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e individual neurons response shows greater variability (for
repeated same stimulus) than what expected based on the fact
that a neuron integrates large number of synaptic inputs (central
limit theorem, expect small fluctuations)

e to explain high variability in response: average synaptic input is
sub-threshold for spiking (balancing of excitatory and inhibitory
inputs) and activity generated by above-threshold fluctuations:
extremely sensitive to small fluctuations (especially from correlated
inputs)

e some neurons in the inferior temporal (IT) cortex respond
selectively to highly specific complex objects (though most IT
neurons do not appear to be “detectors” for complex objects):
experiments by Desimone et al. (1984)

e Place and grid cells in the rodent hippocampus: moving to new
environment, spatial activity patterns of hippocampal place cells
remap (grid cells different firing pattern), or only partial “rate
remapping” where grid cells unaltered firing patterns
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Trajectory of a rat through a square environment (black) and
locations of firing of a particular grid cell; spatial autocorrelation of
the neuronal activity of the grid cell
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e Phase precession of grid and place cell firing: consistent with
phase coding of displacement along the current direction of motion

e Experiments: paired-recordings in frontal eye field and area V4
show stimulus in their joint receptive field leads to enhanced
oscillatory coupling between the two areas (Gregoriu et al. 2009)

e overlapping RFs (receptive fields) for V4 and FEF (frontal eye
field) sites; measured normalized firing rates averaged across the
population of cells in FEF and V4

e Oscillatory synchronization of neural assemblies in response to
stimuli detected in the olfactory and visual systems of several
vertebrates and invertebrates (Stopfer at al. 1997): oscillatory
synchronization of neuronal assemblies is essential for fine sensory
discrimination

e Cortical gamma oscillations produce neural ensemble synchrony:
timing of sensory input relative to a gamma cycle determined
amplitude and precision of responses; experiments on responses of
a 4 RS cell to whisker stimulus in mice at different temporal phases
relative to the induced gamma oscillation (Cardin et al. 2009)
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Single neuron firing rate

Stimulus Stimulus  Stimulus.
off on off
_H—H—+ -
)

] i
e ')

Neurosci., 1984

I\N=—~/

Hubel and Wiesel, J. Physiol., 1959

Matilde Marcolli Learning Networks



Single neuron spike phase
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Neural Codes: Decoding/Encoding

Encoding

. .
Stimulus «— Response

Decoding

* Encoding: model, fit parameters based on responses to

a training set
* Decoding: invert the model, or use Bayesian inference

to relate P(s|r) to P(r|s)
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Example: reconstructing shapes from V4 activity: set of stimuli
combining convex/concave boundary elements in closed shapes
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Example: reconstructing a face from face patch activity

Ramp-shaped tuning implies linear

relationship between features and DECOdmg face Identlty
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Example:

Reconstructing natural scenes from
fMRI activity

Voxel TN6374

Response distributions

Estimate a receptive-field model for each voxel

]
Voxel response (1)

Receptive-field model for one voxel

Structural encoding model

Pe=lle)  peile)  pleedle
y of response from z
given semantic category ¢

Semantic encoding model
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Philosophical problem

* “V1 neurons represent orientation”
* “V4 neurons represent curvature”

* “Face neurons represent facial shape and
appearance”

* “Olfactory neurons represent smells”
* “Decision neurons represent decisions”

How does brain know what a
particular neuron’s firing represents?

Modeling of encoding/decoding, representation, and learning in
networks; mathematical theory of learning; problem of ‘qualia’ and
conscious experience, how to model?
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Artificial networks that learn: a short history and some key ideas
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Markov Chain (MC)

Hopfield Network (HN) Boltzmann Machine (BM)

Restricted BM (RBM)

Deep Belief Netwaork (DBN)
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References:

@ lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep
Learning, MIT Press, 2017.

