Models of Language Acquisition: Part II

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

Probably Approximately Correct Model of Language Learning

- General setting of Statistical Learning Theory: objects of learning are functions
- ullet concept class: set ${\mathcal F}$ of possible target functions
- hypothesis class set \mathcal{H} of functions $f: X \to Y$ typically assume $\mathcal{F} = \mathcal{H}$
- \bullet for language case: X= set \mathfrak{A}^{\star} of all possible strings on an alphabet, $Y=\{0,1\}$
- given a language $\mathcal{L} \subset \mathfrak{A}^{\star}$ consider the associated indicator function (characteristic function) $\chi_{\mathcal{L}}: \mathfrak{A}^{\star} \to \{0,1\}$

$$\chi_{\mathcal{L}}(x) = \begin{cases}
1 & x \in \mathcal{L} \\
0 & x \notin \mathcal{L}
\end{cases}$$

- ullet Language ${\cal L}$ can be seen as
 - lacktriangle recursively enumerable subset $\mathcal{L}\subset\mathfrak{A}^{\star}$
 - $oldsymbol{2}$ Turing machine (program) that recognizes $\mathcal L$
 - **3** indicator function $\chi_{\mathcal{L}}$
- distance function on the space of languages (something better than the discrete 0/1 metric): $L^1(\mathbb{P})$ -distance
- use a probability measure \mathbb{P} on \mathfrak{A}^{\star} (Bernoulli, Markov,...)
- define $L^1(\mathbb{P})$ -distance as

$$d_{\mathbb{P}}(\mathcal{L},\mathcal{L}') = \sum_{s \in \mathfrak{A}^{\star}} |\chi_{\mathcal{L}}(s) - \chi_{\mathcal{L}'}(s)| \;\; \mathbb{P}(s)$$

ullet ϵ -neighborhood of a language ${\cal L}$

$$\mathcal{N}_{\epsilon}(\mathcal{L}) = \{\mathcal{L}' \, | \, d_{\mathbb{P}}(\mathcal{L}, \mathcal{L}') < \epsilon \}$$

- \bullet Examples are randomly presented to a learner according to the probability distribution $\mathbb P$
- Note: both positive and negative examples
- view examples as pairs (x, y) with $x \in \mathfrak{A}^*$ and $y = \chi_{\mathcal{L}}(x)$
- Data set: $\mathcal{D} = \cup_k \mathcal{D}_k$

$$\mathcal{D}_k = \{(z_1, \dots, z_k) \mid z_i = (x_i, y_i), \ x_i \in \mathfrak{A}^*, \ y_i \in \{0, 1\}\}$$

• learning algorithm

$$A: \mathcal{D} \longrightarrow \mathcal{H}$$

after k data points learner conjectures a function $\hat{h}_k \in \mathcal{H}$

• procedure that minimizes empirical risk:

$$\hat{h}_k(x_j) = \arg\min_{h \in \mathcal{H}} \frac{1}{k} \sum_{j=1}^k |y_j - h(x_j)|$$

- $\hat{h}_k = \mathcal{A}(\delta_k)$ with $\delta_k \in \mathcal{D}_k$ a random element
- ullet successful learning: hypothesis \hat{h}_k converges to target $\chi_{\mathcal{L}}$ as $k o \infty$
- hypothesis \hat{h}_k is a random function (because $\delta_k \in \mathcal{D}_k$ random) so need convergence in probabilistic sense

$$\lim_{k\to\infty}\mathbb{P}\left(d_{\mathbb{P}}(\hat{h}_k,\chi_{\mathcal{L}})>\epsilon\right)=0$$

• this means weak convergence of random variables

$$\hat{h}_k = \mathcal{A}(\delta_k) \stackrel{\mathsf{w}}{\to} \chi_{\mathcal{L}}$$

$$\mathbb{E}_{\mathbb{P}}\left(\left|\hat{h}_k(s) - \chi_{\mathcal{L}}(s)\right|\right) = \sum_{s \in \mathfrak{A}^*} \left|\hat{h}_k(s) - \chi_{\mathcal{L}}(s)\right| \mathbb{P}(s) \to 0$$

• Note double role of probability \mathbb{P} : in defining $L^1(\mathbb{P})$ -distance for convergence; and also in drawing random data $\delta_k \in \mathcal{D}_k$

target function is

$$\mathcal{L}^{(t)} = \arg\min_{\mathcal{L}} \mathbb{E}_{\mathbb{P}} \left(|\chi_{\mathcal{L}^{(t)}} - \chi_{\mathcal{L}}| \right)$$

- a set of elements $S = \{s_1, \ldots, s_n\}$ in \mathfrak{A}^* is shattered by the set of functions \mathcal{H} if, for every set of binary vectors $b = (b_1, \ldots, b_n)$ there is a function $h_b \in \mathcal{H}$ such that $h_b(x_i) = 1$ iff $b_i = 1$
- this means that for every way of partitioning the set S into two parts, there is a function in \mathcal{H} that implements the partition (\mathcal{H} must have at least 2^n elements)
- Vapnik-Chervonenkis dimension of $\mathcal H$ is D if there is at least one set of D elements that is shattered by $\mathcal H$ and no set of D+1 elements is (if no such D then $\dim_{VC}\mathcal H=\infty$)

