What is Linguistics?
Part II

Matilde Marcolli
CS101: Mathematical and Computational Linguistics

Winter 2015
Morphology

- **word-forms** (sing, sang, sings, singing, ...)
- **lexeme** underlying “vocabulary-word”, base-form, different word-forms of same lexeme
- **morphological rules**: two kinds
 - **inflection rules** (relate different forms of same lexeme): conjugation, declension
 - **word formation** (combine different lexemes): e.g. dishwasher
- **word formation**: two kinds
 - **derivation**: affixing bound-forms (sing-er, slow-ly, ...)
 - **compounding**: combines complete word forms (dish-washer)
• Some languages extremely rich in compound words, other poor
• Even within same language family huge differences

Curious example: among ancient Indo-European languages, Sanskrit and Ancient Greek are very rich in compound words (Homer’s ροδὸδακτυλος Ὡς) but Hittite has no compound word formation at all

• paradigm: the set of all word-forms associated to a given lexeme
Examples:
- conjugation of verbs (tense, aspect, mood);
- declension of nouns (number, gender, case);
- personal pronouns arranged by person, number, gender
Allomorphy

- **morpheme**: smallest grammatical units, *roots* and *affixes*
- **allomorphs**: different morphemes playing same grammatical role

Example: negation prefixes in English
- *a-*, *an-* (from Greek): anesthesia, anisotropic, acyclic
- *in-*, *im-* (from Latin): impossible, incompressible, invincible
- *un-* (English): unbiased, unaffected, unacceptable

Example: different forms of plural in English
boy \mapsto boys; watch \mapsto watches;
child \mapsto children; woman \mapsto women

Example: strong verbs (sleep/slept)

- **phonological allomorphs**: regular phonological rules
- **suppletive allomorphs**: exceptional
Morphological Typology
Grouping languages by morphological structures

- **Analytic**: small amount of inflection, replaced by word order and additional word (Mandarin)
- **Isolating**: few morphemes per word (Vietnamese)
- **Synthetic**: typically several morphemes can combine in words, high in inflection forms (many Indo-European languages)

Examples:
- German: *Abstimmungsbekanntmachung*
- Russian: *Достопримечательность*

- **Polysynthetic**: extremely long compound words with *sentence-words* (America, Australia, Siberia, Papua New Guinea)
 - compositionally polysynthetic, affixally polysynthetic
 - incorporating, agglutinating, fusional
Hierarchical structures

- **bracketing** (as in non-associative algebra)

\[
\text{unfriendliness} = ((\text{un-} ((\text{friend}) -\text{ly}))) -\text{ness}
\]

```
unfriendliness
  /     \
unfriendly         -ness
     /      \    
  un-      friendly
       /        \
  friend      -ly
```
Linguistics kind of looks like this...

Lexicology (and lexical semantics)

- *diachronic*: changes across time in the use of words and word formation
- *synchronic* (Structuralist): lexical relations (at a given time), syntagmatic lexical relations (culturally determined patterns of association between lexical units)
- various WordNet lexical and semantic databases
- **Phraseology**: *phrasemes*—multi-word lexical units, includes study of idiomatic expressions (e.g. “it’s raining cats and dogs”)
- **Etymology**: origin and history of words, crucial role in historical linguistics: comparative methods, reconstruction of proto-languages
Syntax the large-scale structure of languages

- the basic units of structure at this level are sentences
- rules and principles governing sentence structure (within a language, or across languages)
- origin of scientific syntactic theory: 4th century BCE
 अष्टाध्यायी (Aṣṭādhyāyī) of पाणिनि (Pāṇini)
- origin of “traditional grammar”: 2nd century BCE
 Διονύσιος ὁ Ἐρᾶς Ἑνη γραμματική
- Dionysius Thrax’s Techne was a primarily morphological grammar, little emphasis on syntax, while Pāṇini focused on all aspects (phonology, morphology, syntax): basis of modern syntactic theory
Modern Syntactic Theory:

- i-language versus e-language: internal language (mental) as opposed to external (community based records of language use): focus on i-language as object of study

- grammaticality: judgement on whether a sentence is well formed (grammatical) in a given language, i-language gives people the capacity to decide on grammaticality

- generative grammar: produce a set of rules that correctly predict grammaticality of sentences

- universal grammar: ability to learn grammar is built in the human brain, e.g. properties like distinction between nouns and verbs are universal, ... is universal grammar a falsifiable theory?
Modern Syntactic Theory: some of the main models

- Transformational grammar
- Government and Binding (Principles and Parameters)
- Minimalist Program
- Head-driven Phrase Structure Grammar
- Lexical Functional Grammar
- Tree-adjoining Grammar
Transformational Grammar (Chomsky, 1957)

