# Feynman integrals, singular hypersurfaces, and motives 

Matilde Marcolli

MIT, April 2014

Quantum Field Theory perturbative (massless) scalar field theory

$$
S(\phi)=\int \mathcal{L}(\phi) d^{D} x=S_{0}(\phi)+S_{i n t}(\phi)
$$

in $D$ dimensions, with Lagrangian density (Euclidean)

$$
\mathcal{L}(\phi)=\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\mathcal{L}_{\text {int }}(\phi)
$$

Perturbative expansion: Feynman rules and Feynman diagrams

$$
\begin{gathered}
S_{e f f}(\phi)=S_{0}(\phi)+\sum_{\Gamma} \frac{\Gamma(\phi)}{\# \operatorname{Aut}(\Gamma)} \quad(1 \mathrm{PI} \text { graphs }) \\
\Gamma(\phi)=\frac{1}{N!} \int_{\sum_{i} p_{i}=0} \hat{\phi}\left(p_{1}\right) \cdots \hat{\phi}\left(p_{N}\right) U\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right) d^{D} p_{1} \cdots d^{D} p_{N} \\
U\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right)=\int I_{\Gamma}\left(k_{1}, \ldots, k_{\ell}, p_{1}, \ldots, p_{N}\right) d^{D} k_{1} \cdots d^{D} k_{\ell} \\
\ell=b_{1}(\Gamma) \text { loops }
\end{gathered}
$$

Feynman rules for $I_{\Gamma}\left(k_{1}, \ldots, k_{\ell}, p_{1}, \ldots, p_{N}\right)$ :

- Internal lines $\Rightarrow$ propagator $=$ quadratic form $q_{i}$

$$
\frac{1}{q_{1} \cdots q_{n}}, \quad q_{i}\left(k_{i}\right)=k_{i}^{2}+m^{2}
$$

- Vertices: conservation (valences $=$ monomials in $\mathcal{L}$ )

$$
\sum_{e_{i} \in E(\Gamma): s\left(e_{i}\right)=v} k_{i}=0
$$

- Integration over $k_{i}$, internal edges

$$
\begin{gathered}
U(\Gamma)=\int \frac{\delta\left(\sum_{i=1}^{n} \epsilon_{v, i} k_{i}+\sum_{j=1}^{N} \epsilon_{v, j} p_{j}\right)}{q_{1} \cdots q_{n}} d^{D} k_{1} \cdots d^{D} k_{n} \\
n=\# E_{\text {int }}(\Gamma), N=\# E_{e x t}(\Gamma) \\
\epsilon_{e, v}=\left\{\begin{array}{rl}
+1 & t(e)=v \\
-1 & s(e)=v \\
0 & \text { otherwise },
\end{array}\right.
\end{gathered}
$$

## Parametric Feynman integrals

- Schwinger parameters $q_{1}^{-k_{1}} \cdots q_{n}^{-k_{n}}=$

$$
\frac{1}{\Gamma\left(k_{1}\right) \cdots \Gamma\left(k_{n}\right)} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-\left(s_{1} q_{1}+\cdots+s_{n} q_{n}\right)} s_{1}^{k_{1}-1} \cdots s_{n}^{k_{n}-1} d s_{1} \cdots d s_{n}
$$

- Feynman trick

$$
\frac{1}{q_{1} \cdots q_{n}}=(n-1)!\int \frac{\delta\left(1-\sum_{i=1}^{n} t_{i}\right)}{\left(t_{1} q_{1}+\cdots+t_{n} q_{n}\right)^{n}} d t_{1} \cdots d t_{n}
$$

then change of variables $k_{i}=u_{i}+\sum_{k=1}^{\ell} \eta_{i k} x_{k}$

$$
\begin{gathered}
\eta_{i k}= \begin{cases} \pm 1 & \text { edge } \pm e_{i} \in \text { loop } \ell_{k} \\
0 & \text { otherwise }\end{cases} \\
U(\Gamma)=\frac{\Gamma(n-D \ell / 2)}{(4 \pi)^{\ell D / 2}} \int_{\sigma_{n}} \frac{\omega_{n}}{\Psi_{\Gamma}(t)^{D / 2} V_{\Gamma}(t, p)^{n-D \ell / 2}}
\end{gathered}
$$

$\sigma_{n}=\left\{t \in \mathbb{R}_{+}^{n} \mid \sum_{i} t_{i}=1\right\}$, vol form $\omega_{n}$

## Graph polynomials

$$
\Psi_{\Gamma}(t)=\operatorname{det} M_{\Gamma}(t)=\sum_{T} \prod_{e \notin T} t_{e} \quad \text { with } \quad\left(M_{\Gamma}\right)_{k r}(t)=\sum_{i=0}^{n} t_{i} \eta_{i k} \eta_{i r}
$$

Massless case $m=0$ :

$$
V_{\Gamma}(t, p)=\frac{P_{\Gamma}(t, p)}{\Psi_{\Gamma}(t)} \quad \text { and } \quad P_{\Gamma}(p, t)=\sum_{C \subset \Gamma} s_{C} \prod_{e \in C} t_{e}
$$

cut-sets $C$ (complement of spanning tree plus one edge)
$s_{C}=\left(\sum_{v \in V\left(\Gamma_{1}\right)} P_{v}\right)^{2}$ with $P_{V}=\sum_{e \in E_{e x t}(\Gamma), t(e)=v} p_{e}$ for $\sum_{e \in E_{e x t}(\Gamma)} p_{e}=0$ with $\operatorname{deg} \Psi_{\Gamma}=b_{1}(\Gamma)=\operatorname{deg} P_{\Gamma}-1$

$$
U(\Gamma)=\frac{\Gamma(n-D \ell / 2)}{(4 \pi)^{)^{D / 2}}} \int_{\sigma_{n}} \frac{P_{\Gamma}(t, p)^{-n+D \ell / 2} \omega_{n}}{\Psi_{\Gamma}(t)^{-n+D(\ell+1) / 2}}
$$

stable range $-n+D \ell / 2 \geq 0$; log divergent $n=D \ell / 2$ :

$$
\int_{\sigma_{n}} \frac{\omega_{n}}{\Psi_{\Gamma}(t)^{D / 2}}
$$

Graph hypersurfaces
Residue of $U(\Gamma)$ (up to divergent Gamma factor)

$$
\int_{\sigma_{n}} \frac{P_{\Gamma}(t, p)^{-n+D \ell / 2} \omega_{n}}{\Psi_{\Gamma}(t)^{-n+D(\ell+1) / 2}}
$$

