Chapter 3

Feynman integrals and algebraic varieties

3.1 The parametric Feynman integrals

Using the Feynman parameters introduced in §1.7 above, we show how to reformulate the Feynman integral $U(\Gamma, p_1, \ldots, p_N)$ of (1.35) in the form known as *Feynman parametric representation*.

The first step is to rewrite the denominator $q_1 \cdots q_n$ of (1.35) in the form of an integration on the topological simplex σ_n as in (1.49), in terms of the Feynman parameters $t = (t_1, \ldots, t_n) \in \sigma_n$.

In writing the integral (1.35) we have made a choice of an orientation of the graph Γ , since the matrix $\epsilon_{v,i}$ involved in writing the conservation laws at vertices in (1.35) depends on the orientation given to the edges of the graph. Now we also make a choice of a set of generators for the first homology group $H_1(\Gamma, \mathbb{Z})$, *i.e.* a choice of a maximal set of independent loops in the graph, $\{l_1, \ldots, l_\ell\}$ with $\ell = b_1(\Gamma)$ the first Betti number.

We define then another matrix associated to the graph Γ , the *circuit* matrix $\eta = (\eta_{ik})$, with $i \in E(\Gamma)$ and $k = 1, \ldots, \ell$ ranging over the chosen basis of loops, given by

 $\eta_{kr} = \begin{cases} +1 \text{ if edge } e_i \in \text{ loop } l_k, \text{ same orientation} \\ -1 \text{ if edge } e_i \in \text{ loop } l_k, \text{ reverse orientation} \\ 0 \text{ if edge } e_i \notin \text{ loop } l_k. \end{cases}$ (3.1)

There is a relation between the circuit and the incidence matrix of the graph, which is given as follows.

Lemma 3.1.1. The incidence matrix $\epsilon = (\epsilon_{v,i})$ and the circuit matrix $\eta = (\eta_{ik})$ of a graph Γ satisfy the relation $\epsilon \eta = 0$. This holds independently of the choice of the orientation of the graph and the basis of $H_1(\Gamma, \mathbb{Z})$.

Proof. (To be added later)

22

FeynmanMotivesBook

Feynman Motives

We then define the Kirchhoff matrix of the graph, also known as the Symanzik matrix.

Definition 3.1.2. The Kirchhoff–Symanzik matrix $M_{\Gamma}(t)$ of the graph Γ is the $\ell \times \ell$ -matrix given by

$$(M_{\Gamma}(t))_{kr} = \sum_{i=1}^{n} t_i \eta_{ik} \eta_{ir}.$$
 (3.2)

Equivalently, it can be written as

$$M_{\Gamma}(t) = \eta^{\dagger} \Lambda(t) \eta,$$

where \dagger is the transpose and $\Lambda(t)$ is the diagonal matrix with entries (t_1, \ldots, t_n) . We think of M_{Γ} as a function

$$M_{\Gamma} : \mathbb{A}^n \to \mathbb{A}^{\ell^2}, \quad t = (t_1, \dots, t_n) \mapsto M_{\Gamma}(t) = (M_{\Gamma}(t))_{kr}$$
(3.3)

where \mathbb{A} denotes the affine line over a field (here mostly \mathbb{C} or \mathbb{R} or \mathbb{Q}).

Definition 3.1.3. The Kirchhoff–Symanzik polynomial $\Psi_{\Gamma}(t)$ of the graph Γ is defined as

$$\Psi_{\Gamma}(t) = \det(M_{\Gamma}(t)). \tag{3.4}$$

Notice that, while the construction of the matrix $M_{\Gamma}(t)$ depends on the choice of an orientation on the graph Γ and of a basis of $H_1(\Gamma, \mathbb{Z})$, the graph polynomial is independent of these choices.

Lemma 3.1.4. The Kirchhoff–Symanzik polynomial $\Psi_{\Gamma}(t)$ is independent of the choice of edge orientation and of the choice of generators for $H_1(\Gamma, \mathbb{Z})$.

