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Quantum Field Theory perturbative (massless) scalar field theory

S(φ) =

∫
L(φ)dDx = S0(φ) + Sint(φ)

in D dimensions, with Lagrangian density (Euclidean)

L(φ) =
1

2
(∂φ)2 +

m2

2
φ2 + Lint(φ)

Perturbative expansion: Feynman rules and Feynman diagrams

Seff (φ) = S0(φ) +
∑

Γ

Γ(φ)

#Aut(Γ)
(1PI graphs)

Γ(φ) =
1

N!

∫
∑

i pi =0
φ̂(p1) · · · φ̂(pN)U(Γ(p1, . . . , pN))dDp1 · · · dDpN

U(Γ(p1, . . . , pN)) =

∫
IΓ(k1, . . . , k`, p1, . . . , pN)dDk1 · · · dDk`

` = b1(Γ) loops
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Feynman rules for IΓ(k1, . . . , k`, p1, . . . , pN):
- Internal lines ⇒ propagator = quadratic form qi

1

q1 · · · qn
, qi (ki ) = k2

i + m2

- Vertices: conservation (valences = monomials in L)∑
ei∈E(Γ):s(ei )=v

ki = 0

- Integration over ki , internal edges

U(Γ) =

∫
δ(
∑n

i=1 εv ,i ki +
∑N

j=1 εv ,j pj )

q1 · · · qn
dDk1 · · · dDkn

n = #Eint(Γ), N = #Eext(Γ)

εe,v =

 +1 t(e) = v
−1 s(e) = v

0 otherwise,
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Parametric Feynman integrals
• Schwinger parameters q−k1

1 · · · q−kn
n =

1

Γ(k1) · · · Γ(kn)

∫ ∞
0

· · ·
∫ ∞

0

e−(s1q1+···+snqn) sk1−1
1 · · · skn−1

n ds1 · · · dsn.

• Feynman trick

1

q1 · · · qn
= (n − 1)!

∫
δ(1−

∑n
i=1 ti )

(t1q1 + · · ·+ tnqn)n
dt1 · · · dtn

then change of variables ki = ui +
∑`

k=1 ηik xk

ηik =

{
±1 edge ± ei ∈ loop `k

0 otherwise

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

ωn

ΨΓ(t)D/2VΓ(t, p)n−D`/2

σn = {t ∈ Rn
+|
∑

i ti = 1}, vol form ωn
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Graph polynomials

ΨΓ(t) = det MΓ(t) =
∑

T

∏
e /∈T

te with (MΓ)kr (t) =
n∑

i=0

tiηikηir

Massless case m = 0:

VΓ(t, p) =
PΓ(t, p)

ΨΓ(t)
and PΓ(p, t) =

∑
C⊂Γ

sC

∏
e∈C

te

cut-sets C (complement of spanning tree plus one edge)
sC = (

∑
v∈V (Γ1) Pv )2 with Pv =

∑
e∈Eext (Γ),t(e)=v pe for

∑
e∈Eext (Γ) pe = 0

with deg ΨΓ = b1(Γ) = deg PΓ − 1

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

stable range −n + D`/2 ≥ 0; log divergent n = D`/2:∫
σn

ωn

ΨΓ(t)D/2

Matilde Marcolli Feynman integrals, singular hypersurfaces, and motives



Graph hypersurfaces
Residue of U(Γ) (up to divergent Gamma factor)∫

σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

Graph hypersurfaces X̂Γ = {t ∈ An |ΨΓ(t) = 0}

XΓ = {t ∈ Pn−1 |ΨΓ(t) = 0} deg = b1(Γ)

• Relative cohomology: (range −n + D`/2 ≥ 0)

Hn−1(Pn−1rXΓ,Σnr(Σn∩XΓ)) with Σn = {
∏

i

ti = 0} ⊃ ∂σn

• Periods:
∫
σ ω integrals of algebraic differential forms ω on a

cycle σ defined by algebraic equations in an algebraic variety
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Feynman integrals and periods
Parametric Feynman integral: algebraic differential form on cycle
in algebraic variety
But... divergent: where XΓ ∩ σn 6= ∅, inside divisor Σn ⊃ σn of
coordinate hyperplanes