Graph hypersurfaces $\hat{X}_{\Gamma}=\left\{t \in \mathbb{A}^{n} \mid \Psi_{\Gamma}(t)=0\right\}$

$$
X_{\Gamma}=\left\{t \in \mathbb{P}^{n-1} \mid \Psi_{\Gamma}(t)=0\right\} \quad \operatorname{deg}=b_{1}(\Gamma)
$$

- Relative cohomology: (range $-n+D \ell / 2 \geq 0$ )
$H^{n-1}\left(\mathbb{P}^{n-1} \backslash X_{\Gamma}, \Sigma_{n} \backslash\left(\Sigma_{n} \cap X_{\Gamma}\right)\right) \quad$ with $\quad \Sigma_{n}=\left\{\prod_{i} t_{i}=0\right\} \supset \partial \sigma_{n}$
- Periods: $\int_{\sigma} \omega$ integrals of algebraic differential forms $\omega$ on a cycle $\sigma$ defined by algebraic equations in an algebraic variety


## Feynman integrals and periods

Parametric Feynman integral: algebraic differential form on cycle in algebraic variety
But... divergent: where $X_{\Gamma} \cap \sigma_{n} \neq \emptyset$, inside divisor $\Sigma_{n} \supset \sigma_{n}$ of coordinate hyperplanes

- Blowups of coordinate linear spaces defined by edges of 1PI subgraphs (toric variety $P(\Gamma)$ )
- Iterated blowup $P(\Gamma)$ separates strict transform of $X_{\Gamma}$ from non-negative real points
- Deform integration chain: monodromy problem; lift to $P(\Gamma)$
- Subtraction of divergences: Poincaré residuces and limiting mixed Hodge structure
- S. Bloch, E. Esnault, D. Kreimer, On motives associated to graph polynomials, arXiv:math/0510011.
- S. Bloch, D. Kreimer, Mixed Hodge Structures and

Renormalization in Physics, arXiv:0804.4399.

Motives of algebraic varieties (Grothendieck) Universal cohomology theory for algebraic varieties (with realizations)
Mixed motives: varieties that are possibly singular or not projective (much more complicated theory than pure (smooth projective)!) Triangulated category $\mathcal{D M}$ (Voevodsky, Levine, Hanamura)

$$
\begin{aligned}
\mathfrak{m}(Y) & \rightarrow \mathfrak{m}(X) \rightarrow \mathfrak{m}(X \backslash Y) \rightarrow \mathfrak{m}(Y)[1] \\
& \mathfrak{m}\left(X \times \mathbb{A}^{1}\right)=\mathfrak{m}(X)(-1)[2]
\end{aligned}
$$

Mixed Tate motives: $\mathcal{D M} \mathcal{T} \subset \mathcal{D M}$ generated by the $\mathbb{Q}(m)$ Tate object: $\mathbb{Q}(1)$ formal inverse of Lefschetz motive $\mathbb{L}=h^{2}\left(\mathbb{P}^{1}\right)$ Over a number field: t -structure, abelian category of mixed Tate motives (vanishing result, M.Levine)

Periods and motives: Constraints on numbers obtained as periods from the motive of the variety!

- Periods of mixed Tate motives over $\mathbb{Z}$ are $\mathbb{Q}[1 /(2 \pi i)]$-combinations of Multiple Zeta Values

$$
\zeta\left(k_{1}, k_{2}, \ldots, k_{r}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 1} n_{1}^{-k_{1}} n_{2}^{-k_{2}} \cdots n_{r}^{-k_{r}}
$$

Conjecture proved recently:

- Francis Brown, Mixed Tate motives over $\mathbb{Z}$, arXiv:1102.1312.

Feynman integrals and periods: MZVs as typical outcome:

- D. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, arXiv:hep-th/9609128
$\Rightarrow$ Conjecture (Kontsevich 1997): Motives of graph hypersurfaces are mixed Tate (or counting points over finite fields behavior)

Conjecture was first verified for all graphs up to 12 edges:

- J. Stembridge, Counting points on varieties over finite fields related to a conjecture of Kontsevich, 1998

But ... Conjecture is false!

- P. Belkale, P. Brosnan, Matroids, motives, and a conjecture of Kontsevich, arXiv:math/0012198
- Dzmitry Doryn, On one example and one counterexample in counting rational points on graph hypersurfaces, arXiv:1006.3533
- Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.
- Francis Brown, Dzmitry Doryn, Framings for graph hypersurfaces, arXiv:1301.3056
- Belkale-Brosnan: general argument shows "motives of graph hypersurfaces can be arbitrarily complicated"
- Doryn, Brown-Schnetz, Brown-Doryn: explicit counterexamples (14 edges)


## Motives and the Grothendieck ring of varieties

- Difficult to determine explicitly the motive of $X_{\Gamma}$ (singular variety!) in the triangulated category of mixed motives
- Simpler invariant (universal Euler characteristic for motives): class $\left[X_{\Gamma}\right]$ in the Grothendieck ring of varieties $K_{0}(\mathcal{V})$
- generators $[X]$ isomorphism classes
- $[X]=[X \backslash Y]+[Y]$ for $Y \subset X$ closed
- $[X] \cdot[Y]=[X \times Y]$

Tate motives: $\mathbb{Z}\left[\mathbb{L}, \mathbb{L}^{-1}\right] \subset K_{0}(\mathcal{M})$
( $K_{0}$ group of category of pure motives: virtual motives)