Historical Origins

e Cybernetics: “artificial neurons”

Warren McCulloch & Walter Pitts (1943)

1 . Wweight
5. Wy b

threshol

fx=bz=(
H(w‘x-b):ll w X h )
S ]() otherwise
activation
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e Marvin Minsky, Seymour Papert, Perceptron, MIT Press, 1969

e Perceptron: an algorithm for supervised learning of binary
classifiers (decides if a given vector belongs to a certain class or
not), linear classifier (separation by hyperplanes)

e problem: shown impossible for these class of network to learn
XOR function

Original = space

e but multi-layer perceptrons can produce XOR function)
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Perceptron
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Linear classification:

decisio 35
boundary . ®®

decision
region for C1

WX, FW X, +b>0

decision cC, *
region for C,

WX, + WX, +b<=0
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Solution to the XOR problem:
-
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Feedforward Neural Networks

Input Layer
Hidden Layer

Output Layer

e acyclic: connections between the units do not form a cycle
e information flows always in one direction
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Universal Approximation Theorem

e Question: given a continuous function f : R — R can construct
a neural network that at input x outputs a very good
approximation of f(x)?

f(z)

/ \v. .‘;‘ F o { > f(z)

e Answer: yes this is always possible
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e Key idea: combinations of thresholds compute locally constant
functions

Output from top hidden neuron

s =10.40

T { b 0 S —
T 1

=-b/w, big w and b results in step

single neuron computes o(wx + b) with o(x) = (1 + e *)~! resulting in

a step (approximation)
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2 Weighted output from hidden layer
8, = 0.40
. 1
) w; =0.8
z '. " 0 T T
2 T 1
8, = 0.60
y w,=-0.8 |

combined effect of different nodes produce characteristic functions of
intervals
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o/ Weighted output from hidden layer
(0.0)
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Computational experiment demonstrating
increase in efficiency with depth
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Convolutional Neural Networks
(special type of multi-layered percepton)

Linear convolution
A bank of “3D” linear filters

linear 3D filters

x—» (Fb) [»y=Fxx+b

o My
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Linear, translation invariant, local:
» Input x =H x W x K array
» Filter bank F = H' x W x K x Q array
» Qutputy = (H-H'+ 1) x (W-W + 1) x Q array
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Linear convolution

Filter bank example
A bank of 256 filters (learned from data)

Each filter is 1D (it applies to a grayscale image)
Each filter is 16 x 16 pixels
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Activation functions

Scalar non-linearity

I : 1
x > f—ay = prm sigmoid

y = tanh(x) hyperb. tan
y = max{0, x} RelLU
y = log(1+ ") Soft ReLU

y = ex + (1 — ) max{0, x} Leaky ReLU

1.226
— Sigmoid
= Tanh
0.45 =+ RelU
— Leaky ReLU
| = Smooth ReLU
-0.325

-11
-3 -225-15-075 0 075 15 225 3

multiple layers: linear convolution, non-linear gating, linear
convolution, ...



Back-propagation (learning technique)

e output value compared to (known) correct answer: compute
error-function

e computed error fed back through the network

e algorithm that adjusts weights to reduce value of error function
e to adjust weights: optimization by gradient descent by
computing derivatives of the error function with respect to weight
parameters, and upgrading weights so that error decreases (Note:
requires use of differentiable activation function)

e criticism of back-propagation: (Geoffrey Hinton) need an
objective function, for which need a measure of distance between
predicted value and labeled training data... problematic for
unsupervised learning
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Stochastic Gradient Descent
via Back propagation

layer 1 layer 2 layer 3

1
ad—o (El:mgkai" i bﬂ) C= o Z () — a" ()|,

Summary: the equations of backpropagation
i =v,Cod () (BP1)
& = (W81 @ o' (24) (BP2)
=1 (BP3)
- = a8 (BP4)

al(x) vector of activations output of network with input x; y(x)
desired output; ® Hadamard product (componentwise product of
two vectors); §¢ errors in level £; §- error in output layer
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Stochastic Gradient Descent
via Back propagation

1. Input a set of training examples

2. For each training example z: Set the corresponding input

activation @®', and perform the following steps:

o Feedforward: Foreach [ = 2,3,..., L compute

25 = wla® 1 4+ ¥ and @™ = o(2%).

o Qutput error §*L: Compute the vector
ol =v,0, @ o' (z71).

o Backpropagate the error: For each
{=L-1,L-2,...,2 compute
55 = ((,wl+1)T(5:‘l+1) ® o”(z""!).

