weight up to
q + 1: set of directions along the subtree TK

Matilde Marcolli Non-Archimedean Holography



Further work (in progress)

lifting bulk geometry (gravity and holographic codes) from
Bruhat–Tits tree to Drinfeld p-adic upper half plane

higher dimensional holography on Bruhat–Tits buildings of
GLn(Qp) and p-adic symmetric spaces

perturbative quantum field theory (Feynman diagrams) in
p-adic setting, theories with holographic dual

Matilde Marcolli Non-Archimedean Holography