Blowups of coordinate linear spaces defined by edges of 1PI
subgraphs (toric variety P(Γ))

Iterated blowup P(Γ) separates strict transform of XΓ from
non-negative real points

Deform integration chain: monodromy problem; lift to P(Γ)

Subtraction of divergences: Poincaré residuces and limiting
mixed Hodge structure

• S. Bloch, E. Esnault, D. Kreimer, On motives associated to
graph polynomials, arXiv:math/0510011.
• S. Bloch, D. Kreimer, Mixed Hodge Structures and
Renormalization in Physics, arXiv:0804.4399.
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Motives of algebraic varieties (Grothendieck) Universal cohomology
theory for algebraic varieties (with realizations)

Mixed motives: varieties that are possibly singular or not projective
(much more complicated theory than pure (smooth projective)!)
Triangulated category DM (Voevodsky , Levine, Hanamura)

m(Y )→ m(X )→ m(X r Y )→ m(Y )[1]

m(X × A1) = m(X )(−1)[2]

Mixed Tate motives: DMT ⊂ DM generated by the Q(m)
Tate object: Q(1) formal inverse of Lefschetz motive L = h2(P1)

Over a number field: t-structure, abelian category of mixed Tate
motives (vanishing result, M.Levine)
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Periods and motives: Constraints on numbers obtained as periods
from the motive of the variety!

• Periods of mixed Tate motives over Z are
Q[1/(2πi)]-combinations of Multiple Zeta Values

ζ(k1, k2, . . . , kr ) =
∑

n1>n2>···>nr≥1

n−k1
1 n−k2

2 · · · n−kr
r

Conjecture proved recently:
• Francis Brown, Mixed Tate motives over Z, arXiv:1102.1312.

Feynman integrals and periods: MZVs as typical outcome:
• D. Broadhurst, D. Kreimer, Association of multiple zeta values
with positive knots via Feynman diagrams up to 9 loops,
arXiv:hep-th/9609128

⇒ Conjecture (Kontsevich 1997): Motives of graph hypersurfaces
are mixed Tate (or counting points over finite fields behavior)
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Conjecture was first verified for all graphs up to 12 edges:
• J. Stembridge, Counting points on varieties over finite fields
related to a conjecture of Kontsevich, 1998

But ... Conjecture is false!

P. Belkale, P. Brosnan, Matroids, motives, and a conjecture of
Kontsevich, arXiv:math/0012198

Dzmitry Doryn, On one example and one counterexample in
counting rational points on graph hypersurfaces,
arXiv:1006.3533

Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.

Francis Brown, Dzmitry Doryn, Framings for graph
hypersurfaces, arXiv:1301.3056

• Belkale–Brosnan: general argument shows “motives of graph
hypersurfaces can be arbitrarily complicated”

• Doryn, Brown–Schnetz, Brown–Doryn: explicit counterexamples
(14 edges)

Matilde Marcolli Feynman integrals, singular hypersurfaces, and motives



Motives and the Grothendieck ring of varieties
• Difficult to determine explicitly the motive of XΓ (singular
variety!) in the triangulated category of mixed motives

• Simpler invariant (universal Euler characteristic for motives):
class [XΓ] in the Grothendieck ring of varieties K0(V)

generators [X ] isomorphism classes

[X ] = [X r Y ] + [Y ] for Y ⊂ X closed

[X ] · [Y ] = [X × Y ]

Tate motives: Z[L,L−1] ⊂ K0(M)
(K0 group of category of pure motives: virtual motives)
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Universal Euler characteristics:
Any additive invariant of varieties: χ(X ) = χ(Y ) if X ∼= Y

