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• individual neurons response shows greater variability (for
repeated same stimulus) than what expected based on the fact
that a neuron integrates large number of synaptic inputs (central
limit theorem, expect small fluctuations)

• to explain high variability in response: average synaptic input is
sub-threshold for spiking (balancing of excitatory and inhibitory
inputs) and activity generated by above-threshold fluctuations:
extremely sensitive to small fluctuations (especially from correlated
inputs)

• some neurons in the inferior temporal (IT) cortex respond
selectively to highly specific complex objects (though most IT
neurons do not appear to be “detectors” for complex objects):
experiments by Desimone et al. (1984)

• Place and grid cells in the rodent hippocampus: moving to new
environment, spatial activity patterns of hippocampal place cells
remap (grid cells different firing pattern), or only partial “rate
remapping” where grid cells unaltered firing patterns
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Trajectory of a rat through a square environment (black) and
locations of firing of a particular grid cell; spatial autocorrelation of
the neuronal activity of the grid cell
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• Phase precession of grid and place cell firing: consistent with
phase coding of displacement along the current direction of motion

• Experiments: paired-recordings in frontal eye field and area V4
show stimulus in their joint receptive field leads to enhanced
oscillatory coupling between the two areas (Gregoriu et al. 2009)

• overlapping RFs (receptive fields) for V4 and FEF (frontal eye
field) sites; measured normalized firing rates averaged across the
population of cells in FEF and V4

• Oscillatory synchronization of neural assemblies in response to
stimuli detected in the olfactory and visual systems of several
vertebrates and invertebrates (Stopfer at al. 1997): oscillatory
synchronization of neuronal assemblies is essential for fine sensory
discrimination

• Cortical gamma oscillations produce neural ensemble synchrony:
timing of sensory input relative to a gamma cycle determined
amplitude and precision of responses; experiments on responses of
a 4 RS cell to whisker stimulus in mice at different temporal phases
relative to the induced gamma oscillation (Cardin et al. 2009)
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Example: reconstructing shapes from V4 activity: set of stimuli
combining convex/concave boundary elements in closed shapes
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Example: reconstructing a face from face patch activity

L. Chang, D.Tsao 2017
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Example:
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Modeling of encoding/decoding, representation, and learning in
networks; mathematical theory of learning; problem of ‘qualia’ and
conscious experience, how to model?
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Artificial networks that learn: a short history and some key ideas

Image: The Asimov Institute
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Image: The Asimov Institute
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References:

Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep
Learning, MIT Press, 2017.

Historical Origins

• Cybernetics: “artificial neurons”
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• Marvin Minsky, Seymour Papert, Perceptron, MIT Press, 1969

• Perceptron: an algorithm for supervised learning of binary
classifiers (decides if a given vector belongs to a certain class or
not), linear classifier (separation by hyperplanes)

• problem: shown impossible for these class of network to learn
XOR function

• but multi-layer perceptrons can produce XOR function)
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Linear classification:
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Solution to the XOR problem:
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Feedforward Neural Networks

• acyclic: connections between the units do not form a cycle
• information flows always in one direction
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Universal Approximation Theorem

• Question: given a continuous function f : R→ R can construct
a neural network that at input x outputs a very good
approximation of f (x)?

• Answer: yes this is always possible
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• Key idea: combinations of thresholds compute locally constant
functions

single neuron computes σ(wx + b) with σ(x) = (1 + e−x)−1 resulting in

a step (approximation)

Matilde Marcolli Learning Networks



combined effect of different nodes produce characteristic functions of

intervals
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characteristic functions of intervals approximate continuous functions
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Convolutional Neural Networks
(special type of multi-layered percepton)
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multiple layers: linear convolution, non-linear gating, linear
convolution, . . .
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Back-propagation (learning technique)

• output value compared to (known) correct answer: compute
error-function

• computed error fed back through the network

• algorithm that adjusts weights to reduce value of error function

• to adjust weights: optimization by gradient descent by
computing derivatives of the error function with respect to weight
parameters, and upgrading weights so that error decreases (Note:
requires use of differentiable activation function)

• criticism of back-propagation: (Geoffrey Hinton) need an
objective function, for which need a measure of distance between
predicted value and labeled training data... problematic for
unsupervised learning
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aL(x) vector of activations output of network with input x ; y(x)
desired output; � Hadamard product (componentwise product of
two vectors); δ` errors in level `; δL error in output layer
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Recurrent and Recursive Neural Networks

• Examples

Hopfield networks

Boltzmann machines

• directed graphs that allow cycles, storage internal states
(memory), time delays, feedback loops, controlled states (gated
states)
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Hopfield Network