3. Gradient descent: Foreach = L, L — 1,...,2 update the
weights according to the rule w' — wf — 2 3> §%/(a®1)7,

and the biases according to the rule b — ¥ — 2 3> §°4,
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Recurrent and Recursive Neural Networks

e Examples
o Hopfield networks
@ Boltzmann machines

e directed graphs that allow cycles, storage internal states
(memory), time delays, feedback loops, controlled states (gated
states)
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Hopfield Network

e historical connection between statistical physics of spin glass
models and neural networks

e nodes variables s; = £1, update

s — +1 > wisj >
"7 1 =1 otherwise

E= —% Z WijSiSj — ZQ,’S,’
i i

. update
energy \
& AN ~_minimum
attractor er |e|gy

states

basin of attraction

Energy landscape of the Hopfield network
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Mehta-Schwab approach:

e Main idea: Kadanoff's “variational renormalization group
scheme” for spin systems can be mapped exactly to a Deep Neural
Network built of stacked layers of Restricted Boltzmann Machines
(RBM), with a variational procedure based on minimizing the
Kullback—Leibler divergence
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Kadanoff's variational renormalization

@ Leo P. Kadanoff, Anthony Houghton, Mehmet C. Yalabik,
Variational Approximations for Renormalization Group
Transformations, Journal of Statistical Physics, Vol. 14,
(1976) No. 2, 171-203

e statistical mechanics problem: calculation of free energy in terms
of a sum over states

e approximate recursion relations give upper and lower bounds on
free energy

e optimized by treating parameters within the renormalization
equations variationally
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Ising Model on a graph G

e Hamiltonian

H=- Z Byx, — Z JeXs(e)Xt(e)
v e

e all nodes are ‘visible nodes”: this type of spin glass model in
statistical physics same as the Hopfield Associative Memory in
neural network theory

nput valee nputvalua

&

ingut b . T nput
vane TP : AT e
Ny F
‘\.
b

nputvales nputvalug
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e for other statistical physics systems more general Hamiltonians
with many-body terms

H(x) = — E RiXi — E RijXiXj — g Rk XiXj Xk - - -
i i

ijk
e partition function: sum over configurations

2= e M

thermodynamic parameter § = 1/ T inverse temperature

e free energy

F=—logZ=-— IogZe_’BH(X)
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e physical system is coarse grained by introducing “block”
variables that average spins in a block, effective behavior, sequence
of successive coarse graining

©
©
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o ol|ool|||leo||o
caclacdllilicacilicacs

oo |ool|||oe||oe

o ofloof|||leel|o
casliEasdllEasilics

free energy (after a rescaling) is preserved

Matilde Marcolli Learning Networks



e Hamiltonian #(x) describes system at fine grained scales

e construct a correlation function V/(x, h) that couples it to the
next level of coarse graining

Z e—V(X,h) -1
h

for all x so partition function remains unchanged (and free energy)

e joint Hamiltonian

H(x, h) = H(x) + V(x, h)

Z = Z e PH(x) — Z Z o~ BH(x,h)
X h X
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e renormalized effective Hamiltonian acting on hidden nodes

H(h) = log Z o= BV (x.h) g—BH(x)

z - Z e BH(h)
h
e want V/(x, h) that minimizes the free energy difference between
F=—logZ and F=—-log2

e variational problem: Kadanoff-Houghton—Yalabik computed
explicit lower bounds for the minimizer V/(x, h) for given systems
(eg Ising model on a graph)
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physical manifold
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Variational RG and neural networks

e idea: introducing layers of nodes with hidden variables in a
neural network is a form of Renormalization related to scale change

e modify the Hopfield network architecture to introduce hidden
nodes: Hinton's restricted Boltzmann machines (RBM)

