The Mathematical Theory of Formal Languages: Part I

Matilde Marcolli

MAT1509HS: Mathematical and Computational Linguistics

University of Toronto, Winter 2019, T 4-6 and W 4, BA6180

References for this lecture:

- Ian Chiswell, A course in formal languages, automata and groups, Springer, 2009
- Que György Révész, Introduction to formal languages, McGraw-Hill, 1983
- Noam Chomsky, Three models for the description of language, IRE Transactions on Information Theory, (1956) N.2, 113–124.
- Noam Chomsky, On certain formal properties of grammars, Information and Control, Vol.2 (1959) N.2, 137–167
- A.V. Anisimov, The group languages, Kibernetika (Kiev) 1971, no. 4, 18–24
- D.E. Muller, P.E. Schupp, Groups, the theory of ends, and context-free languages, J. Comput. System Sci. 26 (1983), no. 3, 295–310

A very general abstract setting to describe languages (natural or artificial: human languages, codes, programming languages, ...)

Alphabet: a (finite) set \mathfrak{A} ; elements are *letters* or *symbols*

Words (or strings): $\mathfrak{A}^m = \text{set of all sequences } a_1 \dots a_m \text{ of length } m$ of letters in \mathfrak{A}

Empty word: $\mathfrak{A}^0 = \{\epsilon\}$ (an additional symbol)

$$\mathfrak{A}^+ = \cup_{m \ge 1} \mathfrak{A}^m, \quad \mathfrak{A}^* = \cup_{m \ge 0} \mathfrak{A}^m$$

concatenation: $\alpha = a_1 \dots a_m \in \mathfrak{A}^m$, $\beta = b_1 \dots b_k \in \mathfrak{A}^k$

$$\alpha\beta = a_1 \dots a_m b_1 \dots b_k \in \mathfrak{A}^{m+k}$$

associative $(\alpha\beta)\gamma=\alpha(\beta\gamma)$ with $\epsilon\alpha=\alpha\epsilon=\alpha$ semigroup $\mathfrak{A}^+;$ monoid \mathfrak{A}^\star

Length $\ell(\alpha) = m$ for $\alpha \in \mathfrak{A}^m$

subword: $\gamma \subset \alpha$ if $\alpha = \beta \gamma \delta$ for some other words $\beta, \delta \in \mathfrak{A}^*$: prefix β and suffix δ

Language: a subset of \mathfrak{A}^*

Question: how is the subset constructed?

Rewriting system on \mathfrak{A} : a subset \mathcal{R} of $\mathfrak{A}^* \times \mathfrak{A}^*$ $(\alpha, \beta) \in \mathcal{R}$ means that for any $u, v \in \mathfrak{A}^*$ the word $u\alpha v$ rewrites to $u\beta v$

Notation: write $\alpha \to_{\mathcal{R}} \beta$ for $(\alpha, \beta) \in \mathcal{R}$ \mathcal{R} -derivation: for $u, v \in \mathfrak{A}^*$ write $u \xrightarrow{\bullet}_{\mathcal{R}} v$ if \exists sequence $u = u_1, \ldots, u_n = v$ of elements in \mathfrak{A}^* such that $u_i \to_{\mathcal{R}} u_{i+1}$ Grammar: a quadruple $\mathcal{G} = (V_N, V_T, P, S)$

- V_N and V_T disjoint finite sets: non-terminal and terminal symbols
- $S \in V_N$ start symbol
- *P* finite rewriting system on $V_N \cup V_T$

P = production rules

Language produced by a grammar G:

$$\mathcal{L}_{\mathcal{G}} = \{ w \in V_T^{\star} \mid S \xrightarrow{\bullet}_P w \}$$

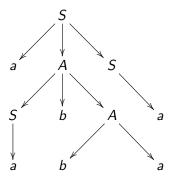
language with alphabet V_T

Production rules can be seen as parsing trees

Example: Grammar: $G = \{\{S, A\}, \{a, b\}, P, S\}$ with productions P

$$S o aAS$$
, $S o a$, $A o SbA$, $A o SS$, $A o ba$

ullet this is a possible parse tree for the string aabbaa in $\mathcal{L}_{\mathcal{G}}$