χ(X ) = χ(Y ) + χ(X r Y ), Y ⊂ X

χ(X × Y ) = χ(X )χ(Y )

values in a commutative ring R is same thing as a ring
homomorphism

χ : K0(V)→ R

Examples:
• Topological Euler characteristic
• Couting points over finite fields
• Gillet–Soulé motivic χmot(X ):

χmot : K0(V)[L−1]→ K0(M), χmot(X ) = [(X , id , 0)]

for X smooth projective; complex χmot(X ) = W ·(X )
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Universality: a dichotomy

After localization (Belkale-Brosnan): the graph hypersurfaces
XΓ generate the Grothendieck ring localized at Ln − L, n > 1

Stable birational equivalence: the graph hypersurfaces span Z
inside Z[SB] = K0(V)|L=0

• P. Aluffi, M.M. Graph hypersurfaces and a dichotomy in the
Grothendieck ring, arXiv:1005.4470
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Graph hypersurfaces: computing in the Grothendieck ring

• P. Aluffi, M.M. Feynman motives of banana graphs,
arXiv:0807.1690

Example: banana graphs ΨΓ(t) = t1 · · · tn( 1
t1

+ · · ·+ 1
tn

)

[XΓn ] =
Ln − 1

L− 1
− (L− 1)n − (−1)n

L
− n (L− 1)n−2

where L = [A1] Lefschetz motive and T = [Gm] = [A1]− [A0]
XΓ∨ = L hyperplane in Pn−1

Γ∨= dual graph = polygon
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Method: Dual graph and Cremona transformation

C : (t1 : · · · : tn) 7→ (
1

t1
: · · · :

1

tn
)

outside Sn singularities locus of Σn = {
∏

i ti = 0}, ideal
ISn = (t1 · · · tn−1, t1 · · · tn−2tn, · · · , t1t3 · · · tn)

ΨΓ(t1, . . . , tn) = (
∏

e

te)ΨΓ∨(t−1
1 , . . . , t−1

n )

C(XΓ ∩ (Pn−1 r Σn)) = XΓ∨ ∩ (Pn−1 r Σn)

isomorphism of XΓ and XΓ∨ outside of Σn
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For banana graph case obtain:

[Lr Σn] = [L]− [L ∩ Σn] =
Tn−1 − (−1)n−1

T + 1

XΓn ∩ Σn = Sn with [Sn] = [Σn]− nTn−2

[XΓn ] = [XΓn ∩ Σn] + [XΓn r Σn]

Using Cremona transformation: [XΓn ] = [Sn] + [Lr Σn]

In particular get topological information on the XΓn

⇒ χ(XΓn ) = n + (−1)n
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Sum over graphs
Even when non-planar: can transform by Cremona
(new hypersurface, not of dual graph)
⇒ graphs by removing edges from complete graph: fixed vertices

SN =
∑

#V (Γ)=N

[XΓ]
N!

#Aut(Γ)
∈ Z[L],

Tate motive (though [XΓ] individually need not be)

• Spencer Bloch, Motives associated to sums of graphs,
arXiv:0810.1313

Suggests that although individual graphs need not give mixed Tate

contribution, the sum over graphs in Feynman amplitudes (fixed loops,

not vertices) may be mixed Tate
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Deletion–contraction relation
In general cannot compute explicitly [XΓ]: would like relations that

simplify the graph... but cannot have true deletion-contraction relation,

else always mixed Tate... What kind of deletion-contraction?

• P. Aluffi, M.M. Feynman motives and deletion-contraction
relations, arXiv:0907.3225

• Graph polynomials: Γ with n ≥ 2 edges, deg ΨΓ = ` > 0

ΨΓ = teΨΓre + ΨΓ/e

ΨΓre =
∂ΨΓ

∂tn
and ΨΓ/e = ΨΓ|tn=0

• General fact: X = {ψ = 0} ⊂ Pn−1, Y = {F = 0} ⊂ Pn−2

ψ(t1, . . . , tn) = tnF (t1, . . . , tn−1) + G (t1, . . . , tn−1)