• historical connection between statistical physics of spin glass
models and neural networks

• nodes variables si = ±1, update

si =

{
+1

∑
j wijsj ≥ θi

−1 otherwise

E = −1

2

∑
i ,j

wijsi sj −
∑
i

θi si

Energy landscape of the Hopfield network

Matilde Marcolli Learning Networks



Mehta-Schwab approach:

• Main idea: Kadanoff’s “variational renormalization group
scheme” for spin systems can be mapped exactly to a Deep Neural
Network built of stacked layers of Restricted Boltzmann Machines
(RBM), with a variational procedure based on minimizing the
Kullback–Leibler divergence
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Kadanoff’s variational renormalization

Leo P. Kadanoff, Anthony Houghton, Mehmet C. Yalabik,
Variational Approximations for Renormalization Group
Transformations, Journal of Statistical Physics, Vol. 14,
(1976) No. 2, 171–203

• statistical mechanics problem: calculation of free energy in terms
of a sum over states

• approximate recursion relations give upper and lower bounds on
free energy

• optimized by treating parameters within the renormalization
equations variationally
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Ising Model on a graph G

• Hamiltonian

H = −
∑
v

Bvxv −
∑
e

Jexs(e)xt(e)

• all nodes are “visible nodes”: this type of spin glass model in
statistical physics same as the Hopfield Associative Memory in
neural network theory
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• for other statistical physics systems more general Hamiltonians
with many-body terms

H(x) = −
∑
i

κixi −
∑
i ,j

κijxixj −
∑
ijk

κijkxixjxk · · ·

• partition function: sum over configurations

Z =
∑
x

e−H(x)

thermodynamic parameter β = 1/T inverse temperature

• free energy

F = − logZ = − log
∑
x

e−βH(x)
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• physical system is coarse grained by introducing “block”
variables that average spins in a block, effective behavior, sequence
of successive coarse graining

free energy (after a rescaling) is preserved
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• Hamiltonian H(x) describes system at fine grained scales

• construct a correlation function V (x , h) that couples it to the
next level of coarse graining∑

h

e−V (x ,h) = 1

for all x so partition function remains unchanged (and free energy)

• joint Hamiltonian

H(x , h) = H(x) + V (x , h)

Z =
∑
x

e−βH(x) =
∑
h

∑
x

e−βH(x ,h)
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• renormalized effective Hamiltonian acting on hidden nodes

H̄(h) = log
∑
x

e−βV (x ,h)e−βH(x)

Z̄ =
∑
h

e−βH̄(h)

• want V (x , h) that minimizes the free energy difference between

F̄ = − log Z̄ and F = − logZ

• variational problem: Kadanoff–Houghton–Yalabik computed
explicit lower bounds for the minimizer V (x , h) for given systems
(eg Ising model on a graph)
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Variational RG and neural networks

• idea: introducing layers of nodes with hidden variables in a
neural network is a form of Renormalization related to scale change

• modify the Hopfield network architecture to introduce hidden
nodes: Hinton’s restricted Boltzmann machines (RBM)
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Image: The Asimov Institute

(yellow=backfed input node, green=probabilistic hidden node, red=match input output node)
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• Energy functional for RBM:

E (x , h) = x tB + x tWh + C th

• probability distribution

P(x , h) =
e−βE(x ,h)

Z
, Z =

∑
x ,h

e−βE(x ,h)

• distributions for visible and hidden nodes: marginals

P(x) =
∑
h

P(x , h) =
∑
h

e−βE(x ,h)

Z

P(h) =
∑
x

P(x , h) =
∑
x

e−βE(x ,h)

Z
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• Hamiltonians for visible and hidden nodes

H(x) = − log
∑
h

e−E(x ,h)

H(h) = − log
∑
x

e−E(x ,h)

• training of RBMs: comparing free energies on training data and
validation data and minimize difference in free energy

• the parameters in the RBM are chosen to minimize the
Kullback–Leibler divergence between the true distribution of the
data and the variational distribution
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• the variational distribution is the one obtained as marginal

P(x) =
∑
h

P(x , h) =
∑
h

e−βE(x ,h)

Z

• so minimizing the difference in free energy between training data
and validation data can be done by minimizing the
Kullback–Leibler divergence

KL(P|P) =
∑
x

P(x) log
P(x)

P(x)

• so can map each step of the Kadanoff–Houghton–Yalabik
variational RG method to a RBM: resulting architecture is a
stacked layers of Restricted Boltzmann Machines (RBM), Deep
Belief Network (DBN)
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from Mehta–Schwab: 2D Ising Model simulated by a DNN of RBMs
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• what it shows: Kadanoff variational RG algorithm can be
implemented on a network given by a stack of RBMs