Matilde Marcolli Learning Networks



Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

o
3 o

0 a0 len e
C P, 0, %
o

Image: The Asimov Institute

(yellow=backfed input node, green=probabilistic hidden node, red=match input output node)
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Boltzmann machine

A Boltzmann machine, like a Hopfield network, Is a network of units with an "energy” defined for the network. It also has binary units, but uniike Hopfield nets, Boltzmann machine units a
stochastic. The global energy, . in a Boltzmann machine is identical in form to that of a Hopfield network:

Ee- (Zw.,,.,,-ze.m)

= b
Whnere

« wj; is the connection strength between unit j and unit 4

« 8 Isthe state, s; € {0,1}, of uniti

+ 6; is the bias of unit i in the global energy function. (—#; is the actwation threshald for the unit )

Often the weights are represented in matrix form with a symmetric matrix W, with zeros along the diagonal

The difference in the global energy that results from a single unit 1 being O (off) versus 1 (on), written A E;, assuming a symmetric matrix of weights. is given by:
AB = wysi+ D wys;+8
¥ =

We can now finally Solve for pi_og, . Ihe probability that the i-th unit is on
1

Piote = —————
a
1+ exp( T)
There are two phases to Bolzmann machine training, and we swilch ileraiively between them. One is the "positive” phase where the visible units' states are clamped io a particular bin

(according to P*). The olner is Ihe "negalive” phase where the network is allowed 1o run freely, i.e. no units have their state delermined by extenal data. Surprisingly enough, the gr:
given by the very simpie equation (proved in Ackley et al [y

G
[

where:

i — Pl

« p is the probabilty of units /and ] both being on when the machine i at equilbrium on the positive phase

- p‘) is the probability of units / and j both being on when the machine is at equilibrium on the negative phase.
« R denotes the leaming rate
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e Energy functional for RBM:

E(x,h) = x'B +x"Wh + C*'h

e probability distribution

—BE(Xh) E(h)
P(x,h)_i, Z= Ze—ﬂ X

e distributions for visible and hidden nodes: marginals

o—BE(x.h)

prh) Z 2

e_ﬁE(th)

=Y Plh) = —F—
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e Hamiltonians for visible and hidden nodes

H(x) = —log Z e ECah)
h

H(h) = — Iogz e EOoh)

e training of RBMs: comparing free energies on training data and
validation data and minimize difference in free energy

e the parameters in the RBM are chosen to minimize the
Kullback—Leibler divergence between the true distribution of the
data and the variational distribution
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e the variational distribution is the one obtained as marginal

e_BE(X7h)

=) Plh) =) —%—
h h

e so minimizing the difference in free energy between training data
and validation data can be done by minimizing the
Kullback—Leibler divergence

L(PP) = ZP )

e 50 can map each step of the Kadanoff-Houghton—Yalabik
variational RG method to a RBM: resulting architecture is a
stacked layers of Restricted Boltzmann Machines (RBM), Deep
Belief Network (DBN)
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from Mehta—Schwab: 2D Ising Model simulated by a DNN of RBMs

Learning Networks
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e what it shows: Kadanoff variational RG algorithm can be
implemented on a network given by a stack of RBMs

e what it claims: Deep Learning is a form of Renormalization
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Mathematical theory of learning:

an approach to studying and estimating limits of learning and
learnability in neural networks

o F. Cucker, S. Smale, On the mathematical foundations of
learning, Bulletin of the American Math. Society 39 (2001)
N.1, 1-49.
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e General problem: when two sets of random variables x, y are
probabilistically related

o relation described by probability distribution P(x, y)
@ some square loss problem (minimization problem)