Context free and context sensitive production rules

- context free: $A \to \alpha$ with $A \in V_N$ and $\alpha \in (V_N \cup V_T)^*$
- context sensitive: $\beta A \gamma \rightarrow \beta \alpha \gamma$ with $A \in V_N$ $\alpha, \beta, \gamma \in (V_N \cup V_T)^*$ and $\alpha \neq \epsilon$

context free is context sensitive with $\beta=\gamma=\epsilon$

"context free" languages: a first attempt (Chomsky, 1956) to model natural languages; not appropriate, but good for some programming languages (e.g. Fortran, Algol, HTML)

The Chomsky hierarchy

Types:

- Type 0: just a grammar G as defined above (unrestricted grammars)
- Type 1: context-sensitive grammars
- Type 2: context-free grammars
- Type 3: regular grammars, where all productions $A \to aB$ or $A \to a$ with $A, B \in V_N$ and $a \in V_T$

(right/left-regular if aB or Ba in r.h.s. of production rules)

Language of type n if produced by a grammar of type n

Examples

• Type 3 (regular): $\mathcal{G} = (\{S,A\},\{0,1\},P,S)$ with productions P given by

$$S \rightarrow 0S$$
, $S \rightarrow A$, $A \rightarrow 1A$, $A \rightarrow 1$

then
$$\mathcal{L}_{\mathcal{G}} = \{0^m 1^n \mid m \geq 0, n \geq 1\}$$

• Type 2 (context-free): $\mathcal{G} = (\{S\}, \{0,1\}, P, S)$ with productions P given by

$$S \rightarrow 0S1$$
, $S \rightarrow 01$

then
$$\mathcal{L}_{\mathcal{G}} = \{0^n 1^n \mid n \geq 1\}$$

• Type 1 (context-sensitive): $\mathcal{G} = (\{S, B, C\}\{a, b, c\}, P, S)$ with productions P

$$S o aSBC,\quad S o aBC,\quad CB o BC,$$
 $aB o ab,\quad bB o bb,\quad bC o bc,\quad cC o cc$ the $\mathcal{L}_{\mathcal{G}}=\{a^nb^nc^n\,|\,n\geq 1\}$

Main Idea: a generative grammar \mathcal{G} determines what kinds of recursive structures are possible in the language $\mathcal{L}_{\mathcal{G}}$

- Examples of Type 0 but not Type 1 are more difficult to construct
 - assume non-terminals $V_T = \{V_n, n \ge 0\}$
 - alphabet $\{a, b\}$
 - can represent any context-sensitive grammar on this alphabet as a string

$$x_1 \rightarrow y_1; x_2 \rightarrow y_2; \dots; x_m \rightarrow y_m$$

of symbols in $\{a, b, ; , \rightarrow, V_n\}$

encode all these possibilities as binary strings

$$a\mapsto 010, \quad b\mapsto 0110, \quad ;\mapsto 01110, \quad \to\mapsto 011110, \quad V_n\mapsto 01^{n+5}0$$

- in set $R = \{w_n = (01^*0)^*\}$ with enumeration by word length plus lexicographic (shortlex)
- recursive (computable) but not context sensitive language:

$$\mathcal{L} = \{ w_n \in R \text{ encoding context sensitive } \mathcal{G}_n \text{ but } w_n \notin \mathcal{L}(\mathcal{G}_n) \}$$

Why is it useful to organize formal languages in this way?

Types and Machine Recognition

Recognized by:

- Type 0: Turing machine
- Type 1: linear bounded automaton
- Type 2: non-deterministic pushdown stack automaton
- Type 3: finite state automaton

What are these things?