Proof. A change of orientation in a given edge results in a change of sign in one of the columns of $\eta = \eta_{ik}$. The change of sign in the corresponding row of η^{\dagger} leaves the determinant of $M_{\Gamma}(t) = \eta^{\dagger} \Lambda(t) \eta$ unaffected. A change of basis for $H_1(\Gamma, \mathbb{Z})$ changes $M_{\Gamma}(t) \mapsto AM_{\Gamma}(t)A^{-1}$, where $A \in \operatorname{GL}_{\ell}(\mathbb{Z})$ is the matrix that gives the change of basis. The determinant is once again unchanged.

We view it as a function $\Psi_{\Gamma} : \mathbb{A}^n \to \mathbb{A}$. We define the affine graph hypersurface \hat{X}_{Γ} to be the locus of zeros of the graph polynomial

$$X_{\Gamma} = \{ t \in \mathbb{A}^n \mid \Psi_{\Gamma}(t) = 0 \}.$$
(3.5)

World Scientific Book - 9in × 6in

23

FeynmanMotivesBoo

Feynman integrals and algebraic varieties

The polynomial Ψ_{Γ} is by construction a homogeneous polynomial of degree $\ell = b_1(\Gamma)$, hence we can view it as defining a hypersurface in projective space $\mathbb{P}^{n-1} = (\mathbb{A}^n \setminus \{0\})/\mathbb{G}_m$,

$$X_{\Gamma} = \{ t \in \mathbb{P}^{n-1} \, | \, \Psi_{\Gamma}(t) = 0 \}, \tag{3.6}$$

of which \hat{X}_{Γ} is the affine cone $\hat{X}_{\Gamma} = C(X_{\Gamma})$.

After rewriting the denominator of the integrand in (1.35) in terms of an integration on σ_n using the Feynman parameters, we want to replace in the Feynman integral $U(\Gamma, p_1, \ldots, p_N)$ the variables k_i associated to the internal edges, and the integration in these variables, by variables x_r associated to the independent loops in the graph and an integration only on these variables, using the linear constraints at the vertices. We set

$$k_i = u_i + \sum_{r=1}^{\ell} \eta_{ir} x_r, \qquad (3.7)$$

with the constraint

$$\sum_{i=1}^{n} t_{i} u_{i} \eta_{ir} = 0, \quad \forall r = 1, \dots, \ell,$$
(3.8)

that is, we require that the column vector $\Lambda(t)u$ is orthogonal to the rows of the circuit matrix η .

The momentum conservation conditions in the delta function in the numerator of (1.35) gives

$$\sum_{i=1}^{n} \epsilon_{v,i} k_i + \sum_{j=1}^{N} \epsilon_{v,j} p_j = 0.$$
(3.9)

Lemma 3.1.5. Using the change of variables (3.7) and the constraint (3.8) one finds the conservation condition

$$\sum_{i=1}^{n} \epsilon_{v,i} u_i + \sum_{j=1}^{N} \epsilon_{v,j} p_j = 0.$$
(3.10)

Proof. This follows immediately from the orthogonality relation between the incidence and circuit matrix of Lemma 3.1.1. \Box

The two equations (3.8) and (3.10) constitute the Krichhoff laws of circuits applied to the flow of momentum through the Feynman graph. In particular they determine uniquely the $u_i = u_i(p)$ as functions of the external momenta. We see the explicit form of the solution in Proposition 3.1.6 below.

FeynmanMotivesBook

24

Feynman Motives

Proposition 3.1.6. The term $\sum_i t_i u_i^2$ is of the form $\sum_i t_i u_i^2 = p^{\dagger} R_{\Gamma}(t) p$, where $R_{\Gamma}(t)$ is an $N \times N$ -matrix, with $N = \# E_{ext}(\Gamma)$ with

$$p^{\dagger}R_{\Gamma}(t)p = \sum_{v,v' \in V(\Gamma)} P_{v}(D_{\Gamma}(t)^{-1})_{v,v'}P_{v'},$$

with

$$(D_{\Gamma}(t))_{v,v'} = \sum_{i=1}^{n} \epsilon_{v,i} \epsilon_{v',i} t_i^{-1}$$

and

$$P_v = \sum_{e \in E_{ext}(\Gamma), t(e) = v} p_e.$$

Proof. (To be added later)