• what it claims: Deep Learning is a form of Renormalization
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Mathematical theory of learning:

an approach to studying and estimating limits of learning and
learnability in neural networks

F. Cucker, S. Smale, On the mathematical foundations of
learning, Bulletin of the American Math. Society 39 (2001)
N.1, 1–49.
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• General problem: when two sets of random variables x , y are
probabilistically related

relation described by probability distribution P(x , y)

some square loss problem (minimization problem)

E (f ) =

∫
(y − f (x))2 P(x , y) dx dy

distribution itself unknown, but minimize empirical error

EN(f ) =
1

N

N∑
i=1

(yi − f (xi ))2

over a set of random sampled data points {(xi , yi )}i=1,...,N

if fN minimizes empirical error, want that the probability

P(‖E (fN)− EN(fN)‖ > ε)

is sufficiently small

Problem depends on the function space where fN lives
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General setting

• F. Cucker, S. Smale, On the mathematical foundations of
learning, Bulletin of the American Math. Society 39 (2001) N.1,
1–49.

X compact manifold, Y = Rk (for simplicity k = 1),
Z = X × Y with Borel measure ρ

ξ random variable (real valued) on probability space (Z , ρ)

expectation value and variance

E(ξ) =

∫
Z
ξ dρ, σ2(ξ) = E((ξ − E(ξ))2) = E(ξ2)− E(ξ)2

function f : X → Y , least squares error of f

E(f ) =

∫
Z

(f (x)− y)2 dρ

measures average error incurred in using f (x) as a model of
the dependence between y and x

Problem: how to minimize the error?
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conditional probability ρ(y |x) (probability measure on Y )

marginal probability ρX (S) = ρ(π−1(S)) on X , with
projection π : Z = X × Y → X

relation between these measures∫
Z
φ(x , y) dρ =

∫
X

(∫
Y
φ(x , y) dρ(y |x)

)
dρX

breaking of ρ(x , y) into ρ(y |x) and ρX (S) is breaking of Z
into input X and output Y
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regression function fρ : X → Y

fρ(x) =

∫
Y
y dρ(y |x)

assumption: fρ is bounded

for fixed x ∈ X map Y to R via

y 7→ y − fρ(x)

expectation value is zero so variance

σ2(x) =

∫
Y

(y − fρ(x))2 dρ(y |x)

averaged variance

σ2
ρ =

∫
X
σ2(x) dρX = E(fρ)

measures how “well conditioned” ρ is

Note: in general ρ and fρ not known but ρX known
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error, regression, and variance:

E(f ) =

∫
X

((f (x)− fρ(x))2 + σ2
ρ) dρX

What this says: σ2
ρ is a lower bound for the error E(f ) for all

f , and f = fρ has the smallest possible error (which depends
only on ρ)

why identity holds:
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Goal: “learn” (= find a good approximation for) fρ given random
samples of Z

ZN 3 z = ((x1, y1), . . . , (xN , yN)) sample set of points (xi , yi )
independently drawn with probability ρ

empirical error

Ez(f ) =
1

N

N∑
i=1

(f (xi )− yi )
2

for random variable ξ empirical mean

Ez(ξ) =
1

N

N∑
i=1

ξ(zi , yi )

given f : X → Y take fY : Z → Y to be
fY : (x , y) 7→ f (x)− y

E(f ) = E(f 2
Y ), Ez(f ) = Ez(f 2

Y )
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Facts of Probability Theory
(quantitative versions of law of large numbers)

• ξ random variable on probability space Z with mean E(ξ) = µ
and variance σ2(ξ)− σ2

• Chebyshev: for all ε > 0

P

{
z ∈ Zm :

∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi )− µ

∣∣∣∣∣ ≥ ε
}
≤ σ2

mε2

• Bernstein: if |ξ(z)− E(ξ)| ≤ M for almost all z ∈ Z then ∀ε > 0

P

{
z ∈ Zm :

∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi )− µ

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

(
− mε2

2(σ2 + 1
3Mε)

)

• Hoeffding:

P

{
z ∈ Zm :

∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi )− µ

∣∣∣∣∣ ≥ ε
}
≤ 2 exp

(
−mε2

2M2

)
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Defect Function of f : X → Y

Lz(f ) := E(f )− Ez(f )

discrepancy between error and empirical error (only Ez(f )
measured directly)

• estimate of defect if |f (x)− y | ≤ M almost everywhere, then
∀ε > 0, with σ2 variance of f 2

Y

P{z ∈ Zm : |Lz(f )| ≤ ε} ≥ 1− 2ε exp

(
− mε2

2(σ2 + 1
3M

2ε)