E(f) = / (v — F(x))? P(x, ) dx dy

o distribution itself unknown, but minimize empirical error

1 N
En(f) = NZ(%’ — f(x))?

over a set of random sampled data points {(x;, yi)}i=1,..n
@ if fy minimizes empirical error, want that the probability

P(||E(fn) — En(fn)ll > €)

is sufficiently small
@ Problem depends on the function space where fy lives
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General setting

o F. Cucker, S. Smale, On the mathematical foundations of
learning, Bulletin of the American Math. Society 39 (2001) N.1,
1-49.

o X compact manifold, Y = R (for simplicity k = 1),

Z = X x Y with Borel measure p
@ ¢ random variable (real valued) on probability space (Z, p)
@ expectation value and variance

E(¢) = /Z Edp, 0?(€) = B((€ — B(€))?) = E(€2) — E(¢)?

@ function f : X — Y, least squares error of f

£(F) = /Z (F(x) — y) dp

measures average error incurred in using f(x) as a model of
the dependence between y and x

@ Problem: how to minimize the error?



e conditional probability p(y|x) (probability measure on Y)

e marginal probability px(S) = p(7=1(S)) on X, with
projection m: Z =X xY = X

@ relation between these measures

[ otenan= [ ([ otxyantvie)) anx

e breaking of p(x,y) into p(y|x) and px(S) is breaking of Z
into input X and output Y
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@ regression function f, : X — Y

Mﬂzﬂy@M@

@ assumption: f, is bounded
o for fixed x € X map Y to R via

y =y = fp(x)
@ expectation value is zero so variance

o2(x) = /Y (v — £,(0)) dp(y|x)

@ averaged variance

2 = /Xaz(x) dpx = E(f,)

measures how “well conditioned” p is
@ Note: in general p and f, not known but px known
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@ error, regression, and variance:
&) = | (700 = 507 + ) dpx

e What this says: a/% is a lower bound for the error £(f) for all
f, and f = £, has the smallest possible error (which depends
only on p)

@ why identity holds:

E(f) L (@) — f,@) + @) — u)°

[ U@ =2+ [ [ (G- vy
+2 / j NACED)

J @ - fyte?+ k.
X
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Goal: "learn" (= find a good approximation for) f, given random
samples of Z

o ZN 5 z=((x1, 1), ..., (xn, yn)) sample set of points (x;, y;)
independently drawn with probability p

@ empirical error

1 N
EAF) = 5 D(FOx) = i)
i=1

o for random variable & empirical mean

1 N

E.(§) = N;f(zh}/i)
o given f : X — Y take fy : Z — Y to be
fy: (xy) = f(x) —y

E(F) =E(f2), &/(f)=E,(f2)
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Facts of Probability Theory
(quantitative versions of law of large numbers)

e ¢ random variable on probability space Z with mean E(&) = p

and variance 02(¢) — o

e Chebyshev: for all e > 0
1 & o?
Pis 2 < 7

e Bernstein: if [{(z) — E(§)| < M for almost all z € Z then Ve > 0

P{ZEZ’":
P{zezm lig(z) < 2ex me”
D= i) — €ep < ——
m = P 2(02 + £ Me)

m
1
PzeZ™: —E &(z) — p
m“




Defect Functionof f : X — Y

discrepancy between error and empirical error (only £,(f)
measured directly)

e estimate of defect if |f(x) — y| < M almost everywhere, then
Ve > 0, with o2 variance of f2

m62
P{zeZ™: |L,(f)|<e}>1-2 -
(zezm LN <) = p< 2(02+§M2€)>

e from previous Bernstein estimate taking £ = ﬂ%
e when is |f(x) — y| < M a.e. satisfied? e.g. for M = M, + P
M, =inf{M : {(x,y) € Z : |y — f,(x)| > M} measure zero }