We set

$$V_{\Gamma}(t,p) = p^{\dagger} R_{\Gamma}(t) p + m^2. \qquad (3.11)$$

In the massless case (m = 0), we will see below that this is a ratio of two homogeneous polynomials in t,

$$V_{\Gamma}(t,p)|_{m=0} = \frac{P_{\Gamma}(t,p)}{\Psi_{\Gamma}(t,p)},$$
(3.12)

of which the denominator is the graph polynomial (3.4) and $P_{\Gamma}(t, p)$ is a homogeneous polynomial of degree $b_1(\Gamma) + 1$.

We can now rewrite the Feynman integral in its parametric form as follows, see [Bjorken and Drell (1964)] §8 and [Bjorken and Drell (1965)] §18.

Theorem 3.1.7. Up to a multiplicative constant $C_{n,\ell}$, the Feynman integral $U(\Gamma, p_1, \ldots, p_N)$ can be equivalently written in the form

$$U(\Gamma, p_1, \dots, p_N) = \frac{\Gamma(n - \frac{D\ell}{2})}{(4\pi)^{D\ell/2}} \int_{\sigma_n} \frac{\omega_n}{\psi_{\Gamma}(t)^{D/2} V_{\Gamma}(t, p)^{n - D\ell/2}}, \qquad (3.13)$$

where ω_n is the volume form on the simplex σ_n .

Proof. We first show that we have

$$\int \frac{d^D x_1 \cdots d^D x_\ell}{(\sum_{i=0}^n t_i q_i)^n} = C_{\ell,n} \det(M_{\Gamma}(t))^{-D/2} (\sum_{i=0}^n t_i (u_i^2 + m^2))^{-n + D\ell/2}, \quad (3.14)$$

World Scientific Book - 9in x 6in

FeynmanMotivesBook

25

$Feynman\ integrals\ and\ algebraic\ varieties$

where $u_i = u_i(p)$ as above. In fact, after the change of variables (3.7), the left hand side of (3.14) reads

$$\int \frac{d^D x_1 \cdots d^D x_\ell}{\left(\sum_{i=0}^n t_i (u_i^2 + m^2) + \sum_{kr} (M_\Gamma)_{kr} x_k x_r\right)^n}$$

The integral can then be reduced by a further change of variables that diagonalizes the matrix M_{Γ} to an integral of the form

$$\int \frac{d^D y_1 \cdots d^D y_\ell}{(a + \sum_k \lambda_k y_k^2)^n} = C_{\ell,n} \, a^{-n + D\ell/2} \prod_{k=1}^\ell \lambda_k^{-D/2},$$

with

$$C_{\ell,n} = \int \frac{d^D x_1 \cdots d^D x_\ell}{(1 + \sum_k x_k^2)^n}.$$

We then write det $M_{\Gamma}(t) = \Psi_{\Gamma}(t)$ and we use the expression of Proposition 3.1.6 to express the term $(\sum_i t_i (u_i^2 + m^2))^{-n + D\ell/2}$ in terms of

$$\sum_{i} t_i (u_i^2 + m^2) = \sum_{i} t_i u_i^2 + m^2 = V_{\Gamma}(t, p),$$

with $V_{\Gamma}(t,p)$ as in (3.11).

The graph polynomial $\Psi_{\Gamma}(t)$ has a more explicit combinatorial description in terms of the graph Γ , as follows.

Proposition 3.1.8. The Kirchhoff–Symanzik polynomial $\Psi_{\Gamma}(t)$ of (3.4) is given by

$$\Psi_{\Gamma}(t) = \sum_{T \subset \Gamma} \prod_{e \notin E(T)} t_e, \qquad (3.15)$$

where the sum is over all the spanning trees T of the graph Γ and for each spanning tree the product is over all edges of Γ that are not in that spanning tree.

Proof. (To be added later)