Finite state automaton (FSA)

$$M = (Q, F, \mathfrak{A}, \tau, q_0)$$

- Q finite set: set of possible states
- F subset of Q: the final states
- $\mathfrak A$ finite set: alphabet
- $\tau \subset Q \times \mathfrak{A} \times Q$ set of transitions
- $q_0 \in Q$ initial state

computation in M: sequence $q_0 a_1 q_1 a_2 q_2 \dots a_n q_n$ where $q_{i-1} a_i q_i \in \tau$ for $1 \le 1 \le n$

- label of the computation: $a_1 \dots a_n$
- successful computation: $q_n \in F$
- M accepts a string $a_1 \dots a_n$ if there is a successful computation in M labeled by $a_1 \dots a_n$

Language recognized by M:

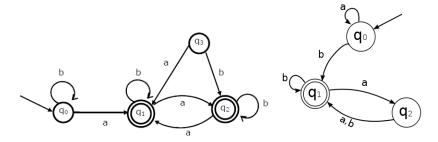
$$\mathcal{L}_M = \{ w \in \mathfrak{A}^{\star} \mid w \text{ accepted by } M \}$$

Graphical description of FSA

Transition diagram: oriented finite labelled graph Γ with vertices $V(\Gamma)=Q$ set of states and $E(\Gamma)=\tau$, with $e_{q,a,q'}$ an edge from v_q to $v_{q'}$ with label $a\in\mathfrak{A}$; label vertex q_0 with - and all final states vertices with +

- computations in $M \Leftrightarrow \text{paths in } \Gamma \text{ starting at } v_{q_0}$
- ullet an oriented labelled finite graph with at most one edge with a given label between given vertices, and only one vertex labelled is the transition diagram of some FDA

Examples



Examples of finite state automata with marked final states

deterministic FSA

for all $q \in Q$ and $a \in \mathfrak{A}$, there is a unique $q' \in Q$ with $(q, a, q') \in \tau$ \Rightarrow function $\delta: Q \times \mathfrak{A} \to Q$ with $\delta(q, a) = q'$, transition function determines $\delta: Q \times \mathfrak{A}^* \to Q$ by $\delta(q, \epsilon) = q$ and $\delta(q, wa) = \delta(\delta(q, w), a)$ for all $w \in \mathfrak{A}^*$ and $a \in \mathfrak{A}$ if $q_0 a_1 q_1 \ldots a_n q_n$ computation in M then $q_n = \delta(q_0, a_1 \ldots a_n)$

non-deterministic: multivalued transition functions also allowed

Languages recognized by (non-deterministic) FSA are Type 3

• for $\mathcal{G} = (V_N, V_T, P, S)$ type 3 grammar construct an FSA

$$M = (V_N \cup \{X\}, F, V_T, \tau, S)$$

with X a new letter, $F = \{S, X\}$ if $S \rightarrow_P \epsilon$, $F = \{X\}$ if not;

$$\tau = \{(B, a, C) \mid B \rightarrow_P aC\} \cup \{(B, a, X) \mid B \rightarrow_P a, a \neq \epsilon\}$$

then $\mathcal{L}_{\mathcal{G}} = \mathcal{L}_{M}$

ullet if M is a FSA take $\mathcal{G}=(Q,\mathfrak{A},P,q_0)$ with P given by

$$P = \{B \rightarrow aC \mid (B, a, C) \in \tau\} \cup \{B \rightarrow a \mid (B, a, C) \in \tau, C \in F\}$$

then $\mathcal{L}_M = \mathcal{L}_{\mathcal{G}}$

Non-deterministic pushdown stack automaton

Example: some type 2 languages such as $\{0^n1^n\}$ would require infinite available number of states (e.g. to memorize number of 0's read before the 1's)

Identify a class of infinite automata, where this kind of memory storage can be done

pushdown stack: a pile where new data can be stored on top; can store infinite length, but only last input can be accessed (first in last out)