)

• from previous Bernstein estimate taking ξ = f 2
Y

• when is |f (x)− y | ≤ M a.e. satisfied? e.g. for M = Mρ + P

Mρ = inf{M̄ : {(x , y) ∈ Z : |y − fρ(x)| ≥ M̄} measure zero }

P ≥ sup
x∈X
|f (x)− fρ(x)|
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Hypothesis Space

• a learning process requires a datum of a class of functions
(hypothesis space) within which the best approximation for fρ

• C (X ) algebra of continuous functions on topological space X

• H ⊂ C (X ) compact subset (not necessarily subalgebra)

• look for minimizer (not necessarily unique)

fH = argminf ∈H

∫
Z

(f (x)− y)2

because E(f ) =
∫
X (f − fρ)2 + σ2

ρ also minimizer

fH = argminf ∈H

∫
X

(f − fρ)2

• continuity: if for f ∈ H have |f (x)− y | ≤ M a.e., bounds

|E(f1)− E(f2)| ≤ 2M‖f1 − f2‖∞
and for Ez also, so E and Ez continuous

• compactness of H ensures existence of minimizer but not
uniqueness (a uniqueness result when H convex)
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Empirical target function fH,z

• minimizer (non unique in general)

fH,z = argminf ∈H
1

m

m∑
i=1

(f (xi )− yi )
2

Normalized Error
EH(f ) = E(f )− E(fH)

EH(f ) ≥ 0 vanishing at fH

Sample Error EH(fH,z)

E(fH,z) = EH(fH,z) + E(fH) =

∫
X

(fH,z − fρ)2 + σ2
ρ

estimating E(fH,z) by estimating sample and approximation errors,
EH(fH,z) and E(fH) one on H the other independent of sample z
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bias-variance trade-off

• bias = approximation error; variance = sample error

fix H: sample error EH(fH,z) decreases by increasing number
m of samples

fix m: approximation error E(fH) decreases when enlarging H

• procedure:

1 estimate how close fH,z and fH depending on m

2 how to choose dimH when m is fixed

• first problem: how many examples need to draw to say with
confidence ≥ 1− δ that

∫
X (fH,z − fH)2 ≤ ε ?

Matilde Marcolli Learning Networks



Uniformity Estimate (Vapnik’s Statistical Learning Theory)

• covering number: S metric space, s > 0, number N (S , s)
minimal ` ∈ N so that ∃ disks in S radii s covering S ; for S
compact N (S , s) finite

• uniform estimate: H ⊂ C (X ) compact, if for all f ∈ H have
|f (x)− y | ≤ M a.e., then ∀ε > 0

P{z ∈ Zm : sup
f∈H
|Lz(f )| ≤ ε} ≥ 1−N (H, ε

8M
)2 exp

(
− mε2

4(2σ2 + 1
3M

2ε)

)

with σ2 = supf ∈H σ
2(f 2

Y )

• main idea: like previous “estimate of defect” but passing from a
single function to a family of functions, using a uniformity based
on “covering number”
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Estimate of Sample Error

• H ⊂ C (X ) compact, with |f (x)− y | ≤ M a.e. for all f ∈ H, and
σ2 = supf ∈H σ

2(f 2
Y ), then ∀ε > 0

P{z ∈ Zm : EH(fz) ≤ ε} ≥ 1−N (H, ε

16M
)2 exp

(
− mε2

8(4σ4 + 1
3M

2ε)

)
• obtained from previous estimate using Lz(f ) = E(f )− Ez(f )

• so answer to first question: to ensure probability above ≥ 1− δ
need to take at least

m ≥
8(4σ4 + 1

3M
2ε)

ε2

(
log(2N (H, ε

16M
)) + log(

1

δ
)

)
obtained by setting

δ = N (H, ε

16M
)2 exp

(
− mε2

8(4σ4 + 1
3M

2ε)

)

• need various techniques for estimating covering numbers
N (H, s) depending on the choice of the compact set H
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Second Question: Estimating the Approximation Error

E(fH,z) = EH(fH,z) + E(fH)

focus on E(fH), which depends on H and ρ∫
X

(fH − fρ)2 + σ2
ρ

second term independent of H so focus on first; fρ bounded, but
not in H nor necessarily in C (X )

• Main idea: use finite dimensional hypothesis space H; estimate
in terms of growth of eigenvalues of an operator

• Main technique: Fourier analysis; Hilbert spaces
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Fourier Series: start with case of X = T n = (S1)n torus