Universal Euler characteristics:
Any additive invariant of varieties: $\chi(X)=\chi(Y)$ if $X \cong Y$

$$
\begin{gathered}
\chi(X)=\chi(Y)+\chi(X \backslash Y), \quad Y \subset X \\
\chi(X \times Y)=\chi(X) \chi(Y)
\end{gathered}
$$

values in a commutative ring $\mathcal{R}$ is same thing as a ring homomorphism

$$
\chi: K_{0}(\mathcal{V}) \rightarrow \mathcal{R}
$$

Examples:

- Topological Euler characteristic
- Couting points over finite fields
- Gillet-Soulé motivic $\chi_{\text {mot }}(X)$ :

$$
\chi_{\text {mot }}: K_{0}(\mathcal{V})\left[\mathbb{L}^{-1}\right] \rightarrow K_{0}(\mathcal{M}), \quad \chi_{\operatorname{mot}}(X)=[(X, i d, 0)]
$$

for $X$ smooth projective; complex $\chi_{\text {mot }}(X)=W \cdot(X)$

Universality: a dichotomy

- After localization (Belkale-Brosnan): the graph hypersurfaces $X_{\Gamma}$ generate the Grothendieck ring localized at $\mathbb{L}^{n}-\mathbb{L}, n>1$
- Stable birational equivalence: the graph hypersurfaces span $\mathbb{Z}$ inside $\mathbb{Z}[S B]=\left.K_{0}(\mathcal{V})\right|_{\mathbb{L}=0}$
- P. Aluffi, M.M. Graph hypersurfaces and a dichotomy in the Grothendieck ring, arXiv:1005.4470

Graph hypersurfaces: computing in the Grothendieck ring

- P. Aluffi, M.M. Feynman motives of banana graphs, arXiv:0807.1690
Example: banana graphs $\Psi_{\Gamma}(t)=t_{1} \cdots t_{n}\left(\frac{1}{t_{1}}+\cdots+\frac{1}{t_{n}}\right)$

$$
\left[X_{\Gamma_{n}}\right]=\frac{\mathbb{L}^{n}-1}{\mathbb{L}-1}-\frac{(\mathbb{L}-1)^{n}-(-1)^{n}}{\mathbb{L}}-n(\mathbb{L}-1)^{n-2}
$$

where $\mathbb{L}=\left[\mathbb{A}^{1}\right]$ Lefschetz motive and $\mathbb{T}=\left[\mathbb{G}_{m}\right]=\left[\mathbb{A}^{1}\right]-\left[\mathbb{A}^{0}\right]$ $X_{\Gamma \vee}=\mathcal{L}$ hyperplane in $\mathbb{P}^{n-1}$
$\Gamma^{\vee}=$ dual graph $=$ polygon

Method: Dual graph and Cremona transformation

$$
\mathcal{C}:\left(t_{1}: \cdots: t_{n}\right) \mapsto\left(\frac{1}{t_{1}}: \cdots: \frac{1}{t_{n}}\right)
$$

outside $\mathcal{S}_{n}$ singularities locus of $\Sigma_{n}=\left\{\prod_{i} t_{i}=0\right\}$, ideal $I_{\mathcal{S}_{n}}=\left(t_{1} \cdots t_{n-1}, t_{1} \cdots t_{n-2} t_{n}, \cdots, t_{1} t_{3} \cdots t_{n}\right)$


$$
\begin{aligned}
& \Psi_{\Gamma}\left(t_{1}, \ldots, t_{n}\right)=\left(\prod_{e} t_{e}\right) \Psi_{\Gamma \vee}\left(t_{1}^{-1}, \ldots, t_{n}^{-1}\right) \\
& \mathcal{C}\left(X_{\Gamma} \cap\left(\mathbb{P}^{n-1} \backslash \Sigma_{n}\right)\right)=X_{\Gamma \vee} \cap\left(\mathbb{P}^{n-1} \backslash \Sigma_{n}\right)
\end{aligned}
$$

isomorphism of $X_{\Gamma}$ and $X_{\Gamma \vee}$ outside of $\Sigma_{n}$

For banana graph case obtain:

$$
\begin{gathered}
{\left[\mathcal{L} \backslash \Sigma_{n}\right]=[\mathcal{L}]-\left[\mathcal{L} \cap \Sigma_{n}\right]=\frac{\mathbb{T}^{n-1}-(-1)^{n-1}}{\mathbb{T}+1}} \\
X_{\Gamma_{n}} \cap \Sigma_{n}=\mathcal{S}_{n} \quad \text { with } \quad\left[\mathcal{S}_{n}\right]=\left[\Sigma_{n}\right]-n \mathbb{T}^{n-2} \\
{\left[X_{\Gamma_{n}}\right]=\left[X_{\Gamma_{n}} \cap \Sigma_{n}\right]+\left[X_{\Gamma_{n}} \backslash \Sigma_{n}\right]}
\end{gathered}
$$

Using Cremona transformation: $\left[X_{\Gamma_{n}}\right]=\left[\mathcal{S}_{n}\right]+\left[\mathcal{L} \backslash \Sigma_{n}\right]$
In particular get topological information on the $X_{\Gamma_{n}}$
$\Rightarrow \chi\left(X_{\Gamma_{n}}\right)=n+(-1)^{n}$

## Sum over graphs

Even when non-planar: can transform by Cremona (new hypersurface, not of dual graph)
$\Rightarrow$ graphs by removing edges from complete graph: fixed vertices

$$
S_{N}=\sum_{\# V(\Gamma)=N}\left[X_{\Gamma}\right] \frac{N!}{\# \operatorname{Aut}(\Gamma)} \in \mathbb{Z}[\mathbb{L}]
$$

Tate motive (though [ $X_{\Gamma}$ ] individually need not be)

- Spencer Bloch, Motives associated to sums of graphs, arXiv:0810.1313

Suggests that although individual graphs need not give mixed Tate contribution, the sum over graphs in Feynman amplitudes (fixed loops, not vertices) may be mixed Tate

## Deletion-contraction relation

In general cannot compute explicitly $\left[X_{\Gamma}\right]$ : would like relations that simplify the graph... but cannot have true deletion-contraction relation, else always mixed Tate... What kind of deletion-contraction?