Learnability

- Fact: Set $\mathcal H$ of languages (identified with indicator functions $\chi_{\mathcal L}$): languages $\mathcal L$ of $\mathcal H$ are learnable iff Vapnik–Chervonenkis dimension $\dim_{VC}\mathcal H<\infty$
- here learnability as weak convergence $\hat{h}_k = \mathcal{A}(\delta_k) \stackrel{w}{\to} \chi_{\mathcal{L}}$

$$\hat{h}_k(x_j) = \chi_{\hat{\mathcal{L}}_k}(x_j) = \arg\min_{\mathcal{L}} \frac{1}{k} \sum_{j=1}^k |y_j - \chi_{\mathcal{L}}(x_j)|$$

empirical risk minimization

• why finite Vapnik–Chervonenkis dimension is needed? Lower bound on learnability...

Lower bound for learning

- ullet suppose Vapnik–Chervonenkis dimension $\dim_{VC}\mathcal{H}=D$
- ullet construct a probability distribution ${\mathbb P}$ on ${\mathfrak A}^\star$ with respect to which learner needs to draw at least

$$m \geq \frac{D}{4}\log_2(\frac{3}{2}) + \log_2(\frac{1}{8\delta})$$

in order to have

$$\mathbb{P}(d(\hat{h}_m,h)>\epsilon)<\delta$$

ullet so in particular if $D=\infty$ don't have learnability (for this ${\mathbb P}$)

construction of ${\mathbb P}$

- since $\dim_{VC} \mathcal{H} = D$ have a set x_1, \dots, x_D that is shattered by \mathcal{H} :
 - assign measure $\mathbb{P}(x_i) = \frac{1}{D}$ to these points
 - ullet assign measure zero to all other points in ${\mathfrak A}^\star$
- in this measure two functions $h_1, h_2 \in \mathcal{H}$ have distance $d_{\mathbb{P}}(h_1, h_2) = 0$ iff they agree on all points x_i
- mod out \mathcal{H} by equivalence relation $h_1 \sim h_2$ if $h_1(x_i) = h_2(x_i)$ for all $1 \leq i \leq D$: set of equivalence classes $\mathcal{H}_{/\sim}$ has 2^D points

Partitioning of ${\cal H}$

- ullet draw a sequence $z=(z_1,\ldots,z_m)$ of random data according to the probability distribution $\mathbb P$
- suppose z contains ℓ distinct elements among the $X = \{x_1, \dots, x_D\}$ (the remaining $D \ell$ do not occur in z)
- ullet there are then 2^ℓ possible ways in which can label $z=z_h$ by a potential candidate target function $h\in\mathcal{H}_{/\sim}$
- ullet these choices determine a partitioning of ${\cal H}$ into disjoint subsets

$$\mathcal{H}=\mathcal{H}_1\cup\cdots\cup\mathcal{H}_{2^\ell}$$

each \mathcal{H}_i in this partition contains exactly $2^{D-\ell}$ different functions that agree on the ℓ distinct elements in z

Estimate of sum

$$\sum_{h\in\mathcal{H}}d(\mathcal{A}(z_h),h)=\sum_{i=1}^{2^{\ell}}\sum_{h\in\mathcal{H}_i}d(\mathcal{A}(z_h),h)$$

- the $2^{D-\ell}$ functions in \mathcal{H}_i all agree on data set z_h while on remaining $D-\ell$ elements of X the functions h and $\mathcal{A}(z_h)$ in \mathcal{H}_i disagree somewhere
- if $\mathcal{A}(z_h)$ and h disagree in j places then $d(\mathcal{A}(z_h),h) \geq j/D$ and this can happen in $\binom{D-\ell}{j}$ possible ways:

$$\sum_{h \in \mathcal{H}_i} d(\mathcal{A}(z_h), h) \geq \sum_{j=0}^{D-\ell} \binom{D-\ell}{j} \frac{j}{D} \geq \frac{2^{D-\ell}(D-\ell)}{2D}$$

$$\Rightarrow \sum_{h\in\mathcal{H}} d(\mathcal{A}(z_h), h) \geq \frac{2^D(D-\ell)}{2D}$$

Candidate target function

• set $S_{\ell} = \{z \mid z \text{ has } \ell \text{ distinct elements}\}$

$$\sum_{z \in S_{\ell}} \mathbb{P}(z) \frac{1}{2^{D}} \sum_{h \in \mathcal{H}} d(\mathcal{A}(z), h) \geq \frac{D - \ell}{2D} \mathbb{P}(S_{\ell})$$

- change order of sum: $2^{-D} \sum_{h} \sum_{z} \mathbb{P}(z) d(\mathcal{A}(z), h)$
- ullet to have inequality there must be at least one $h=h_\star$ with

$$\sum_{z \in S_{\ell}} \mathbb{P}(z) d(\mathcal{A}(z), h_{\star}) \geq \frac{D - \ell}{2D} \mathbb{P}(S_{\ell})$$

ullet this $h=h_{\star}$ is a candidate target function with a certain estimate of inaccuracy of learning hypothesis