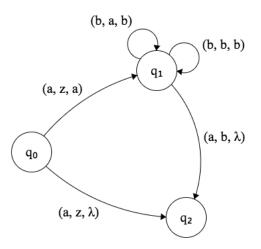
pushdown stack automaton (PDA)

$$M = (Q, F, \mathfrak{A}, \Gamma, \tau, q_0, z_0)$$

- Q finite set of possible states
- F subset of Q: the final states
- $\mathfrak A$ finite set: alphabet
- Γ finite set: stack alphabet
- $\tau \subset Q \times (\mathfrak{A} \cup \{\epsilon\}) \times \Gamma \times Q \times \Gamma^*$ finite subset: set of transitions
- $q_0 \in Q$ initial state
- $z_0 \in \Gamma$ start symbol

- it is a FSA $(Q, F, \mathfrak{A}, \tau, q_0)$ together with a stack Γ^*
- \bullet the transitions are determined by the first symbol in the stack, the current state, and a letter in $\mathfrak{A}\cup\{\epsilon\}$
- \bullet the transition adds a new (finite) sequence of symbols at the beginning of the stack Γ^{\star}
- a configuration of M is an element of $Q \times \mathfrak{A}^* \times \Gamma^*$
- given $(q, a, z, q', \alpha) \in \tau \subset Q \times (\mathfrak{A} \cup \{\epsilon\}) \times \Gamma \times Q \times \Gamma^*$ the corresponding transition is from a configuration $(q, aw, z\beta)$ to a configuration $(q', w, \alpha\beta)$
- computation in M: a chain of transitions $c \to c'$ between configurations $c = c_1, \ldots, c_n = c'$ where each $c_i \to c_{i+1}$ a transition as above

Example



a transition labelled (a, b, c) between vertex q_i and q_j means read letter a on string, read letter b on top of memory stack, remove b and place c at the top of the stack: move from configuration $(q_i, aw, b\alpha)$ to configuration $(q_i, w, c\alpha)$

- computation stops when reach final state or empty stack
- PDA M accepts $w \in \mathfrak{A}^*$ by final state if $\exists \gamma \in \Gamma^*$ and $q \in F$ such that $(q_0, w, z_0) \to (q, \epsilon, \gamma)$ is a computation in M
- Language recognized by *M* by final state

$$\mathcal{L}_M = \{ w \in \mathfrak{A}^* \mid w \text{ accepted by } M \text{ by final state } \}$$

- $w \in \mathfrak{A}^*$ accepted by M by empty stack: if $(q_0, w, z_0) \to (q, \epsilon, \epsilon)$ is a computation on M with $q \in Q$
- Language recognized by *M* by empty stack

$$\mathcal{N}_M = \{ w \in \mathfrak{A}^\star \mid w \text{ accepted by } M \text{ by empty stack } \}$$

deterministic PDA

- **1** at most one transition $(q, a, z, q', \alpha) \in \tau$ with given (q, a, z) source
- ② if there is a transition from (q,ϵ,z) then there is no transition from (q,a,z) with $a \neq \epsilon$

first condition as before; second condition avoids choice between a next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for non-deterministic PDA

$$\mathcal{L} = \mathcal{L}_{M} \Leftrightarrow \mathcal{L} = \mathcal{N}_{M'}$$

not equivalent for deterministic: in deterministic case languages $\mathcal{L} = \mathcal{N}_M$ have additional property:

prefix-free: if $w \in \mathcal{L}$ then no prefix of w is in \mathcal{L}

Languages recognized by (non-deterministic) PDA are Type 2 (context-free)

• If \mathcal{L} is context free then $\mathcal{L} = \mathcal{N}_M$ for some PDA M

 $\mathcal{L}=\mathcal{L}_{\mathcal{G}}$ with $\mathcal{G}=(V_N,V_T,P,S)$ context-free, take $M=(\{q\},\emptyset,V_T,V_N, au,q,S)$ with au given by the (q,a,A,q,γ) for productions $A\to a\gamma$ in P

then for $\alpha \in V_N^{\star}$ and $w \in V_T^{\star}$ have

$$S \stackrel{\bullet}{\to}_P w\alpha \Leftrightarrow (q, w, S) \to_M (q, \epsilon, \alpha)$$

if also $\epsilon \in \mathcal{L}$ add new state q' and new transition $(q, \epsilon, Sq', \epsilon)$, where S start symbol of a PDA that recognizes $\mathcal{L} \setminus \{\epsilon\}$