- Sentences have two levels of structure: *deep structure* and *surface structure*

- *deep structure*: closer to semantic level, properties common across languages, mapped to surface structure via *transformations* that operate on parse trees underlying sentences

- *surface structure*: language specific

- A transformational grammar is a system of tree automata

- In more recent theories (minimalist program), deep structure and surface structure replaced by *logical form* and *phonetic form*

...more details later, after discussing formal languages
Government and Binding (Principles and Parameters) (Chomsky, 1981)

- **principles**: general rules of grammar
- **parameters**: binary variables (on/off switches) that distinguish languages in terms of syntactic structures
- Example of parameter: head-directionality (head-initial versus head-final)
 English is head-initial, Japanese is head-final

\[\text{VP} = \text{verb phrase}, \quad \text{TP} = \text{tense phrase}, \quad \text{DP} = \text{determiner phrase} \]
...but not always so clear-cut: German can use both structures

\textit{auf seine Kinder stolze Vater} (head-final) or
\textit{er ist stolz auf seine Kinder} (head-initial)

\[
\begin{align*}
\text{AP}= \text{adj. phrase, PP}= \text{prep. phrase} \\
\textbullet \text{Corpora based statistical analysis of head-directionality (Haitao Liu, 2010): a continuum between head-initial and head-final}
\end{align*}
\]
Examples of Principles

- **Structure Preservation Principle**: identifies transformations preserving deep structure (e.g. rephrasing in passive form)
- **Projection Principle**: lexical properties preserved when forming new sentences from given ones (phrase structure rules projected from lexical rules)
- **Subjacency Principle**: transformation moves are “local” (don’t move elements of phrases across more than one “bounding node” S=sentence and NP=noun phrase)
Examples of Parameters

- *Head-directionality*
- *Subject-side*
- *Pro-drop*
- *Null-subject*

Problems

- Interdependencies between parameters
- Diachronic changes of parameters in language evolution
Word Order and Parameters

- **Subject-side** parameter: positioning of the subject with respect to the head (specifier-head, head-specifier, and subject-initial, subject-medial, subject-final)

- **Word Order**: SOV, SVO, VSO, VOS, OVS, OSV

<table>
<thead>
<tr>
<th>Word Orders</th>
<th>Percentage</th>
<th>Subject Position</th>
<th>Head Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOV</td>
<td>41.03%</td>
<td>Subject-initial</td>
<td>Specifier-Head</td>
</tr>
<tr>
<td>SVO</td>
<td>35.44%</td>
<td>Subject-medial</td>
<td>Specifier-Head</td>
</tr>
<tr>
<td>VSO</td>
<td>6.90%</td>
<td>Subject-medial</td>
<td>Head-Specifier</td>
</tr>
<tr>
<td>VOS</td>
<td>1.82%</td>
<td>Subject-final</td>
<td></td>
</tr>
<tr>
<td>OVS</td>
<td>0.79%</td>
<td>Subject-medial</td>
<td>Specifier-Head</td>
</tr>
<tr>
<td>OSV</td>
<td>0.29%</td>
<td>Subject-medial</td>
<td>Specifier-Head</td>
</tr>
</tbody>
</table>

Very uneven distribution across world languages
Changes over time in Word Order

- Ancient Greek: switched from Homeric to Classical
 - A. Taylor, *The change from SOV to SVO in Ancient Greek*, Language Variation and Change, 6 (1994) 1–37

- Sanskrit: different word orders allowed, but prevalent one in Vedic Sanskrit is SOV

- English: switched from Old English (transitional between SOV and SVO) to Middle English (SVO)
• Word order distribution: a neuroscience explanation?
 - D. Kemmerer, *The cross-linguistic prevalence of SOV and SVO word orders reflects the sequential and hierarchical representation of action in Broca’s area*, Language and Linguistics Compass, 6 (2012) N.1, 50–66.

• Internal reasons for diachronic switch?
Dependent parameters

- **null-subject** parameter: can drop subject
 Example: among Latin languages, Italian and Spanish have null-subject (+), French does not (-)
 it rains, piove, llueve, il pleut

- **pro-drop** parameter: can drop pronouns in sentences
 不知道。喜欢吗？
 Bù zhīdào. Xīhuan ma?

