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Chapter 1

Perturbative quantum field theory

and Feynman diagrams

1.1 A calculus exercise in Feynman integrals

To understand the role of Feynman graphs in perturbative quantum field
theory, it is convenient to first see how graphs arise in the more familiar
setting of finite dimensional integrals, as a convenient way of parameterizing
the terms in the integration by parts of polynomials with respect to a
Gaussian measure. It all starts with the simplest Gaussian integral

∫

R

e−
1
2ax2

dx =

(

2π

a

)1/2

, (1.1)

for a > 0, which follows from the usual polar coordinates calculation
∫ ∞

−∞
e−

1
2ax2

dx

∫ ∞

−∞
e−

1
2ay2

dy = 2π

∫ ∞

0
e−

1
2 ar2

r dr =
2π

a

∫ ∞

0
e−u du.

Similarly, the Gaussian integral with source term is given by
∫

R

e−
1
2ax2+Jx dx =

(

2π

a

)1/2

e
J2

2a . (1.2)

This also follows easily from (1.1), by completing the square

−
ax2

2
+ Jx = −

a

2
(x2 −

2Jx

a
) = −

a

2
(x −

J

a
)2 +

J2

2a

and then changing coordinates in the integral to y = x + J
a . In this one-

dimensional setting a first example of computation of an expectation value
can be given in the form

〈x2n〉 :=

∫

R
x2n e−

1
2ax2

dx
∫

R
e−

1
2ax2

dx
=

(2n − 1)!!

an
, (1.3)

where (2n−1)!! = (2n−1) ·(2n−3) · · ·5 ·3 ·1. One obtains (1.3) inductively
from (1.1) by repeatedly applying the operator −2 d

da to (1.1). It is worth
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pointing out that the factor (2n−1)!! has a combinatorial meaning, namely
it counts all the different ways of connecting in pairs the 2n linear terms x
in the monomial x2n = x · x · · ·x in the integral (1.3). In physics one refers
to such pairings as Wick contractions. As we discuss below, the analog of
the Gaussian integrals in the infinite dimensional setting of quantum field
theory will be the free field case, where only the quadratic terms are present
in the Lagrangian. The one-dimensional analog of Lagrangians that include
interaction terms will be integrals of the form

Z(J) =

∫

R

e−
1
2ax2+P (x)+Jx dx, (1.4)

where P (x) is a polynomial in x of degree deg P ≥ 3. The main idea in such
cases, which we’ll see applied similarly to the infinite dimensional case, is to
treat the additional term P (x) as a perturbation of the original Gaussian
integral and expand it out in Taylor series, reducing the problem in this
way to a series of terms, each given by the integral of a polynomial under
a Gaussian measure. Namely, one writes

Z(J) =

∫

R

(

∞
∑

n=0

P (x)n

n!

)

e−
1
2ax2+Jx dx. (1.5)

The perturbative expansion of the integral (1.4) is defined to be the series
∞
∑

n=0

1

n!

∫

R

P (x)n e−
1
2ax2+Jx dx. (1.6)

Notice then that, for a monomial xk, the integral above satisfies
∫

R

xk e−
1
2 ax2+Jx dx =

(

d

dJ

)k ∫

R

e−
1
2ax2+Jx dx. (1.7)

Using (1.2), this gives
∫

R

xk e−
1
2ax2+Jx dx =

(

2π

a

)1/2 (

d

dJ

)k

e
J2

2a .

Thus, in the case where the polynomial P (x) consists of a single term

P (x) =
λ

k!
xk,

one can rewrite each term in the perturbative expansion using (1.7), so that
one obtains

∞
∑

n=0

1

n!

∫

R

(

λ

k!
xk

)n

e−
1
2 ax2+Jx dx =
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∞
∑

n=0

1

n!

(

λ

k!

(

d

dJ

)k
)n

∫

R

e−
1
2ax2+Jx dx.

Thus, the perturbative expansion can be written in the form

Z(J) =

(

2π

a

)1/2

exp

(

λ

k!

(

d

dJ

)k
)

exp

(

J2

2a

)

. (1.8)

Two examples of this kind that will reappear frequently in the infinite
dimensional version are the cubic case with P (x) = g

6 x3 and the quartic
case with P (x) = λ

4! x4.
To see then how the combinatorics of graphs can be used as a convenient

device to label the terms of different order in λ and J in the perturbative
series of Z(J), first observe that the term of order λα and Jβ in Z(J) is
produced by the combination of the term of order α in the Taylor expansion
of the exponential exp( λk! (

d
dJ )k) and the term of order β + kα in J in the

Taylor expansion of the other exponential exp(J2

2a ) in (1.8). All the resulting
terms will be of a similar form, consisting of a combinatorial factor given
by a ratio of two products of factorials, a power of J , a power of λ and a
power of 2a in the denominator. The graphs are introduced as a visual way
to keep track of the power counting in these terms, which are associated
the the vertices and the internal and external edges of the graph. The
combinatorial factor can then also be described in terms of symmetries of
the graphs.