- P. Aluffi, M.M. Feynman motives and deletion-contraction relations, arXiv:0907.3225
- Graph polynomials: $\Gamma$ with $n \geq 2$ edges, $\operatorname{deg} \Psi_{\Gamma}=\ell>0$

$$
\begin{gathered}
\Psi_{\Gamma}=t_{e} \Psi_{\Gamma \backslash e}+\Psi_{\Gamma / e} \\
\Psi_{\Gamma \backslash e}=\frac{\partial \Psi_{\Gamma}}{\partial t_{n}} \quad \text { and } \quad \Psi_{\Gamma / e}=\left.\Psi_{\Gamma}\right|_{t_{n}=0}
\end{gathered}
$$

- General fact: $X=\{\psi=0\} \subset \mathbb{P}^{n-1}, Y=\{F=0\} \subset \mathbb{P}^{n-2}$

$$
\psi\left(t_{1}, \ldots, t_{n}\right)=t_{n} F\left(t_{1}, \ldots, t_{n-1}\right)+G\left(t_{1}, \ldots, t_{n-1}\right)
$$

$\bar{Y}=$ cone of $Y$ in $\mathbb{P}^{n-1}:$ Projection from $(0: \cdots: 0: 1) \Rightarrow$ isomorphism

$$
X \backslash(X \cap \bar{Y}) \xrightarrow{\sim} \mathbb{P}^{n-2} \backslash Y
$$

Then deletion-contraction: for $\widehat{X}_{\Gamma} \subset \mathbb{A}^{n}$

$$
\left[\mathbb{A}^{n} \backslash \widehat{X}_{\Gamma}\right]=\mathbb{L} \cdot\left[\mathbb{A}^{n-1} \backslash\left(\widehat{X}_{\Gamma \backslash e} \cap \widehat{X}_{\Gamma / e}\right)\right]-\left[\mathbb{A}^{n-1} \backslash \widehat{X}_{\Gamma \backslash e}\right]
$$

if $e$ not a bridge or a looping edge

$$
\left[\mathbb{A}^{n} \backslash \widehat{X}_{\Gamma}\right]=\mathbb{L} \cdot\left[\mathbb{A}^{n-1} \backslash \widehat{X}_{\Gamma \backslash e}\right]=\mathbb{L} \cdot\left[\mathbb{A}^{n-1} \backslash \widehat{X}_{\Gamma / e}\right]
$$

if $e$ bridge

$$
\begin{gathered}
{\left[\mathbb{A}^{n} \backslash \widehat{X}_{\Gamma}\right]=(\mathbb{L}-1) \cdot\left[\mathbb{A}^{n-1} \backslash \widehat{X}_{\Gamma \backslash e}\right]} \\
=(\mathbb{L}-1) \cdot\left[\mathbb{A}^{n-1} \backslash \widehat{X}_{\Gamma / e}\right]
\end{gathered}
$$

if $e$ looping edge
Note: intersection $\widehat{X}_{\Gamma \backslash e} \cap \widehat{X}_{\Gamma / e}$ difficult to control motivically: first place where non-Tate contributions will appear

Example of application: Multiplying edges
$\Gamma_{m e}$ obtained from $\Gamma$ by replacing edge $e$ by $m$ parallel edges
$\left(\Gamma_{0 e}=\Gamma \backslash e, \Gamma_{e}=\Gamma\right)$
Generating function: $\mathbb{T}=\left[\mathbb{G}_{m}\right] \in K_{0}(\mathcal{V})$

$$
\begin{aligned}
\sum_{m \geq 0} \mathbb{U}\left(\Gamma_{m e}\right) \frac{s^{m}}{m!} & =\frac{e^{\mathbb{T} s}-e^{-s}}{\mathbb{T}+1} \mathbb{U}(\Gamma) \\
& +\frac{e^{\mathbb{T} s}+\mathbb{T} e^{-s}}{\mathbb{T}+1} \mathbb{U}(\Gamma \backslash e) \\
& +\left(s e^{\mathbb{T} s}-\frac{e^{\mathbb{T} s}-e^{-s}}{\mathbb{T}+1}\right) \mathbb{U}(\Gamma / e) .
\end{aligned}
$$

$e$ not bridge nor looping edge: similar for other cases
For doubling: inclusion-exclusion

$$
\begin{aligned}
\mathbb{U}\left(\Gamma_{2 e}\right) & =\mathbb{L} \cdot\left[\mathbb{A}^{n} \backslash\left(\hat{X}_{\Gamma} \cap \hat{X}_{\Gamma_{o}}\right)\right]-\mathbb{U}(\Gamma) \\
{\left[\hat{X}_{\Gamma} \cap \hat{X}_{\Gamma_{o}}\right] } & =\left[\hat{X}_{\Gamma / e}\right]+(\mathbb{L}-1) \cdot\left[\hat{X}_{\Gamma \backslash e} \cap \hat{X}_{\Gamma / e}\right]
\end{aligned}
$$

then cancellation

$$
\mathbb{U}\left(\Gamma_{2 e}\right)=(\mathbb{L}-2) \cdot \mathbb{U}(\Gamma)+(\mathbb{L}-1) \cdot \mathbb{U}(\Gamma \backslash e)+\mathbb{L} \cdot \mathbb{U}(\Gamma / e)
$$

