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Probably Approximately Correct Model of Language Learning

• General setting of Statistical Learning Theory: objects of learning
are functions

• concept class: set F of possible target functions

• hypothesis class set H of functions f : X → Y
typically assume F = H

• for language case: X = set A? of all possible strings on an
alphabet, Y = {0, 1}

• given a language L ⊂ A? consider the associated indicator
function (characteristic function) χL : A? → {0, 1}

χL(x) =

{
1 x ∈ L
0 x /∈ L
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• Language L can be seen as

1 recursively enumerable subset L ⊂ A?

2 Turing machine (program) that recognizes L
3 indicator function χL

• distance function on the space of languages (something better
than the discrete 0/1 metric): L1(P)-distance

• use a probability measure P on A? (Bernoulli, Markov,...)

• define L1(P)-distance as

dP(L,L′) =
∑
s∈A?
|χL(s)− χL′(s)| P(s)

• ε-neighborhood of a language L

Nε(L) = {L′ | dP(L,L′) < ε}
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• Examples are randomly presented to a learner according to the
probability distribution P

• Note: both positive and negative examples

• view examples as pairs (x , y) with x ∈ A? and y = χL(x)

• Data set: D = ∪kDk

Dk = {(z1, . . . , zk) | zi = (xi , yi ), xi ∈ A?, yi ∈ {0, 1}}

• learning algorithm
A : D −→ H

after k data points learner conjectures a function ĥk ∈ H

• procedure that minimizes empirical risk:

ĥk(xj) = arg min
h∈H

1

k

k∑
j=1

|yj − h(xj)|
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• ĥk = A(δk) with δk ∈ Dk a random element

• successful learning: hypothesis ĥk converges to target χL as
k →∞

• hypothesis ĥk is a random function (because δk ∈ Dk random)
so need convergence in probabilistic sense

lim
k→∞

P
(
dP(ĥk , χL) > ε

)
= 0

• this means weak convergence of random variables

ĥk = A(δk)
w→ χL

EP

(∣∣∣ĥk(s)− χL(s)
∣∣∣) =

∑
s∈A?

∣∣∣ĥk(s)− χL(s)
∣∣∣P(s)→ 0

• Note double role of probability P: in defining L1(P)-distance for
convergence; and also in drawing random data δk ∈ Dk
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• target function is

L(t) = arg min
L

EP (|χL(t) − χL|)

• a set of elements S = {s1, . . . , sn} in A? is shattered by the set
of functions H if, for every set of binary vectors b = (b1, . . . , bn)
there is a function hb ∈ H such that hb(xi ) = 1 iff bi = 1

• this means that for every way of partitioning the set S into two
parts, there is a function in H that implements the partition
(H must have at least 2n elements)

• Vapnik–Chervonenkis dimension of H is D if there is at least one
set of D elements that is shattered by H and no set of D + 1
elements is (if no such D then dimVC H =∞)
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Learnability

• Fact: Set H of languages (identified with indicator functions
χL): languages L of H are learnable iff Vapnik–Chervonenkis
dimension dimVC H <∞

• here learnability as weak convergence ĥk = A(δk)
w→ χL

ĥk(xj) = χL̂k (xj) = arg min
L

1

k

k∑
j=1

|yj − χL(xj)|

empirical risk minimization

• why finite Vapnik–Chervonenkis dimension is needed? Lower
bound on learnability...
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Lower bound for learning

• suppose Vapnik–Chervonenkis dimension dimVC H = D

• construct a probability distribution P on A? with respect to
which learner needs to draw at least

m ≥ D

4
log2(

3

2
) + log2(

1

8δ
)

in order to have
P(d(ĥm, h) > ε) < δ

• so in particular if D =∞ don’t have learnability (for this P)
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construction of P

• since dimVC H = D have a set x1, . . . , xD that is shattered by H:

assign measure P(xi ) = 1
D to these points

assign measure zero to all other points in A?