Y = cone of Y in Pn−1: Projection from (0 : · · · : 0 : 1) ⇒ isomorphism

X r (X ∩ Y )
∼−→ Pn−2 r Y
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Then deletion-contraction: for X̂Γ ⊂ An

[An r X̂Γ] = L · [An−1 r (X̂Γre ∩ X̂Γ/e)]− [An−1 r X̂Γre ]

if e not a bridge or a looping edge

[An r X̂Γ] = L · [An−1 r X̂Γre ] = L · [An−1 r X̂Γ/e ]

if e bridge

[An r X̂Γ] = (L− 1) · [An−1 r X̂Γre ]

= (L− 1) · [An−1 r X̂Γ/e ]

if e looping edge

Note: intersection X̂Γre ∩ X̂Γ/e difficult to control motivically: first
place where non-Tate contributions will appear
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Example of application: Multiplying edges
Γme obtained from Γ by replacing edge e by m parallel edges
(Γ0e = Γ r e, Γe = Γ)

Generating function: T = [Gm] ∈ K0(V)∑
m≥0

U(Γme)
sm

m!
=

eTs − e−s

T + 1
U(Γ)

+
eTs + Te−s

T + 1
U(Γ r e)

+

(
s eTs − eTs − e−s

T + 1

)
U(Γ/e).

e not bridge nor looping edge: similar for other cases
For doubling: inclusion-exclusion

U(Γ2e) = L · [An r (X̂Γ ∩ X̂Γo )]− U(Γ)

[X̂Γ ∩ X̂Γo ] = [X̂Γ/e ] + (L− 1) · [X̂Γre ∩ X̂Γ/e ]

then cancellation

U(Γ2e) = (L− 2) · U(Γ) + (L− 1) · U(Γ r e) + L · U(Γ/e)
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Example of application: Lemon graphs and chains of polygons
Λm = lemon graph m wedges; ΓΛ

m = replacing edge e of Γ with Λm

Generating function:
∑

m≥0 U(ΓΛ
m)sm =

(1− (T + 1)s)U(Γ) + (T + 1)Ts U(Γ r e) + (T + 1)2s U(Γ/e)

1− T(T + 1)s − T(T + 1)2s2

e not bridge or looping edge; similar otherwise

Recursive relation:

U(Λm+1) = T(T + 1)U(Λm) + T(T + 1)2U(Λm−1)

am = U(Λm) is a divisibility sequence: U(Λm−1) divides U(Λn−1) if
m divides n
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Determinant hypersurfaces and Schubert cells
Mixed Tate question reformulated in terms of determinant hypersurfaces

and intersections of unions of Schubert cells in flag varieties

• P. Aluffi, M.M. Parametric Feynman integrals and determinant
hypersurfaces, arXiv:0901.2107

Υ : An → A`
2
, Υ(t)kr =

∑
i

tiηikηir , X̂Γ = Υ−1(D̂`)

determinant hypersurface D̂` = {det(xij ) = 0}

[A`
2
r D̂`] = L(`2)

∏̀
i=1

(Li − 1)⇒ mixed Tate

When Υ embedding

U(Γ) =

∫
Υ(σn)

PΓ(x , p)−n+D`/2ωΓ(x)

det(x)−n+(`+1)D/2

If Σ̂Γ normal crossings divisor in A`2
with Υ(∂σn) ⊂ Σ̂Γ

m(A`
2
r D̂`, Σ̂Γ r (Σ̂Γ ∩ D̂`)) mixed Tate motive?
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Combinatorial conditions for embedding Υ : An r X̂Γ ↪→ A`2 r D̂`
• Closed 2-cell embedded graph ι : Γ ↪→ Sg with Sg r Γ union of
open disks (faces); closure of each is a disk.
• Two faces have at most one edge in common
• Every edge in the boundary of two faces

Sufficient: Γ 3-edge-connected with closed 2-cell embedding of
face width ≥ 3.

Face width: largest k ∈ N, every non-contractible simple closed
curve in Sg intersects Γ at least k times (∞ for planar).