• if $\mathcal{L} = \mathcal{N}_M$ for PDA M then $\mathcal{L} = \mathcal{L}_{\mathcal{G}}$ with \mathcal{G} context-free for $M = (Q, F, \mathfrak{A}, \Gamma, \tau, q_0, z_0)$ define $\mathcal{G} = (V_N, \mathfrak{A}, P, S)$ where

$$V_N = \{(q, z, p) \mid q, p \in Q, z \in \Gamma\} \cup \{S\}$$

with production rules P given by

- ② $(q, z, p) \rightarrow a(q_1, y_1, q_2)(q_2, y_2, q_3) \cdots (q_m, y_m, q_{m+1})$ with $q_1 = q, \ q_{m+1} = p$ and $(q, a, z, q_1, y_1 \dots y_m)$ transition of M

$$(q, w, z) \rightarrow_M (p, \epsilon, \epsilon) \Leftrightarrow (q, z, p) \xrightarrow{\bullet}_P w$$

Similar arguments show Type 0 = recognized by Turing machine; Type 1 (context sensitive) = recognized by "linear bounded automata" (Turing machines but only part of tape can be used)

Turing machine $T = (Q, F, \mathfrak{A}, I, \tau, q_0)$

- Q finite set of possible states
- F subset of Q: the final states
- A finite set: alphabet (with a distinguished element B blank symbol)
- $I \subset \mathfrak{A} \setminus \{B\}$ input alphabet
- $\tau \subset Q \times \mathfrak{A} \times Q \times \mathfrak{A} \times \{L, R\}$ transitions with $\{L, R\}$ a 2-element set
- $q_0 \in Q$ initial state

 $qaq'a'L \in \tau$ means T is in state q, reads a on next square in the tape, changes to state q', overwrites the square with new letter a' and moves one square to the left

- tape description for T: triple (a, α, β) with $a \in \mathfrak{A}$, $\alpha : \mathbb{N} \to \mathfrak{A}$, $\beta : \mathbb{N} \to \mathfrak{A}$ such that $\alpha(n) = B$ and $\beta(n) = B$ for all but finitely many $n \in \mathbb{N}$ (sequences of letters on tape right and left of a)
- configuration of T: (q, a, α, β) with $q \in Q$ and (a, α, β) a tape description
- ullet configuration c' from c in a single move if either
 - $c = (q, a, \alpha, \beta)$, $qaq'a'L \in \tau$ and $c' = (q', \beta(0), \alpha', \beta')$ with $\alpha'(0) = a'$ and $\alpha'(n) = \alpha(n-1)$, and $\beta'(n) = \beta(n+1)$
 - $c = (q, a, \alpha, \beta)$, $qaq'a'R \in \tau$ and $c' = (q', \alpha(0), \alpha', \beta')$ with $\alpha'(n) = \alpha(n+1)$, and $\beta'(0) = a'$, $\beta'(n) = \beta(n-1)$
- computation $c \to c'$ in T starting at c and ending at c': finite sequence $c = c_1, \dots, c_n = c'$ with c_{i+1} from c_i by a single move
- computation halts if c' terminal configuration, $c' = (q, a, \alpha, \beta)$ with no element in τ starting with qa

- word $w = a_1 \cdots a_n \in \mathfrak{A}^*$ accepted by T if for $c_w = (q_0, a_1 \cdots a_n)$ there is a computation in T of the form $c_w \to c' = (q, a, \alpha, \beta)$ with $q \in F$
- Language recognized by T

$$\mathcal{L}_{\mathcal{T}} = \{ w \in \mathfrak{A}^* \mid w \text{ is accepted by } \mathcal{T} \}$$