Example of application: Lemon graphs and chains of polygons $\Lambda_{m}=$ lemon graph $m$ wedges; $\Gamma_{m}^{\Lambda}=$ replacing edge $e$ of $\Gamma$ with $\Lambda_{m}$ Generating function: $\sum_{m \geq 0} \mathbb{U}\left(\Gamma_{m}^{\wedge}\right) s^{m}=$

$$
\frac{(1-(\mathbb{T}+1) s) \mathbb{U}(\Gamma)+(\mathbb{T}+1) \mathbb{T} s \mathbb{U}(\Gamma \backslash e)+(\mathbb{T}+1)^{2} s \mathbb{U}(\Gamma / e)}{1-\mathbb{T}(\mathbb{T}+1) s-\mathbb{T}(\mathbb{T}+1)^{2} s^{2}}
$$

$e$ not bridge or looping edge; similar otherwise Recursive relation:

$$
\mathbb{U}\left(\Lambda_{m+1}\right)=\mathbb{T}(\mathbb{T}+1) \mathbb{U}\left(\Lambda_{m}\right)+\mathbb{T}(\mathbb{T}+1)^{2} \mathbb{U}\left(\Lambda_{m-1}\right)
$$

$a_{m}=\mathbb{U}\left(\Lambda_{m}\right)$ is a divisibility sequence: $\mathbb{U}\left(\Lambda_{m-1}\right)$ divides $\mathbb{U}\left(\Lambda_{n-1}\right)$ if $m$ divides $n$

## Determinant hypersurfaces and Schubert cells

 Mixed Tate question reformulated in terms of determinant hypersurfaces and intersections of unions of Schubert cells in flag varieties- P. Aluffi, M.M. Parametric Feynman integrals and determinant hypersurfaces, arXiv:0901.2107

$$
\Upsilon: \mathbb{A}^{n} \rightarrow \mathbb{A}^{\ell^{2}}, \quad \Upsilon(t)_{k r}=\sum_{i} t_{i} \eta_{i k} \eta_{i r}, \quad \hat{X}_{\Gamma}=\Upsilon^{-1}\left(\hat{\mathcal{D}}_{\ell}\right)
$$

determinant hypersurface $\hat{\mathcal{D}}_{\ell}=\left\{\operatorname{det}\left(x_{i j}\right)=0\right\}$

$$
\left[\mathbb{A}^{\ell^{2}} \backslash \hat{\mathcal{D}}_{\ell}\right]=\mathbb{L}^{\binom{\ell}{2}} \prod_{i=1}^{\ell}\left(\mathbb{L}^{i}-1\right) \Rightarrow \text { mixed Tate }
$$

When $\Upsilon$ embedding

$$
U(\Gamma)=\int_{\Upsilon\left(\sigma_{n}\right)} \frac{\mathcal{P}_{\Gamma}(x, p)^{-n+D \ell / 2} \omega_{\Gamma}(x)}{\operatorname{det}(x)^{-n+(\ell+1) D / 2}}
$$

If $\hat{\Sigma}_{\Gamma}$ normal crossings divisor in $\mathbb{A}^{\ell^{2}}$ with $\Upsilon\left(\partial \sigma_{n}\right) \subset \hat{\Sigma}_{\Gamma}$

$$
\mathfrak{m}\left(\mathbb{A}^{\ell^{2}} \backslash \hat{\mathcal{D}}_{\ell}, \hat{\Sigma}_{\Gamma} \backslash\left(\hat{\Sigma}_{\Gamma} \cap \hat{\mathcal{D}}_{\ell}\right)\right) \quad \text { mixed Tate motive? }
$$

Combinatorial conditions for embedding $\Upsilon: \mathbb{A}^{n} \backslash \hat{X}_{\Gamma} \hookrightarrow \mathbb{A}^{\ell^{2}} \backslash \hat{\mathcal{D}}_{\ell}$

- Closed 2-cell embedded graph $\iota: \Gamma \hookrightarrow S_{g}$ with $S_{g} \backslash \Gamma$ union of open disks (faces); closure of each is a disk.
- Two faces have at most one edge in common
- Every edge in the boundary of two faces

Sufficient: 「 3-edge-connected with closed 2-cell embedding of face width $\geq 3$.
Face width: largest $k \in \mathbb{N}$, every non-contractible simple closed curve in $S_{g}$ intersects $\Gamma$ at least $k$ times ( $\infty$ for planar).
Note: 2-edge-connected $=1 \mathrm{PI} ; 2$-vertex-connected conjecturally implies face width $\geq 2$

Identifying the motive $\mathfrak{m}(X, Y)$. Set $\hat{\Sigma}_{\Gamma} \subset \hat{\Sigma}_{\ell, g}(f=\ell-2 g+1)$

$$
\begin{gathered}
\hat{\Sigma}_{\ell, g}=L_{1} \cup \cdots \cup L_{\binom{f}{2}} \\
\left\{\begin{array}{rl}
x_{i j} & =0 \quad 1 \leq i<j \leq f-1 \\
x_{i 1}+\cdots+x_{i, f-1} & =0
\end{array} \quad 1 \leq i \leq f-1\right. \\
\mathfrak{m}\left(\mathbb{A}^{\ell^{2}} \backslash \hat{\mathcal{D}}_{\ell}, \hat{\Sigma}_{\ell, g} \backslash\left(\hat{\Sigma}_{\ell, g} \cap \hat{\mathcal{D}}_{\ell}\right)\right)
\end{gathered}
$$

$\hat{\Sigma}_{\ell, g}=$ normal crossings divisor $\Upsilon_{\Gamma}\left(\partial \sigma_{n}\right) \subset \hat{\Sigma}_{\ell, g}$ depends only on $\ell=b_{1}(\Gamma)$ and $g=\min$ genus of $S_{g}$

- Sufficient condition: Varieties of frames mixed Tate?

$$
\mathbb{F}\left(V_{1}, \ldots, V_{\ell}\right):=\left\{\left(v_{1}, \ldots, v_{\ell}\right) \in \mathbb{A}^{\ell^{2}} \backslash \hat{\mathcal{D}}_{\ell} \mid v_{k} \in V_{k}\right\}
$$