Note: 2-edge-connected =1PI; 2-vertex-connected conjecturally
implies face width ≥ 2
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Identifying the motive m(X ,Y ). Set Σ̂Γ ⊂ Σ̂`,g (f = `− 2g + 1)

Σ̂`,g = L1 ∪ · · · ∪ L(f
2){

xij = 0 1 ≤ i < j ≤ f − 1

xi1 + · · ·+ xi,f−1 = 0 1 ≤ i ≤ f − 1

m(A`
2
r D̂`, Σ̂`,g r (Σ̂`,g ∩ D̂`))

Σ̂`,g = normal crossings divisor ΥΓ(∂σn) ⊂ Σ̂`,g

depends only on ` = b1(Γ) and g = min genus of Sg

• Sufficient condition: Varieties of frames mixed Tate?

F(V1, . . . ,V`) := {(v1, . . . , v`) ∈ A`
2
r D̂` | vk ∈ Vk}
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Varieties of frames
• Two subspaces: (d12 = dim(V1 ∩ V2))

[F(V1,V2)] = Ld1+d2 − Ld1 − Ld2 − Ld12+1 + Ld12 + L

• Three subspaces (D = dim(V1 + V2 + V3))

[F(V1,V2,V3)] = (Ld1 − 1)(Ld2 − 1)(Ld3 − 1)

−(L− 1)((Ld1 −L)(Ld23 − 1) + (Ld2 −L)(Ld13 − 1) + (Ld3 −L)(Ld12 − 1)

+(L− 1)2(Ld1+d2+d3−D − Ld123+1) + (L− 1)3

• Higher: difficult to find suitable induction

• Other formulation: Flag`,{di ,ei}({Vi}) locus of complete flags
0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E` = E , with dim Ei ∩ Vi = di and
dim Ei ∩ Vi+1 = ei : are these mixed Tate? (for all choices of di , ei )

• F(V1, . . . ,V`) fibration over Flag`,{di ,ei}({Vi}): class [F(V1, . . . ,V`)]

= [Flag`,{di ,ei}({Vi})](Ld1 − 1)(Ld2 − Le1 )(Ld3 − Le2 ) · · · (Ldr − Ler−1 )

Flag`,{di ,ei}({Vi}) intersection of unions of Schubert cells in flag varieties

⇒ Kazhdan–Lusztig?
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Different approach to regularization and renormalization

• Based on ongoing work with Xiang Ni

Main ingredients:

Algebraic renormalization (Hopf algebras and Rota–Baxter
algebras)

Hypersurfaces and Rota–Baxter algebras of meromorphic
forms

Forms with logarithmic poles and Leray residues

Wonderful compactifications

Developed for Feynman integrals in configuration spaces in
• O. Ceyhan, M.M. Algebraic renormalization and Feynman
integrals in configuration spaces, arXiv:1308.5687
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Regularization and renormalization
Removing divergences from Feynman integrals by adjusting bare
parameters in the Lagrangian

LE =
1

2
(∂φ)2(1− δZ ) +

(
m2 − δm2

2

)
φ2 − g + δg

6
φ3

Regularization: replace divergent integral U(Γ) by function Uz (Γ)
with pole (z ∈ C∗ in DimReg, ε deformation of XΓ, etc.)

Renormalization: consistency over subgraphs (Hopf algebra
structure)

• Kreimer, Connes–Kreimer, Connes–M.: Hopf algebra of Feynman
graphs and BPHZ renormalization method in terms of Birkhoff
factorization and differential Galois theory

• Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms
of Rota–Baxter algebras

Matilde Marcolli Feynman integrals, singular hypersurfaces, and motives



BPHZ renormalization method:
• Preparation:

R̄(Γ) = U(Γ) +
∑

γ∈V(Γ)

C (γ)U(Γ/γ)

• Counterterm: projection onto polar part

C (Γ) = −T (R̄(Γ))

• Renormalized value:

R(Γ) = R̄(Γ) + C (Γ)

= U(Γ) + C (Γ) +
∑

γ∈V(Γ)