P > sup [f(x) — f,(x)]
xeX
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Hypothesis Space

e a learning process requires a datum of a class of functions
(hypothesis space) within which the best approximation for f,

e C(X) algebra of continuous functions on topological space X
e 1 C C(X) compact subset (not necessarily subalgebra)
e look for minimizer (not necessarily unique)

fr = argming /Z(f(x) — y)2

because £(f) = [ (f — £,)* + o3 also minimizer

fiy = argming / (f - fp)2
X

e continuity: if for f € H have |f(x) — y| < M a.e., bounds
E(A) = E(R)] < 2M||fi — Kl

and for &£, also, so £ and &, continuous

e compactness of H ensures existence of minimizer but not
uniqueness (a uniqueness result when #H convex)
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Empirical target function fy ,

e minimizer (non unique in general)

1
frz= argmingey — Z(f(x,-) —yi)?
i=1

Normalized Error

Ex(f) > 0 vanishing at fy
Sample Error Ey(fy )

E(Fiz) = EnlFiz) +E(Fy) = /X (e — 6,)2 + 02

estimating £(fy,,) by estimating sample and approximation errors,
Exn(fy z) and E(fy) one on H the other independent of sample z
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bias-variance trade-off
e bias = approximation error; variance = sample error

o fix H: sample error £y(fy,,) decreases by increasing number
m of samples

e fix m: approximation error £(fy) decreases when enlarging H

e procedure:
@ estimate how close f; , and f3; depending on m

@ how to choose dim H when m is fixed

o first problem: how many examples need to draw to say with
confidence > 1 — 4 that [, (fu, — f)? <e?
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Uniformity Estimate (Vapnik's Statistical Learning Theory)

e covering number: S metric space, s > 0, number N (S, s)
minimal £ € N so that d disks in S radii s covering S; for S
compact N (S, s) finite

e uniform estimate: ‘H C C(X) compact, if for all f € H have
|f(x) —y| < M a.e., then Ve > 0

2
P{z € Z™ : sup |L,(F)] < e} > 1-N(H, —)2exp [~
(227 ¢ swp |L() < ) = 1-N(H. 5) exp< T T

with 02 = supscy, 02(£2)

e main idea: like previous “estimate of defect” but passing from a
single function to a family of functions, using a uniformity based
on ‘“covering number”
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Estimate of Sample Error

e H C C(X) compact, with |f(x) —y| < M a.e. for all f € H, and
02 = supseq, 02(£2), then Ve > 0

me?
P VAL <elb>1-— —)2 -
e obtained from previous estimate using L,(f) = £(f) — &,(f)
e so answer to first question: to ensure probability above > 1 — ¢
need to take at least

o* + L M2¢
28(4;3M)< 82N (H, 16M))+|og((1S)>

obtained by setting

5= N(H, —Y2exp [ -
- o125 8(4c* + L M2e)

e need various techniques for estimating covering numbers
N (H,s) depending on the choice of the compact set H
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Second Question: Estimating the Approximation Error
E(fu,z) = En(fu,z) + E(fn)
focus on &(fy), which depends on H and p
/ (fu — fp)z + Uﬁ
X

second term independent of H so focus on first; f, bounded, but
not in H nor necessarily in C(X)

e Main idea: use finite dimensional hypothesis space H; estimate
in terms of growth of eigenvalues of an operator

e Main technique: Fourier analysis; Hilbert spaces
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Fourier Series: start with case of X = T" = (S!)" torus

e Hilbert space L?(X) Lebesgue measure with complete
orthonormal system

ba(x) = 2m) "2 exp(ia - x), a=(a,...,a,) €Z"

Fourier series expansion

f= j{: Qx¢a

aEeZ"

e finite dimensional subspaces Hy C L2(X) spanned by ¢, with
o]l < B, dimension N(B) number of lattice points in ball radius
B inR"

N(B) < (2B)"?

e 7 hypothesis space: ball Hy g of radius R in || - ||« norm in Hy
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Laplacian
e on torus X = T" Laplacian A : C*°(X) — C*=(X)

~ 0°f
Ox?

i=1 !