• Hilbert space L2(X ) Lebesgue measure with complete
orthonormal system

φα(x) = (2π)−n/2 exp(iα · x), α = (α1, . . . , αn) ∈ Zn

Fourier series expansion

f =
∑
α∈Zn

cα φα

• finite dimensional subspaces HN ⊂ L2(X ) spanned by φα with
‖α‖ ≤ B, dimension N(B) number of lattice points in ball radius
B in Rn

N(B) ≤ (2B)n/2

• H hypothesis space: ball HN,R of radius R in ‖ · ‖∞ norm in HN
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Laplacian

• on torus X = T n Laplacian ∆ : C∞(X )→ C∞(X )

∆(f ) =
n∑

i=1

∂2f

∂x2
i

Fourier series basis φα are eigenfunctions of −∆ with eigenvalue
‖α‖2

• more general X : bounded domain X ⊂ Rn with smooth
boundary ∂X and a complete orthonormal system φk of L2(X )
(Lebesgue measure) of eigenfunctions of Laplacian with

−∆(φk) = ζk φk , φk |∂X ≡ 0, ∀k ≥ 1

0 < ζ1 ≤ ζ2 ≤ · · · ≤ ζk ≤ · · ·

• subspace HN of L2(X ) generated by {φ1, . . . , φN}
• hypothesis space H = HN,R ball of radius R for ‖ · ‖∞ in HN
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Construction of fH

• Lebesgue measure µ on X and measure ρ (marginal probability
ρX induced by ρ on Z = X × Y )

• consider regression function

fρ(x) =

∫
Y
y dρ(y |x)

• assumption fρ bounded on X so in L2
ρ(X ) and in L2

µ(X )

• choice of R: assume also that R ≥ ‖fρ‖∞, which implies
R ≥ ‖fρ‖ρ
• then fH is orthogonal projection of fρ onto HN using inner
product in L2

ρ(X )

• goal: estimate approximation error E(fH) for this fH
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Distorsion factor:

• identity function on bounded functions extends to

J : L2
µ(X )→ L2

ρ(X )

• distorsion of ρ with respect to µ

Dρµ = ‖J‖

operator norm: how much ρ distorts the ambient measure µ

• reasonable assumption: distorsion is finite

• in general ρ not known, but ρX is known, so Dρµ can be
computed
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Weyl Law

• Weyl law on rate of growth of eigenvalues of the Laplacian
(acting on functions vanishing on boundary of domain X ⊂ Rn)

lim
λ→∞

N(λ)

λn/2
= (2π)−nBnVol(X )

Bn volume of unit ball in Rn; N(λ) number of eigenvalues (with
multiplicity) up to λ

• Weyl law: Li–Yau version

ζk ≥
n

n + 2
4π2

(
k

Bn Vol(X )

)2/n

P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator,

Acta Math. 156 (1986), 153–201

• from this get a weaker estimate, using explicit volume Bn

ζk ≥
(

k

Vol(X )

)2/n
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Approximation Error and Weyl Law

• norm ‖ · ‖K : for f =
∑∞

k=1 ck φk with φk eigenfunctions of −∆

‖f ‖K :=

( ∞∑
k=1

c2
k ζk

)1/2

like L2-norm but weighted by eigenvalues of Laplacian in `2

measure of c = (ck)

• Approximation Error Estimate: for H and fH as above

E(fH) ≤ D2
ρµ

(
k

Vol(X )

)2/n

‖fρ‖2
K + σ2

ρ

• proved using Weyl law and estimates

‖fρ − fH‖ρ = dρ(fρ,HN) ≤ ‖J‖ dµ(fρ,HN)

dµ(fρ,HN)2 = ‖
∞∑

k=N+1

ckφk‖2
µ =

∞∑
k=N+1

c2
k =

∞∑
k=N+1

c2
k ζk

1

ζk
≤ 1

ζN+1
‖fρ‖2

K

where fρ =
∑

k ckφk
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Solution of the bias-variance problem

• mimimize E(fH,z) by minimizing both sample error and
approximation error

• minimization as a function of N ∈ N (for the choice of
hypothesis space H = HN,R)

• select integer N ∈ N that minimizes A(N) + ε(N) where
ε = ε(N) as in previous estimate of sample error and

A(N) = D2
ρµ

(
k

Vol(X )

)2/n

‖fρ‖2
K + σ2

ρ

• from previous relation between m, R = ‖fρ‖∞, δ and ε obtain

ε− 288M2

m

(
N log(

96RM

ε
) + 1 + log(

1

δ
)

)
≥ 0

find N that minimizes ε with this constraint

• no explicit closed form solution for N minimizing A(N) + ε(N)
but can be estimated numerically in specific cases
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