- Pro-drop controls Null-subject

How many independent parameters?
Government and Binding

- based on Principles and Parameters model of language
- if A and B are two nodes in a syntactic tree,
 A *m-commands* B iff
 - neither node dominates the other
 - the maximal projection AP of A dominates B

\[\text{A m-commands B, but B does not m-command A} \]
• if X and Y are two nodes in a syntactic tree, X *c-commands* Y (constituent command) iff
 - neither node dominates the other
 - the first node that dominates X also dominates Y

A and B c-command each other, C and D also, A also c-commands C and D

• A node X *m-commands* all nodes it c-commands, but also the nodes in XP
• node A governs B iff
 - A is a **governor** (head of lexical category $V,N,A,...$)
 - A m-commands B
 - no barrier between A and B

• A **barrier** (between A and B) is a node X in a syntactic tree
 - X c-commands B
 - X does not c-command A
• **Binding** A binds B iff
 - A c-commands B
 - A and B are coreferential (refer to the same person)

in this sentence, “John” binds “his”

• These rules are used to test grammaticality of sentences
Minimalist Program (Chomsky, 1993)

- a program not a theory: guiding conceptual framework
- minimalist questions, whose answer may be framed within the context of different theories
- within Principles and Parameters setting
- postulates the existence of an underlying *simple computational structure* responsible for linguistic capability in the human mind (related to the idea of Universal Grammar)
- some minimality assumptions: *economy of representation* (sentence structure no more complicated than minimally required to satisfy constraints imposed by grammaticality); *economy of derivation* (transformations only occur if they make parts of sentence interpretable, e.g. disambiguation produced by inflection)
• Bare phrase structure: an explicitly derivational model of sentence building (as opposed to representational)
• Basic operations: merge and move
• Merge: \((\alpha, \beta) \mapsto \{\alpha, \{\alpha, \beta}\}\) or \(\{\beta, \{\alpha, \beta\}\}\)
 Example: \((\text{drink, water}) \mapsto \{\text{drink}, \{\text{drink, water}\}\}\)
 Example: \((\text{cold, water}) \mapsto \{\text{water}, \{\text{cold, water}\}\}\)
 The first merged “drink water” can be inserted in a sentence in place of “drink”; the second merge “cold water” can be inserted in place of “water”
• iterations: \((\gamma, \{\alpha, \{\alpha, \beta\}\}) \mapsto \{\gamma, \{\gamma, \{\alpha, \{\alpha, \beta\}\}\}\}\)
• **Move**: moving parts of a sentence within the sentence

Example:

You are looking for someone

Whom are you looking for?

• Placeholder symbol (trace) for the moved element

(Whom) are you looking for (t)?

“Whom” and its trace symbol “(t)” are a *chain*, similarly for other elements that change position

• Currently different approaches on how best to formulate the “Move” operations
Head-driven phrase structure grammar (HPSG) (Carl Pollard, Ivan Sag 1987)

- used in natural language processing (parsing)
- lexical data with entries marked by *types* hierarchy
- *signs*: words, or phrases; with location in type hierarchy and with internal *feature structure*
- these properties represented by *attribute value matrices* (AVM)

\[
\begin{bmatrix}
\text{category} \\
\text{agreement}
\end{bmatrix} \quad \begin{bmatrix}
\text{noun phrase} \\
\text{number} & \text{singular} \\
\text{person} & \text{third}
\end{bmatrix}
\]
• constraints (ID/LP)
• immediate dominance (ID) and linear precedence (LP)

Example:

S
 NP VP

S-node dominates NP and VP nodes: ID relation
and NP precedes VP: LP relation [NP VP]
Example: immediate dominance rule for a head-subj-phrase
• HPSG generates **strings** by combining signs
Lexical Functional Grammar (LFG) (Joan Bresnan and Ronald Kaplan, 1982)

- some languages appear to challenge rigid phrase structure, and have free word order

- *non-configurational languages* (Mohawk, Nahuatl, Warlpiri, ...)

- Principles and Parameters approach: not really non-configurational

- Lexical Functional Grammar: alternative approach that works for non-configurational
• Feature structures (as with HPSG): f-structure
• Syntactic constituents (trees, ID/LP): c-structure
• other levels of structure: s-structure (semantic), m-structure (morphological), p-structure (phonological)
• operations interpreted lexically instead of acting on trees (e.g. passivization: both active and passive forms in lexicon)
• no deep structure/surface structure
• includes a theory of syntactic-semantic interface: glue semantics
Tree Adjoining Grammar (Aravind Joshi, 1969)

- developed as formal languages (as a generalization of context-free grammars)
- rooted trees with a marked foot leaf node (a word); basic trees and auxiliary trees (these have same symbol labeling root and foot)
- two operations: substitution (leaf/root grafting) and adjunction (insertion of an auxiliary tree at an internal node labelled by auxiliary root/foot label)
- main idea: these two operations should suffice to describe all syntactic dependencies
- LTAG: lexicalized tree-adjoining grammar: each elementary tree associated with an item in a lexical database (XTAG project, LTAG parser)

... more details after discussing formal languages