## Varieties of frames

- Two subspaces: $\left(d_{12}=\operatorname{dim}\left(V_{1} \cap V_{2}\right)\right)$

$$
\left[\mathbb{F}\left(V_{1}, V_{2}\right)\right]=\mathbb{L}^{d_{1}+d_{2}}-\mathbb{L}^{d_{1}}-\mathbb{L}^{d_{2}}-\mathbb{L}^{d_{12}+1}+\mathbb{L}^{d_{12}}+\mathbb{L}
$$

- Three subspaces $\left(D=\operatorname{dim}\left(V_{1}+V_{2}+V_{3}\right)\right)$

$$
\begin{gathered}
{\left[\mathbb{F}\left(V_{1}, V_{2}, V_{3}\right)\right]=\left(\mathbb{L}^{d_{1}}-1\right)\left(\mathbb{L}^{d_{2}}-1\right)\left(\mathbb{L}^{d_{3}}-1\right)} \\
-(\mathbb{L}-1)\left(\left(\mathbb{L}^{d_{1}}-\mathbb{L}\right)\left(\mathbb{L}^{d_{23}}-1\right)+\left(\mathbb{L}^{d_{2}}-\mathbb{L}\right)\left(\mathbb{L}^{d_{13}}-1\right)+\left(\mathbb{L}^{d_{3}}-\mathbb{L}\right)\left(\mathbb{L}^{d_{12}}-1\right)\right. \\
+(\mathbb{L}-1)^{2}\left(\mathbb{L}^{d_{1}+d_{2}+d_{3}-D}-\mathbb{L}^{d_{123}+1}\right)+(\mathbb{L}-1)^{3}
\end{gathered}
$$

- Higher: difficult to find suitable induction
- Other formulation: $F l a g_{\ell,\left\{d_{i}, e_{i}\right\}}\left(\left\{V_{i}\right\}\right)$ locus of complete flags $0 \subset E_{1} \subset E_{2} \subset \cdots \subset E_{\ell}=E$, with $\operatorname{dim} E_{i} \cap V_{i}=d_{i}$ and $\operatorname{dim} E_{i} \cap V_{i+1}=e_{i}$ : are these mixed Tate? (for all choices of $d_{i}, e_{i}$ )
- $\mathbb{F}\left(V_{1}, \ldots, V_{\ell}\right)$ fibration over Flag $_{\ell,\left\{d_{i}, e_{i}\right\}}\left(\left\{V_{i}\right\}\right)$ : class $\left[\mathbb{F}\left(V_{1}, \ldots, V_{\ell}\right)\right]$

$$
=\left[F \operatorname{lag}_{\ell,\left\{d_{i}, e_{i}\right\}}\left(\left\{V_{i}\right\}\right)\right]\left(\mathbb{L}^{d_{1}}-1\right)\left(\mathbb{L}^{d_{2}}-\mathbb{L}^{e_{1}}\right)\left(\mathbb{L}^{d_{3}}-\mathbb{L}^{e_{2}}\right) \cdots\left(\mathbb{L}^{d_{r}}-\mathbb{L}^{e_{r-1}}\right)
$$

Flag $_{\ell,\left\{d_{i}, e_{i}\right\}}\left(\left\{V_{i}\right\}\right)$ intersection of unions of Schubert cells in flag varieties $\Rightarrow$ Kazhdan-Lusztig?

Different approach to regularization and renormalization

- Based on ongoing work with Xiang Ni

Main ingredients:

- Algebraic renormalization (Hopf algebras and Rota-Baxter algebras)
- Hypersurfaces and Rota-Baxter algebras of meromorphic forms
- Forms with logarithmic poles and Leray residues
- Wonderful compactifications

Developed for Feynman integrals in configuration spaces in

- O. Ceyhan, M.M. Algebraic renormalization and Feynman integrals in configuration spaces, arXiv:1308.5687


## Regularization and renormalization

Removing divergences from Feynman integrals by adjusting bare parameters in the Lagrangian

$$
\mathcal{L}_{E}=\frac{1}{2}(\partial \phi)^{2}(1-\delta Z)+\left(\frac{m^{2}-\delta m^{2}}{2}\right) \phi^{2}-\frac{g+\delta g}{6} \phi^{3}
$$

Regularization: replace divergent integral $U(\Gamma)$ by function $U^{z}(\Gamma)$ with pole ( $z \in \mathbb{C}^{*}$ in DimReg, $\epsilon$ deformation of $X_{\Gamma}$, etc.) Renormalization: consistency over subgraphs (Hopf algebra structure)

- Kreimer, Connes-Kreimer, Connes-M.: Hopf algebra of Feynman graphs and BPHZ renormalization method in terms of Birkhoff factorization and differential Galois theory
- Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of Rota-Baxter algebras


## BPHZ renormalization method:

- Preparation:

$$
\bar{R}(\Gamma)=U(\Gamma)+\sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma) U(\Gamma / \gamma)
$$

- Counterterm: projection onto polar part

$$
C(\Gamma)=-T(\bar{R}(\Gamma))
$$

- Renormalized value:

$$
\begin{gathered}
R(\Gamma)=\bar{R}(\Gamma)+C(\Gamma) \\
=U(\Gamma)+C(\Gamma)+\sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma) U(\Gamma / \gamma)
\end{gathered}
$$

Connes-Kreimer Hopf algebra $\mathcal{H}=\mathcal{H}(\mathcal{T})$ (depends on theory $\mathcal{L}(\phi)$ )

- Free commutative algebra in generators Г 1PI Feynman graphs
- Grading: loop number (or internal lines)

$$
\operatorname{deg}\left(\Gamma_{1} \cdots \Gamma_{n}\right)=\sum_{i} \operatorname{deg}\left(\Gamma_{i}\right), \quad \operatorname{deg}(1)=0
$$

- Coproduct:

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma \in \mathcal{V}(\Gamma)} \gamma \otimes \Gamma / \gamma
$$