C (γ)U(Γ/γ)

Matilde Marcolli Feynman integrals, singular hypersurfaces, and motives



Connes–Kreimer Hopf algebra H = H(T ) (depends on theory L(φ))

• Free commutative algebra in generators Γ 1PI Feynman graphs

• Grading: loop number (or internal lines)

deg(Γ1 · · · Γn) =
∑

i

deg(Γi ), deg(1) = 0

• Coproduct:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V(Γ)

γ ⊗ Γ/γ

• Antipode: inductively

S(X ) = −X −
∑

S(X ′)X ′′

for ∆(X ) = X ⊗ 1 + 1⊗ X +
∑

X ′ ⊗ X ′′

Extended to gauge theories (van Suijlekom): Ward identities as
Hopf ideals
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Algebraic renormalization (Ebrahimi-Fard, Guo, Kreimer)
• Rota–Baxter algebra of weight λ = −1: R commutative unital
algebra; T : R → R linear operator with

T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy)

• Example: T = projection onto polar part of Laurent series

• T determines splitting R+ = (1− T )R, R− = unitization of
TR; both R± are algebras

• Feynman rule φ : H → R commutative algebra homomorphism
from CK Hopf algebra H to Rota–Baxter algebra R weight −1

φ ∈ HomAlg(H,R)

• Note: φ does not know that H Hopf and R Rota-Baxter, only
commutative algebras
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• Birkhoff factorization ∃φ± ∈ HomAlg(H,R±)

φ = (φ− ◦ S) ? φ+

where φ1 ? φ2(X ) = 〈φ1 ⊗ φ2,∆(X )〉
• Connes-Kreimer inductive formula for Birkhoff factorization:

φ−(X ) = −T (φ(X ) +
∑

φ−(X ′)φ(X ′′))

φ+(X ) = (1− T )(φ(X ) +
∑

φ−(X ′)φ(X ′′))

where ∆(X ) = 1⊗ X + X ⊗ 1 +
∑

X ′ ⊗ X ′′
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Example of algebraic renormalization (Connes–Kreimer):

• Dimensional Regularization: Uz
µ(Γ(p1, . . . , pN))

=

∫
µz`dD−z k1 · · · dD−z k`IΓ(k1, . . . , k`, p1, . . . , pN)

Laurent series in z ∈ ∆∗ ⊂ C∗

• Rota–Baxter algebra: T = projection onto polar part of Laurent
series

• loop = φ ∈ Hom(H,C({z})) (germs of meromorphic functions)

• Feynman integral U(Γ) = φ(Γ)
counterterms C (Γ) = φ−(Γ)
renormalized value R(Γ) = φ+(Γ)|z=0

Matilde Marcolli Feynman integrals, singular hypersurfaces, and motives



Rota–Baxter algebras of meromorphic forms
smooth hypersurface Y = {f = 0} in Pn

• M?
Pn,Y = meromorphic forms, poles (arbitrary order) on Y

ω =
∑
p≥0

αp

f p
7→ T (ω) =

∑
p≥1

αp

f p

Rota–Baxter (graded) algebra of weight −1

T (x)T (y) = T (xT (y)) + T (T (x)y)− T (xy)

• Restrict to Ω?
Pn (log(Y )) forms with log poles:

ω =
df

f
∧ ξ + η 7→ T (ω) =

df

f
∧ ξ

Rota–Baxter identity becomes

T (xy) = T (xT (y)) + T (T (x)y) = xT (y) + T (x)y

hence T is a derivation
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Pole subtraction: ω 7→ (1− T )ω

Vanishing Leray residue ω = d log(f ) ∧ ξ + η

ResY (ω) = ξ

holomorphic form on X

Can extend to:

• Smooth hypersurface Y in a smooth projective X ;
• Normal crossings divisor Y in a smooth projective X ;
• Singular hypersurface Y in a smooth projective X : using Saito’s
forms with log poles and residues

hω =
df

f
∧ ξ + η, ResY (ω) =

1

h
ξ
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General strategy for Feynman integrals

