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Chapter 3

Feynman integrals and algebraic

varieties

3.1 The parametric Feynman integrals

Using the Feynman parameters introduced in §1.7 above, we show how to
reformulate the Feynman integral U(Γ, p1, . . . , pN ) of (1.35) in the form
known as Feynman parametric representation.

The first step is to rewrite the denominator q1 · · · qn of (1.35) in the
form of an integration on the topological simplex σn as in (1.49), in terms
of the Feynman parameters t = (t1, . . . , tn) ∈ σn.

In writing the integral (1.35) we have made a choice of an orientation
of the graph Γ, since the matrix εv,i involved in writing the conservation
laws at vertices in (1.35) depends on the orientation given to the edges of
the graph. Now we also make a choice of a set of generators for the first
homology group H1(Γ, Z), i.e. a choice of a maximal set of independent
loops in the graph, {l1, . . . , l!} with # = b1(Γ) the first Betti number.

We define then another matrix associated to the graph Γ, the circuit
matrix η = (ηik), with i ∈ E(Γ) and k = 1, . . . , # ranging over the chosen
basis of loops, given by

ηkr =







+1 if edge ei ∈ loop lk, same orientation
−1 if edge ei ∈ loop lk, reverse orientation

0 if edge ei /∈ loop lk.
(3.1)

There is a relation between the circuit and the incidence matrix of the
graph, which is given as follows.

Lemma 3.1.1. The incidence matrix ε = (εv,i) and the circuit matrix η =
(ηik) of a graph Γ satisfy the relation εη = 0. This holds independently of
the choice of the orientation of the graph and the basis of H1(Γ, Z).

Proof. (To be added later) !
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We then define the Kirchhoff matrix of the graph, also known as the
Symanzik matrix.

Definition 3.1.2. The Kirchhoff–Symanzik matrix MΓ(t) of the graph Γ
is the # × #-matrix given by

(MΓ(t))kr =
n

∑

i=1

tiηikηir. (3.2)

Equivalently, it can be written as

MΓ(t) = η†Λ(t)η,

where † is the transpose and Λ(t) is the diagonal matrix with entries
(t1, . . . , tn). We think of MΓ as a function

MΓ : An → A!2 , t = (t1, . . . , tn) %→ MΓ(t) = (MΓ(t))kr (3.3)

where A denotes the affine line over a field (here mostly C or R or Q).

Definition 3.1.3. The Kirchhoff–Symanzik polynomial ΨΓ(t) of the graph
Γ is defined as

ΨΓ(t) = det(MΓ(t)). (3.4)

Notice that, while the construction of the matrix MΓ(t) depends on the
choice of an orientation on the graph Γ and of a basis of H1(Γ, Z), the graph
polynomial is independent of these choices.

Lemma 3.1.4. The Kirchhoff–Symanzik polynomial ΨΓ(t) is independent
of the choice of edge orientation and of the choice of generators for
H1(Γ, Z).

Proof. A change of orientation in a given edge results in a change of sign
in one of the columns of η = ηik. The change of sign in the corresponding
row of η† leaves the determinant of MΓ(t) = η†Λ(t)η unaffected. A change
of basis for H1(Γ, Z) changes MΓ(t) %→ AMΓ(t)A−1, where A ∈ GL!(Z) is
the matrix that gives the change of basis. The determinant is once again
unchanged. !

We view it as a function ΨΓ : An → A. We define the affine graph
hypersurface X̂Γ to be the locus of zeros of the graph polynomial

X̂Γ = {t ∈ An |ΨΓ(t) = 0}. (3.5)
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The polynomial ΨΓ is by construction a homogeneous polynomial of degree
# = b1(Γ), hence we can view it as defining a hypersurface in projective
space Pn−1 = (An ! {0})/Gm,

XΓ = {t ∈ Pn−1 |ΨΓ(t) = 0}, (3.6)

of which X̂Γ is the affine cone X̂Γ = C(XΓ).

After rewriting the denominator of the integrand in (1.35) in terms of an
integration on σn using the Feynman parameters, we want to replace in the
Feynman integral U(Γ, p1, . . . , pN ) the variables ki associated to the internal
edges, and the integration in these variables, by variables xr associated
to the independent loops in the graph and an integration only on these
variables, using the linear constraints at the vertices. We set

ki = ui +
!