- Antipode: inductively

$$
S(X)=-X-\sum S\left(X^{\prime}\right) X^{\prime \prime}
$$

for $\Delta(X)=X \otimes 1+1 \otimes X+\sum X^{\prime} \otimes X^{\prime \prime}$
Extended to gauge theories (van Suijlekom): Ward identities as Hopf ideals

Algebraic renormalization (Ebrahimi-Fard, Guo, Kreimer)

- Rota-Baxter algebra of weight $\lambda=-1$ : $\mathcal{R}$ commutative unital algebra; $T: \mathcal{R} \rightarrow \mathcal{R}$ linear operator with

$$
T(x) T(y)=T(x T(y))+T(T(x) y)+\lambda T(x y)
$$

- Example: $T=$ projection onto polar part of Laurent series
- $T$ determines splitting $\mathcal{R}_{+}=(1-T) \mathcal{R}, \mathcal{R}_{-}=$unitization of $T \mathcal{R}$; both $\mathcal{R}_{ \pm}$are algebras
- Feynman rule $\phi: \mathcal{H} \rightarrow \mathcal{R}$ commutative algebra homomorphism from CK Hopf algebra $\mathcal{H}$ to Rota-Baxter algebra $\mathcal{R}$ weight -1

$$
\phi \in \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{H}, \mathcal{R})
$$

- Note: $\phi$ does not know that $\mathcal{H}$ Hopf and $\mathcal{R}$ Rota-Baxter, only commutative algebras
- Birkhoff factorization $\exists \phi_{ \pm} \in \operatorname{Hom}_{\mathrm{Alg}}\left(\mathcal{H}, \mathcal{R}_{ \pm}\right)$

$$
\phi=\left(\phi_{-} \circ S\right) \star \phi_{+}
$$

where $\phi_{1} \star \phi_{2}(X)=\left\langle\phi_{1} \otimes \phi_{2}, \Delta(X)\right\rangle$

- Connes-Kreimer inductive formula for Birkhoff factorization:

$$
\begin{gathered}
\phi_{-}(X)=-T\left(\phi(X)+\sum \phi_{-}\left(X^{\prime}\right) \phi\left(X^{\prime \prime}\right)\right) \\
\phi_{+}(X)=(1-T)\left(\phi(X)+\sum \phi_{-}\left(X^{\prime}\right) \phi\left(X^{\prime \prime}\right)\right)
\end{gathered}
$$

where $\Delta(X)=1 \otimes X+X \otimes 1+\sum X^{\prime} \otimes X^{\prime \prime}$

Example of algebraic renormalization (Connes-Kreimer):

- Dimensional Regularization: $U_{\mu}^{z}\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right)$

$$
=\int \mu^{z \ell} d^{D-z} k_{1} \cdots d^{D-z} k_{\ell} l_{\Gamma}\left(k_{1}, \ldots, k_{\ell}, p_{1}, \ldots, p_{N}\right)
$$

Laurent series in $z \in \Delta^{*} \subset \mathbb{C}^{*}$

- Rota-Baxter algebra: $T=$ projection onto polar part of Laurent series
- loop $=\phi \in \operatorname{Hom}(\mathcal{H}, \mathbb{C}(\{z\}))$ (germs of meromorphic functions)
- Feynman integral $U(\Gamma)=\phi(\Gamma)$
counterterms $C(\Gamma)=\phi_{-}(\Gamma)$
renormalized value $R(\Gamma)=\left.\phi_{+}(\Gamma)\right|_{z=0}$

Rota-Baxter algebras of meromorphic forms smooth hypersurface $Y=\{f=0\}$ in $\mathbb{P}^{n}$

- $\mathcal{M}_{\mathbb{P}^{n}, Y}^{\star}=$ meromorphic forms, poles (arbitrary order) on $Y$

$$
\omega=\sum_{p \geq 0} \frac{\alpha_{p}}{f^{p}} \mapsto T(\omega)=\sum_{p \geq 1} \frac{\alpha_{p}}{f^{p}}
$$

Rota-Baxter (graded) algebra of weight -1

$$
T(x) T(y)=T(x T(y))+T(T(x) y)-T(x y)
$$

- Restrict to $\Omega_{\mathbb{P}^{n}}^{\star}(\log (Y))$ forms with log poles:

$$
\omega=\frac{d f}{f} \wedge \xi+\eta \mapsto T(\omega)=\frac{d f}{f} \wedge \xi
$$

Rota-Baxter identity becomes

$$
T(x y)=T(x T(y))+T(T(x) y)=x T(y)+T(x) y
$$

hence $T$ is a derivation

Pole subtraction: $\omega \mapsto(1-T) \omega$
Vanishing Leray residue $\omega=d \log (f) \wedge \xi+\eta$

$$
\operatorname{Res}_{Y}(\omega)=\xi
$$

holomorphic form on $X$
Can extend to:

- Smooth hypersurface $Y$ in a smooth projective $X$;
- Normal crossings divisor $Y$ in a smooth projective $X$;
- Singular hypersurface $Y$ in a smooth projective $X$ : using Saito's forms with log poles and residues

$$
h \omega=\frac{d f}{f} \wedge \xi+\eta, \quad \operatorname{Res}_{Y}(\omega)=\frac{1}{h} \xi
$$

## General strategy for Feynman integrals

- (graded) Hopf algebra of Feynman graphs
$\Gamma_{1} \cdot \Gamma_{2}=(-1)^{\# E\left(\Gamma_{1}\right) \# E\left(\Gamma_{2}\right)} \Gamma_{2} \cdot \Gamma_{1}$
- Fixed number of loops $\ell$ : a smooth projective variety $X_{\ell}$ and a (singular) hypersurface $Y_{\ell} \subset X_{\ell}$, such that the motive $m\left(X_{\ell}\right)$ is mixed Tate
- A morphism of graded algebras $\phi: \mathcal{H} \rightarrow \mathcal{M}_{X_{\ell}, Y_{\ell}}^{*}$

$$
\phi(\Gamma)=\eta_{\Gamma}
$$

algebraic differential form on $X_{\ell}$ with polar locus $Y_{\ell}$

- Rota-Baxter operator $T$ (polar part) on $\mathcal{M}_{X_{\ell}, Y_{\ell}}^{*}$
$\Rightarrow$ Birkhoff decomposition $\phi_{ \pm}$gives holomorphic form $\phi_{+}(\Gamma)$ on $X_{\ell}$

$$
\int_{\sigma} \phi_{+}(\Gamma)
$$

is a period of a mixed Tate motive (always)