A(f) =

Fourier series basis ¢, are eigenfunctions of —A with eigenvalue
lee]|?

e more general X: bounded domain X C R" with smooth
boundary X and a complete orthonormal system ¢ of L%(X)
(Lebesgue measure) of eigenfunctions of Laplacian with

—A(ok) = Ck bk, Pklox =0, Vk>1
0<G <@ <<

e subspace Hy of L2(X) generated by {¢1,...,én}
e hypothesis space H = Hy g ball of radius R for || - || in Hy
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Construction of fy

e Lebesgue measure p on X and measure p (marginal probability
px induced by pon Z =X x Y)

e consider regression function
o) = | ydotyl

e assumption f, bounded on X so in L2(X) and in L3(X)

e choice of R: assume also that R > ||f,||o0, which implies
R =1l

e then f3; is orthogonal projection of f, onto Hy using inner
product in L3(X)

e goal: estimate approximation error E(fy) for this fy
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Distorsion factor:

e identity function on bounded functions extends to
J: L2(X) = L3(X)
e distorsion of p with respect to u
Do = |11

operator norm: how much p distorts the ambient measure p
e reasonable assumption: distorsion is finite

e in general p not known, but px is known, so D,, can be
computed
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Weyl Law

e Weyl law on rate of growth of eigenvalues of the Laplacian
(acting on functions vanishing on boundary of domain X C R")

N
)\|I—>moo An/2

= (271)""B,Vol(X)

B, volume of unit ball in R"”; N(X) number of eigenvalues (with
multiplicity) up to A
e Weyl law: Li—Yau version

2/n
Ck > n 4-7T2 k
T n+2 B, Vol(X)

P. Li and S.-T. Yau, On the parabolic kernel of the Schrodinger operator,
Acta Math. 156 (1986), 153-201

e from this get a weaker estimate, using explicit volume B,

= <Vo/k<><)>2/n
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Approximation Error and Weyl Law
e norm || - ||k: for f =377 ck ¢k with ¢ eigenfunctions of —A

00 1/2
Il = (z cfck)
k=1

like L?-norm but weighted by eigenvalues of Laplacian in ¢2
measure of ¢ = (ck)

e Approximation Error Estimate: for H and fy as above

k 2/!1
) < 0% (o) I+

e proved using Weyl law and estimates

||fp - fHHp = dp(fvaN) < ||JH du(fvaN)

o0 (oo} oo 1
du(fp Hn? =1 Y aduli= > d= ) CkaC C IIfHK
k=N+1 k=N+1 k=N+1

where Zk Ck¢k



Solution of the bias-variance problem

e mimimize £(fy ;) by minimizing both sample error and
approximation error

e minimization as a function of N € N (for the choice of
hypothesis space H = Hpy r)

o select integer N € N that minimizes A(N) + ¢(N) where
e = ¢(N) as in previous estimate of sample error and

Kk 2/n
A =02, (i) 1M+ o3

e from previous relation between m, R = ||f,||o, d and € obtain
288 M> 96RM 1

find NV that minimizes € with this constraint

e no explicit closed form solution for N minimizing A(N) + ¢(N)
but can be estimated numerically in specific cases
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Applications of Cucker-Smale theory of learning in neuroscience
and in machine learning

@ Tomaso A. Poggio and Fabio Anselmi, Visual Cortex and
Deep Networks, MIT Press, 2016

e V. Maiorov, Approximation by neural networks and learning
theory, Journal of Complexity 22 (2006) 102-117

@ Tomaso A. Poggio and Steve Smale, The Mathematics of
Learning: Dealing with Data, Notices AMS, May 2023,
537-544
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What is the nature of the
representations learned by deep
networks?

“An essential ingredient of ergo-learning strategy is a search for symmetry--
repetitive patterns--in flows of signals. Even more signicantly, an ergo system

creates/identies such patterns by reducing/compressing "information" and by
structuralizing "redundancies” in these flows.” --Gromov

A connection between category theory & machine learning?
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