∑

r=1

ηirxr, (3.7)

with the constraint
n

∑

i=1

tiuiηir = 0, ∀r = 1, . . . , #, (3.8)

that is, we require that the column vector Λ(t)u is orthogonal to the rows
of the circuit matrix η.

The momentum conservation conditions in the delta function in the
numerator of (1.35) gives

n
∑

i=1

εv,iki +
N

∑

j=1

εv,jpj = 0. (3.9)

Lemma 3.1.5. Using the change of variables (3.7) and the constraint (3.8)
one finds the conservation condition

n
∑

i=1

εv,iui +
N

∑

j=1

εv,jpj = 0. (3.10)

Proof. This follows immediately from the orthogonality relation between
the incidence and circuit matrix of Lemma 3.1.1. !

The two equations (3.8) and (3.10) constitute the Krichhoff laws of
circuits applied to the flow of momentum through the Feynman graph.
In particular they determine uniquely the ui = ui(p) as functions of the
external momenta. We see the explicit form of the solution in Proposition
3.1.6 below.
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Proposition 3.1.6. The term
∑

i tiu2
i is of the form

∑

i tiu2
i = p†RΓ(t)p,

where RΓ(t) is an N × N -matrix, with N = #Eext(Γ) with

p†RΓ(t)p =
∑

v,v′∈V (Γ)

Pv(DΓ(t)−1)v,v′Pv′ ,

with

(DΓ(t))v,v′ =
n

∑

i=1

εv,iεv′,it
−1
i

and

Pv =
∑

e∈Eext(Γ),t(e)=v

pe.

Proof. (To be added later) !

We set

VΓ(t, p) = p†RΓ(t)p + m2. (3.11)

In the massless case (m = 0), we will see below that this is a ratio of two
homogeneous polynomials in t,

VΓ(t, p)|m=0 =
PΓ(t, p)

ΨΓ(t, p)
, (3.12)

of which the denominator is the graph polynomial (3.4) and PΓ(t, p) is a
homogeneous polynomial of degree b1(Γ) + 1.

We can now rewrite the Feynman integral in its parametric form as
follows, see [Bjorken and Drell (1964)] §8 and [Bjorken and Drell (1965)]
§18.

Theorem 3.1.7. Up to a multiplicative constant Cn,!,the Feynman integral
U(Γ, p1, . . . , pN ) can be equivalently written in the form

U(Γ, p1, . . . , pN ) =
Γ(n − D!

2 )

(4π)D!/2

∫

σn

ωn

ψΓ(t)D/2VΓ(t, p)n−D!/2
, (3.13)

where ωn is the volume form on the simplex σn.

Proof. We first show that we have

∫

dDx1 · · · dDx!

(
∑n

i=0 tiqi)n
= C!,n det(MΓ(t))−D/2(

n
∑

i=0

ti(u
2
i +m2))−n+D!/2, (3.14)
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where ui = ui(p) as above. In fact, after the change of variables (3.7), the
left hand side of (3.14) reads

∫

dDx1 · · · dDx!

(
∑n

i=0 ti(u2
i + m2) +

∑

kr(MΓ)krxkxr)n
.

The integral can then be reduced by a further change of variables that
diagonalizes the matrix MΓ to an integral of the form

∫

dDy1 · · · dDy!

(a +
∑

k λky2
k)n

= C!,n a−n+D!/2
!

∏

k=1

λ−D/2
k ,

with

C!,n =

∫

dDx1 · · · dDx!

(1 +
∑

k x2
k)n

.

We then write detMΓ(t) = ΨΓ(t) and we use the expression of Proposition
3.1.6 to express the term (

∑

i ti(u2
i + m2))−n+D!/2 in terms of

∑

i

ti(u
2
i + m2) =

∑

i

tiu
2
i + m2 = VΓ(t, p),

with VΓ(t, p) as in (3.11). !

The graph polynomial ΨΓ(t) has a more explicit combinatorial descrip-
tion in terms of the graph Γ, as follows.

Proposition 3.1.8. The Kirchhoff–Symanzik polynomial ΨΓ(t) of (3.4) is
given by

ΨΓ(t) =
∑

T⊂Γ

∏

e/∈E(T )

te, (3.15)

where the sum is over all the spanning trees T of the graph Γ and for each
spanning tree the product is over all edges of Γ that are not in that spanning
tree.

Proof. (To be added later) !