• (graded) Hopf algebra of Feynman graphs
Γ1 · Γ2 = (−1)#E(Γ1)#E(Γ2)Γ2 · Γ1

• Fixed number of loops `: a smooth projective variety X` and a
(singular) hypersurface Y` ⊂ X`, such that the motive m(X`) is
mixed Tate

• A morphism of graded algebras φ : H →M∗X`,Y`

φ(Γ) = ηΓ

algebraic differential form on X` with polar locus Y`

• Rota–Baxter operator T (polar part) on M∗X`,Y`

⇒ Birkhoff decomposition φ± gives holomorphic form φ+(Γ) on X`∫
σ
φ+(Γ)

is a period of a mixed Tate motive (always)
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Especially nice situation:

When all cohomology classes of H∗(X`r Y`) can be represented by
forms with logarithmic poles

Examples:

• Normal crossings divisors (Deligne)

• Locally quasi-homogeneous free divisors (F. J. Castro-Jiménez,
D. Mond, and L. Narvaéz-Macarro)

Then can use restriction of Rota–Baxter operator T to forms with
log poles Ω∗X`

(log(Y`))

⇒ The Birkhoff factorization formula simplifies drastically
(no correction terms from subdivergences, only pole subtraction)
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Application to parametric Feynman integrals
Assume n ≥ (`+ 1)D/2 and consider algebraic differential form
(take p ∈ Q)

ηΓ =
PΓ(x , p)−n+D`/2ωΓ(x)

det(x)−n(`+1)D/2

on A`2 r D̂` = GL`

φ(Γ) = ηΓ ∈M∗P`2−1,D`

apply Birkhoff factorization and evaluate convergent integral∫
Σg,`

φ+(Γ)

of algebraic form φ+(Γ).
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Kausz compactification
better method: reduce to forms with logarithmic poles

Need a better compactification of GL`

• PGL` has a wonderful compactification PGL` in the sense of
DeConcini–Procesi (Vainsencher)

• Iterated blowup description: X0 = P`2−1, loci Yi matrices rank i ,
with Ȳi closure in Xi−1

Xi = BlȲi
(Xi−1)

X`−1 = PGL` smooth;
Yi are PGLi -bundles over a product of Grassmannians
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Kausz compactification KGL`:

• Kausz compactification = closure of GL` inside wonderful
compactification of PGL`+1

• Iterated blowup with X0 = P`2
,

Xi = BlYi−1∪Hi
(Xi−1)

with Yi ⊂ A`2
matrices rank i and Hi matrices at infinity, in

P`2−1 = P`2 rA`2

• the Xi are smooth and blowup loci disjoint unions of
PGLi -bundles andKGLi -bundles over a product of Grassmannians

• complement of GL` in KGL` is normal crossings divisor

I. Kausz, A modular compactification of the general linear group,
Documenta Math. 5 (2000) 553–594
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Motive of the Kausz compactification m(KGL`)

• Chow motive of a blowup along a smooth locus (Manin)

m(BlY (X )) = m(X )⊕
codim(Y )−1⊕

r=1

m(Y )⊗ L⊗r ,

• motives of Grassmannians G (d , n) (Köck)

m(G (d , n)) =
⊕
λ∈W d

L⊗|λ|

W d = {λ = (λ1, . . . , λd ) ∈ Nd | n − d ≥ λ1 ≥ · · · ≥ λd ≥ 0}

and |λ| =
∑

i λi
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then inductively:
• motive of a PGLi -bundle over a product of Grassmannians: has
a “sufficiently good” cell decomposition so that motive of F
bundle B over Z decomposes as a product

m(B) ' m(F )⊗m(Z )

• for KGLi -bundles over products of Grassmannians also show
inductively that have good cell decomposition

Conclusion 1: the motive m(KGL`) is mixed Tate

Conclusion 2: the renormalized Feynman integral∫
π−1(Σg,`)

(1− T )ηΓ

is a period of KGL`
... but information loss for certain graphs
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