## Especially nice situation:

When all cohomology classes of $H^{*}\left(X_{\ell} \backslash Y_{\ell}\right)$ can be represented by forms with logarithmic poles
Examples:

- Normal crossings divisors (Deligne)
- Locally quasi-homogeneous free divisors (F. J. Castro-Jiménez,
D. Mond, and L. Narvaéz-Macarro)

Then can use restriction of Rota-Baxter operator $T$ to forms with log poles $\Omega_{X_{\ell}}^{*}\left(\log \left(Y_{\ell}\right)\right)$
$\Rightarrow$ The Birkhoff factorization formula simplifies drastically (no correction terms from subdivergences, only pole subtraction)

Application to parametric Feynman integrals Assume $n \geq(\ell+1) D / 2$ and consider algebraic differential form (take $p \in \mathbb{Q}$ )

$$
\eta_{\Gamma}=\frac{\mathcal{P}_{\Gamma}(x, p)^{-n+D \ell / 2} \omega_{\Gamma}(x)}{\operatorname{det}(x)^{-n(\ell+1) D / 2}}
$$

on $\mathbb{A}^{\ell^{2}} \backslash \hat{\mathcal{D}}_{\ell}=\mathrm{GL}_{\ell}$

$$
\phi(\Gamma)=\eta_{\Gamma} \in \mathcal{M}_{\mathbb{P}^{\ell^{2}-1}, \mathcal{D}_{\ell}}^{*}
$$

apply Birkhoff factorization and evaluate convergent integral

$$
\int_{\Sigma_{g, \ell}} \phi_{+}(\Gamma)
$$

of algebraic form $\phi_{+}(\Gamma)$.

## Kausz compactification

better method: reduce to forms with logarithmic poles
Need a better compactification of $\mathrm{GL}_{\ell}$

- $\mathrm{PGL}_{\ell}$ has a wonderful compactification $\overline{\mathrm{PGL}}_{\ell}$ in the sense of DeConcini-Procesi (Vainsencher)
- Iterated blowup description: $X_{0}=\mathbb{P}^{\ell^{2}-1}$, loci $Y_{i}$ matrices rank $i$, with $\bar{Y}_{i}$ closure in $X_{i-1}$

$$
X_{i}=\mathrm{Bl}_{\bar{Y}_{i}}\left(X_{i-1}\right)
$$

$X_{\ell-1}=\overline{\mathrm{PGL}}_{\ell}$ smooth;
$Y_{i}$ are $\mathrm{PGL}_{i}$-bundles over a product of Grassmannians

## Kausz compactification $K_{\mathrm{GL}_{\ell}}$ :

- Kausz compactification $=$ closure of $\mathrm{GL}_{\ell}$ inside wonderful compactification of $\mathrm{PGL}_{\ell+1}$
- Iterated blowup with $\mathcal{X}_{0}=\mathbb{P}^{\ell^{2}}$,

$$
\mathcal{X}_{i}=\mathrm{Bl}_{\mathcal{Y}_{i-1} \cup \mathcal{H}_{i}}\left(\mathcal{X}_{i-1}\right)
$$

with $\mathcal{Y}_{i} \subset \mathbb{A}^{\ell^{2}}$ matrices rank $i$ and $\mathcal{H}_{i}$ matrices at infinity, in $\mathbb{P}^{\ell^{2}-1}=\mathbb{P}^{\ell^{2}} \backslash \mathbb{A}^{\ell^{2}}$

- the $\mathcal{X}_{i}$ are smooth and blowup loci disjoint unions of $\overline{\mathrm{PGL}_{i}}$-bundles and $K \mathrm{GL}_{i}$-bundles over a product of Grassmannians
- complement of $\mathrm{GL}_{\ell}$ in $K \mathrm{GL}_{\ell}$ is normal crossings divisor
I. Kausz, A modular compactification of the general linear group, Documenta Math. 5 (2000) 553-594

Motive of the Kausz compactification $m\left(K \mathrm{GL}_{\ell}\right)$

- Chow motive of a blowup along a smooth locus (Manin)

$$
m\left(B I_{Y}(X)\right)=m(X) \oplus \bigoplus_{r=1}^{\operatorname{codim}(Y)-1} m(Y) \otimes \mathbb{L}^{\otimes r}
$$

- motives of Grassmannians $G(d, n)$ (Köck)

$$
m(G(d, n))=\bigoplus_{\lambda \in W^{d}} \mathbb{L}^{\otimes|\lambda|}
$$

$$
W^{d}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{N}^{d} \mid n-d \geq \lambda_{1} \geq \cdots \geq \lambda_{d} \geq 0\right\}
$$

and $|\lambda|=\sum_{i} \lambda_{i}$
then inductively:

- motive of a $\overline{\mathrm{PGL}_{i}}$-bundle over a product of Grassmannians: has
a "sufficiently good" cell decomposition so that motive of $F$ bundle $B$ over $Z$ decomposes as a product

$$
m(B) \simeq m(F) \otimes m(Z)
$$

- for $K \mathrm{GL}_{i}$-bundles over products of Grassmannians also show inductively that have good cell decomposition

Conclusion 1: the motive $m\left(K \mathrm{GL}_{\ell}\right)$ is mixed Tate
Conclusion 2: the renormalized Feynman integral

$$
\int_{\pi^{-1}\left(\Sigma_{g, \ell)}\right.}(1-T) \eta_{\Gamma}
$$

is a period of $K \mathrm{GL}_{\ell}$
... but information loss for certain graphs