Here as in general in perturbative quantum field theory, one thinks of
graphs as being constructed out of a set of vertices and a set of half edges.
Each half edge has an end that is connected to a vertex and another end
that may pair to another half edge or remain unpaired. An internal edge
of the graph consists of a pair of half edges, hence it is an edge in the
usual graph theoretic sense, connecting two vertices. An external edge is
an unpaired half edge attached to a vertex of the graph. The graphs we
consider will not necessarily be connected. We adopt here the convention
that a connected component of a graph which contains a single line should
be thought of as consisting of an internal edge and two external edges.

The way one assigns graphs to monomials of the form λαJβ

aκ is by the
following rules.

• To each factor of λ one associates a vertex of valence equal to the
degree of the monomial P (x) = λ

k!x
k. This means a vertex with k

half edges attached.
• To each factor J one associates an external edge.
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• The power of a−1 is then determined by the resulting number of
internal edge obtained by pairing all the half to form a graph.

Notice that the procedure described here produces not one but a finite
collection of graphs associated to a given monomial λαJβ

aκ , depending on all
the different possible pairings between the half edges. This collection of
graphs can in turn be subdivided into isomorphism types, each occurring
with a given multiplicity, which corresponds to the number of different
pairings that produce equivalent graphs. These combinatorial factors are
the symmetry factors of graphs. To see more precisely how these factors
can be computed, we can introduce the analog, in this 1-dimensional toy
model, of the Green functions in quantum field theory. The function Z(J)
of (1.4) can be thought of as a generating function for the Green functions

Z(J) =
∞
∑

N=0

JN

N !

∫

R

xN e−
1
2 ax2+P (x) dx = Z ·

∞
∑

N=0

JNGN , (1.9)

where Z =
∫

R
e−

1
2ax2+P (x) dx and the Green functions are

GN =

∫

R

xN

N ! e−
1
2ax2+P (x) dx

∫

R
e−

1
2 ax2+P (x) dx

. (1.10)

Upon expanding out the interaction term exp(P (x)), with P (x) = λ
k!x

k,
one obtains

GN =

∑∞
n=0

xN

N !
(λxk)n

(k!)n n!e
− 1

2ax2
dx

∑∞
n=0

(λxk)n

(k!)n n!e
− 1

2ax2
dx

. (1.11)

Using (1.9), we then see that one way of computing the coefficient of a term
in λαJβ

aκ in the asymptotic expansion of Z(J) is to count all the pairings
(the Wick contractions) that occur in the integration

∫

R

xNxkne−
1
2ax2

dx. (1.12)

As we have seen in (1.3), these are (N + kn− 1)!!. Taking into account the
other coefficients that appear in (1.9) and (1.11), one obtains the factor

(N + kn − 1)!!

N ! n! (k!)n
.

The meaning of this factor in terms of symmetries of graphs can be ex-
plained, by identifying (N + kn − 1)!! with the number of all the possible
pairings of half edges, from which one factors out N ! permutations of the
external edges, k! permutations of the half edges attached to each valence
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k vertex and n! permutations of the n valence k vertices along with their
star of half edges, leaving all the different pairings of half edges. These then
correspond to the sum over all the possible topologically distinct graphs ob-
tained via these pairings, each divided by its own symmetry factor. Thus,
in terms of graphs, the terms of the asymptotic series become of the form

∑

Γ∈graphs

λ#V (Γ)J#Eext(Γ)

#Aut(Γ) a#Eint(Γ)
.

Notice also how, when computing the terms of the asymptotic series using
either the Taylor series of the exponentials of (1.8) or by first using the
expansion in Green functions and then the terms (1.12), one is implicitly
using the combinatorial identity

(2n − 1)!! =
(2n)!

2nn!
.

Passing from the 1-dimensional case to a finite dimensional case in many
variables is notationally more complicated but conceptually very similar.
One replaces an integral of the form

∫

RN

e−
1
2xtAx+Jxdx1 · · ·dxN =

(2π)N/2

(det A)1/2
e

1
2 JA−1Jt

, (1.13)

where the positive real number a > 0 of the 1-dimensional case is now
replaced by an N × N -real matrix A with At = A and det(A) > 0. The
real number J is here an N -vector, with Jx the inner product. The form
of (1.13) is obtained by diagonalizing the matrix and reducing it back to
the 1-dimensional case. One can again compute the asymptotic series for
the integral

∫

RN

e−
1
2xtAx+P (x)+Jxdx1 · · · dxN ,

where the interaction term here will be a polynomial in the coordinates
xi of x, such as P (x) = λ

4! (
∑N

i=1 x4
i ). One can use the same method of

labeling the terms in the asymptotic series by graphs, where now instead
of attaching a factor a−1 to the internal edges one finds factors (A−1)ij for
edges corresponding to a Wick contraction pairing an xi and an xj .

The conceptually more difficult step is to adapt this computational pro-
cedure for finite dimensional integral to a recipe that is used to make sense
of “analogous” computations of functional integrals in quantum field theory.
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1.2 From Lagrangian to effective action

In the case of a scalar field theory, one replaces the expression 1
2x2 + P (x)

of the one-dimensional toy model we saw in the previous section with a
non-linear functional, the Lagrangian density, defined on a configuration
space of classical fields. Here we give only a very brief account of the basics
of perturbative quantum field theory. A more detailed presentation, aimed
at giving a self contained introduction to mathematicians, can be found in
the book [Connes and Marcolli (2008)].