• Turing machine T deterministic if for given $(q, a) \in Q \times \mathfrak{A}$ there is at most one element of τ starting with qa

Languages recognized by Turing Machines are Type 0

• if $\mathcal{L} = \mathcal{L}_T$ take grammar $\mathcal{G} = (V_N, V_T, P, S)$ with $V_T = I$,

$$V_{N} = ((I \cup \{\epsilon\}) \times \mathfrak{A}) \cup Q \cup \{S, E_{1}, E_{2}, E_{3}\}$$

extra letters E_1 , E_2 , E_3 and productions P

$$S o E_1 E_2, \quad E_2 o (a,a) E_2, \ a \in \mathfrak{A}, \quad E_2 o E_3$$
 $E_3 o (\epsilon,B) E_3, \quad E_1 o (\epsilon,B) E_1, \quad E_3 o \epsilon, \quad E_1 o q_0$
 $q(a,C) o (a,D) p, \quad \text{with } qCpDR \in \tau, \ a \in I \cup \{\epsilon\}$
 $(a,C) q o p(a,D), \quad \text{with } qCpDL \in \tau, \ a \in I \cup \{\epsilon\}$
 $(a,C) q o qaq, \quad q(a,C) o qaq, \quad q o \epsilon,$

for $a \in I \cup \{\epsilon\}, C \in \mathfrak{A}, q \in F$.

Then $\mathcal{L} = \mathcal{L}_{\mathcal{G}}$

ullet converse statement: $\mathcal{L}=\mathcal{L}_{\mathcal{G}}$ with \mathcal{G} Type $0\Rightarrow\mathcal{L}=\mathcal{L}_{\mathcal{T}}$ with $\mathcal{T}=$ Turing machine

uses a characterization of Type 0 languages as recursively enumerable languages: code \mathfrak{A}^* by natural numbers $f:\mathfrak{A}^*\to\mathbb{N}$ bijection such that $f(\mathcal{L})$ is a recursively enumerable set (Gödel numbering)

recursively enumerable set: A in $\mathbb N$ range $A=g(\mathbb N)$ of a some recursive function

enumerable set A in \mathbb{N} : both A and $\mathbb{N} \setminus A$ are recursively enumerable

recursive function: total functions obtained from primitive recursive (explicit generators and relations) and minimization μ

Part 2: Languages recognized by a Turing machine are Type 0

- ullet $\mathcal{L} = \mathcal{L}_{\mathcal{G}}$ of Type $0 \Leftrightarrow \mathcal{L}$ recursively enumerable
- ullet $\mathcal L$ recursively enumerable \Rightarrow recognized by Turing machine
- (0) assume $\mathfrak{A} = \{2, 3, \dots, r-1\}$ and Gödel numbering $w = x_1 \dots x_k \mapsto \phi(w) = x_1 + x_2 r + \dots + x_k r^k$
- (1) tape alphabet $\{0,1,2,\ldots,r-1\}$, input $I=\mathfrak{A}$, final state $F=\emptyset$, blank symbol 0
- (2) Turing machine that, on tape description $x_1 ldots x_k$ halts with tape description $01^{x_1} ldots 01^{x_k}$
- (3) Turing machine that, on tape description $01^{x_1} \cdots 01^{x_k}0$ halts with tape description $01^{\phi(x_1...x_k)}$
- (4) partial recursive function f with $\mathrm{Dom}(f) = \phi(\mathcal{L})$: Turing machine that, on input 01^x halts iff $x \in \mathrm{Dom}(f)$ with $01^{f(x)}$
- (5) Composition of these three Turing machines recognizes $\mathcal L$

Linear bounded automaton is a Turing machine

 $T=(Q,F,\mathfrak{A},I, au,q_0)$ where only the part of the tape where the input word is written can be used

- input alphabet I has two symbols \,\(\),\(\) right/left end marks
- ② no transitions $q\langle q'aL \text{ or } q\rangle q'aR$ allowed (cannot move past end marks)
- **3** only transitions starting with $q\langle$ or $q\rangle$ are $q\langle q'\langle R \text{ and } q\rangle q'\rangle L$ (cannot overwrite \langle and \rangle)

Languages recognized by linear bounded automata are Type 1 context-sensitive languages are recursive

Representing natural languages?