Inaccuracy estimate

• Set of draws of m data on which learner's hypothesis $\mathcal{A}(z)$ differs from candidate target h_{\star} by more than a given size β :

$$\mathbb{S}_{\beta} = \{ z \in S_{\ell} \mid d(\mathcal{A}(z), h_{\star}) > \beta \}$$

• lower bound on $\mathbb{P}(\mathbb{S}_{\beta})$:

$$\frac{D-\ell}{2D}\mathbb{P}(S_{\ell}) \leq \sum_{z \in \mathbb{S}_{\beta}} \mathbb{P}(z)d(\mathcal{A}(z), h_{\star}) + \sum_{z \in S_{\ell} \setminus \mathbb{S}_{\beta}} \mathbb{P}(z)d(\mathcal{A}(z), h_{\star})$$

$$\leq \mathbb{P}(\mathbb{S}_{\beta}) + \beta(\mathbb{P}(S_{\ell}) - \mathbb{P}(\mathbb{S}_{\beta}))$$

gives
$$\mathbb{P}(\mathbb{S}_{\beta}) \geq (1-\beta)\mathbb{P}(\mathbb{S}_{\beta}) \geq (\frac{D-\ell}{2D}-\beta)\mathbb{P}(S_{\ell})$$

arrange for $\mathbb{P}(\mathbb{S}_{\epsilon}) > \delta$

- if target h_{\star} then with probability $\mathbb{P}(\mathbb{S}_{\epsilon})$ learner hypothesis more than ϵ away from target
- ullet take arbitrary ℓ to be $\ell=D/2$ and $\epsilon<1/8$, then

$$(\frac{D-\ell}{2D}-\beta)\mathbb{P}(S_{\ell})>\frac{1}{8}\mathbb{P}(S_{\ell})$$

- ullet if have $\mathbb{P}(S_{D/2})>8\delta$ get also $\mathbb{P}(\mathbb{S}_{\epsilon})>\delta$
- \bullet so can arrange that probability of learner hypothesis differing from target more than ϵ is greater than δ
- find conditions for $\mathbb{P}(S_{D/2}) > 8\delta$

arrange for $\mathbb{P}(S_{D/2}) > 8\delta$

- $\mathbb{P}(S_{\ell})$ = probability of drawing ℓ distinct elements of $X = \{x_1, \dots, x_D\}$ in m identically distributed trials
- $\binom{D}{\ell}$ ways of choosing ℓ elements; for each choice ℓ ! ways in which items can appear in first ℓ positions
- $S_{\ell}^{(i)} \subset S_{\ell}$ set of all $z = (z_1, \ldots, z_m)$ with *i*-th choice of placing the ℓ distinct elements in first ℓ positions (remaining $m \ell$ positions: same ℓ elements disposed in any way)

$$\mathbb{P}(S_{\ell}^{(i)}) = (\frac{1}{D})^{\ell} (\frac{\ell}{D})^{m-\ell}$$

• the $S_{\ell}^{(i)}$ disjoint so

$$\mathbb{P}(S_{\ell}) \geq \binom{D}{\ell} \ell! \ \mathbb{P}(S_{\ell}^{(i)}) = \binom{D}{\ell} \ell! \ (\frac{1}{D})^{\ell} (\frac{\ell}{D})^{m-\ell}$$

• for $D = 2\ell$ have

$$\binom{D}{\ell}\ell! \ (\frac{1}{D})^{\ell} (\frac{\ell}{D})^{m-\ell} = \frac{(2\ell)!}{\ell! \ \ell^{\ell}} 2^{-m}$$

• also have

$$rac{(2\ell)!}{\ell! \ \ell^\ell} = \prod_{j=1}^\ell (1 + rac{j}{\ell}) \ge (1 + rac{1}{2})^{\ell/2}$$

$$\mathbb{P}(S_{D/2}) \ge 2^{-m} (rac{3}{2})^{D/4}$$

ullet then have $\mathbb{P}(S_{D/2}) > 8\delta$ for

$$m < \frac{D}{4}\log_2(\frac{3}{2}) + \log_2(\frac{1}{8\delta})$$

• conclusion: in constructed probability \mathbb{P} learner needs at least m larger than above to achieve $\mathbb{P}(d(\mathcal{A}(z),h_{\star})>\epsilon)<\delta$

Unlearnability problem remains!

- The set of all finite languages is unlearnable
- The set of all regular languages is unlearnable
- The set of all context-free languages is unlearnable
- impose further constraints on learning
- limit the size of grammars... constraint on the number of production rules

Example

- $\mathcal{H}_{n,k}=$ class of Regular Grammars recognized by deterministic finite state automata
- with at most n states
- with fix number of letters $\#\mathfrak{A}=k$
- size of this family

$$\#\mathcal{H}_{n,k} \leq \binom{n}{k}^n$$

• then Vapnik-Chervonenkis dimension

$$\dim_{VC} \mathcal{H}_{n,k} \leq \log_2(\binom{n}{k}^n) \leq nk \log_2(n)$$