In the scalar case the classical fields are (smooth) functions on a space-
time manifolds, say φ ∈ C∞(RD, R), and the Lagrangian density is given
by an expression of the form

L(φ) =
1

2
(∂φ)2 −

m2

2
φ2 − P(φ), (1.14)

where (∂φ)2 = gµν∂µφ∂νφ for gµν the Lorentzian metric of signature
(1,−1,−1, . . . ,−1) on RD and a summation over repeated indices under-
stood. The interaction term P(φ) in the Lagrangian is a polynomial in
the field φ of degree degP ≥ 3. Thus, when one talks about a scalar field
theory one means the choice of the data of the Lagrangian density and the
spacetime dimension D. We can assume for simplicity that P(φ) = λ

k!φ
k.

We will give explicit examples using the special case of the φ3 theory in
dimension D = 6: while this is not a physically significant example because
of the unstable equilibrium point of the potential at φ = 0, it is both suffi-
ciently simple and sufficiently generic with respect to the renormalization
properties (i.e. non superrenormalizable, unlike the more physical φ4 in
dimension D = 4) .

To the Lagrangian density one associates a classical action functional

SL(φ) =

∫

RD

L(φ)dDx. (1.15)

The subscript L here stays for the Lorentzian signature of the metric and
we’ll drop it when we pass to the Euclidean version. This classical action
is written as the sum of two terms SL(φ) = Sfree,L(φ) + Sint,L(φ), where
the free field part is

Sfree,L(φ) =

∫

RD

(

1

2
(∂φ)2 −

m2

2
φ2

)

dDx

and the interaction part is given by

Sint,L(φ) = −

∫

RD

P (φ)dDx.
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The probability amplitude associated to the classical action is the expression

ei
SL(φ)

! , (1.16)

where ! = h/2π is Planck’s constant. In the following we follow the conven-
tion of taking units where ! = 1 so that we do not have to write explicitly
the powers of ! in the terms of the expansions. An observable of a scalar
field theory is a functional on the configuration space of the classical fields,
which we write as O(φ). The expectation value of an observable is defined
to be the functional integral

〈O(φ)〉 =

∫

O(φ)eiSL(φ) D[φ]
∫

eiSL(φ) D[φ]
, (1.17)

where the integration is supposed to take place on the configuration space
of all classical fields. In particular, one has the N -points Green functions,
defined here as

GN (x1, . . . , xN ) =

∫

φ(x1) · · ·φ(xN ) eiSL(φ) D[φ]
∫

eiSL(φ) D[φ]
, (1.18)

for which the generating function is given again by a functional integral
with source term

∫

eiSL(φ)+〈J,φ〉D[φ], (1.19)

where J is a linear functional (a distribution) on the space of classical
fields and 〈J,φ〉 = J(φ) is the pairing of the space of fields and its dual. If
J = J(x) is itself a smooth function then 〈J,φ〉 =

∫

RD J(x)φ(x)dDx.
Although the notation of (1.17) and (1.18) is suggestive of what the

computation of expectation values should be, there are in fact formidable
obstacles in trying to make sense rigorously of the functional integral in-
volved. Despite the successes of constructive quantum field theory in several
important cases, in general the integral is ill defined mathematically. This
is, in itself, not an obstacle to doing quantum field theory, as long as one
regards the expression (1.17) as a shorthand for a corresponding asymptotic
expansion, obtained by analogy to the finite dimensional case we have seen
previously.

A closer similarity between (1.19) and (1.4) appears when one passes
to Euclidean signature by a Wick rotation to imaginary time t '→ it. This
has the effect of switching the signature of the metric to (1, 1, . . . , 1), after
collecting a minus sign, which turns the probability amplitude into the
Euclidean version

eiSL(φ) '→ e−S(φ), (1.20)
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with the Euclidean action

S(φ) =

∫

RD

(

1

2
(∂φ)2 +

m2

2
φ2 + P(φ)

)

dDx. (1.21)

Thus, in the Euclidean version we are computing functional integrals of the
form

∫

φ(x1) · · ·φ(xN ) e−S(φ) D[φ]
∫

e−S(φ) D[φ]
, (1.22)

for which the generating function resembles (1.4) in the form

Z[J ] =

∫

e
−

R

RD

“

1
2 (∂φ)2+ m2

2 φ2+P(φ)+J(x)φ(x)
”

dDx
D[φ]. (1.23)

In order to make sense of this functional integral, one uses an analog of
the asymptotic expansion (1.6), where one expands out the exponential of
the interaction term Sint(φ) =

∫

RD P(x) dDx of the Euclidean action and
one follows the same formal rules about integration by parts of the final
dimensional case to write the label the terms of the expansion by graphs.
What is needed in order to write the contribution of a given graph to the
asymptotic series is to specify the rules that associate the analogs of the
powers of λ, J and a−1 to the vertices, external and internal edges of the
graph. These are provided by the Feynman rules of the theory.