- Question: How good are context-free grammars at representing natural languages?
- Originally conjectured to be the right class of formal languages to contain natural languages
- Not always good, but often good (better than earlier criticism indicated)
- Some explicit examples not context-free (cross-serial subordinate clause in Swiss-German)
 - G.K. Pullum, G. Gazdar Natural languages and context-free languages, Linguistics and Philosophy, Vol.4 (1982) N.4, 471–504
 - S. Shieber, Evidence against the context-freeness of natural language, Linguistics and Philosophy, Vol.8 (1985) N.3, 333–343

Are natural languages context-free?

• Try to show they are not by finding cross-serial dependencies of arbitrarily large size

- Example: the language $\mathcal{L} = \{xx^R \mid x \in \{a,b\}^*\}$ has cross serial dependencies of arbitrary length (the *i*-th and (n+i)-th term have to be the same $(x^R = \text{reversal of } x)$
- if cross serial dependencies of arbitrary length not context-free

The Swiss German Example

Swiss German cross-serial order in dependent clauses

$$wa^nb^mxc^nd^my$$

Jan säit das mer (d'chind)ⁿ (em Hans)^m es huus haend wele (laa)ⁿ (häfte)^m aastrüche non-context-free language

- S. Shieber, Evidence against the context-freeness of natural language, Linguistics and Philosophy, Vol.8 (1985) N.3, 333–343
 - Context-free class too small
 - Context-sensitive class too large
 - Intermediate candidates:
 - Tree Adjoining Grammars
 - Merge Grammars

Other Problem: Clearly there are many more formal languages that do not correspond to natural (human) languages (even within the appropriate class that contains natural languages)

Example: Programming Languages: Fortran is context-free; C is context-sensitite; C^{++} is Type 0, ...

Examples: Formal Languages constructed from finitely presented discrete groups

Formal Language of a finitely presented group

- Group G, with presentation $G = \langle X | R \rangle$ (finitely presented)
 - X (finite) set of generators x_1, \ldots, x_N
 - R (finite) set of relations: $r \in R$ words in the generators and their inverses
- for $G = \langle X \mid R \rangle$ call $\hat{X} = \{x, x^{-1} \mid x \in X\}$ symmetric set of generators
- Language associated to a finitely presented group $G = \langle X \mid R \rangle$

$$\mathcal{L}_G = \{ w \in \hat{X}^* \mid w = 1 \in G \}$$

set of words in the generators representing trivial element of G

• Question: What kind of formal language is it?

- ullet Algebraic properties of the group G correspond to properties of the formal language \mathcal{L}_G :
 - **1** \mathcal{L}_G is a regular language (Type 3) iff G is finite (Anisimov)
 - 2 \mathcal{L}_G is context-free (Type 2) iff G has a free subgroup of finite index (Muller–Schupp)

Example: Take $G = \mathrm{SL}_2(\mathbb{Z})$, infinite so \mathcal{L}_G not regular; generators

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

with relations S^2 and $(ST)^3$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

generate a free subgroup F_2 of index 12 in $\mathrm{SL}_2(\mathbb{Z})$ (of index 2 in $\Gamma(2)$ that has index 6 in $\mathrm{SL}_2(\mathbb{Z})$) so $\mathcal{L}_{\mathrm{SL}_2(\mathbb{Z})}$ is context-free

The "Boundaries of Babel" Problem

- Given a class of formal languages good enough to contain natural languages
- How to characterize the "region" within this class of formal languages that is populated by actual human (natural) languages?
- What is the geometry of the space of natural languages inside the space of formal languages?
- Andrea Moro, *The Boundaries of Babel. The Brain and the Enigma of Impossible Languages*, Second Edition, MIT Press, 2015

Want: a characterization and parameterization of the syntax of human languages