• in this measure two functions h1, h2 ∈ H have distance
dP(h1, h2) = 0 iff they agree on all points xi

• mod out H by equivalence relation h1 ∼ h2 if h1(xi ) = h2(xi )
for all 1 ≤ i ≤ D: set of equivalence classes H/∼ has 2D points
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Partitioning of H

• draw a sequence z = (z1, . . . , zm) of random data according to
the probability distribution P

• suppose z contains ` distinct elements among the
X = {x1, . . . , xD} (the remaining D − ` do not occur in z)

• there are then 2` possible ways in which can label z = zh by a
potential candidate target function h ∈ H/∼
• these choices determine a partitioning of H into disjoint subsets

H = H1 ∪ · · · ∪ H2`

each Hi in this partition contains exactly 2D−` different functions
that agree on the ` distinct elements in z
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Estimate of sum

∑
h∈H

d(A(zh), h) =
2`∑
i=1

∑
h∈Hi

d(A(zh), h)

• the 2D−` functions in Hi all agree on data set zh while on
remaining D − ` elements of X the functions h and A(zh) in Hi

disagree somewhere

• if A(zh) and h disagree in j places then d(A(zh), h) ≥ j/D and
this can happen in

(D−`
j

)
possible ways:

∑
h∈Hi

d(A(zh), h) ≥
D−∑̀
j=0

(
D − `

j

)
j

D
≥ 2D−`(D − `)

2D

⇒
∑

h∈H d(A(zh), h) ≥ 2D(D−`)
2D
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Candidate target function

• set S` = {z | z has ` distinct elements}∑
z∈S`

P(z)
1

2D

∑
h∈H

d(A(z), h) ≥ D − `
2D

P(S`)

• change order of sum: 2−D
∑

h

∑
z P(z)d(A(z), h)

• to have inequality there must be at least one h = h? with∑
z∈S`

P(z)d(A(z), h?) ≥ D − `
2D

P(S`)

• this h = h? is a candidate target function with a certain estimate
of inaccuracy of learning hypothesis
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Inaccuracy estimate

• Set of draws of m data on which learner’s hypothesis A(z)
differs from candidate target h? by more than a given size β:

Sβ = {z ∈ S` | d(A(z), h?) > β}

• lower bound on P(Sβ):

D − `
2D

P(S`) ≤
∑
z∈Sβ

P(z)d(A(z), h?) +
∑

z∈S`rSβ

P(z)d(A(z), h?)

≤ P(Sβ) + β(P(S`)− P(Sβ))

gives P(Sβ) ≥ (1− β)P(Sβ) ≥ (D−`2D − β)P(S`)
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arrange for P(Sε) > δ

• if target h? then with probability P(Sε) learner hypothesis more
than ε away from target

• take arbitrary ` to be ` = D/2 and ε < 1/8, then

(
D − `

2D
− β)P(S`) >

1

8
P(S`)

• if have P(SD/2) > 8δ get also P(Sε) > δ

• so can arrange that probability of learner hypothesis differing
from target more than ε is greater than δ

• find conditions for P(SD/2) > 8δ
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arrange for P(SD/2) > 8δ

• P(S`) = probability of drawing ` distinct elements of
X = {x1, . . . , xD} in m identically distributed trials

•
(D
`

)
ways of choosing ` elements; for each choice `! ways in

which items can appear in first ` positions

• S (i)
` ⊂ S` set of all z = (z1, . . . , zm) with i-th choice of placing

the ` distinct elements in first ` positions (remaining m − `
positions: same ` elements disposed in any way)

P(S
(i)
` ) = (

1

D
)`(

`

D
)m−`

• the S
(i)
` disjoint so

P(S`) ≥
(
D

`

)
`! P(S

(i)
` ) =

(
D

`

)
`! (

1

D
)`(

`

D
)m−`
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• for D = 2` have(
D

`

)
`! (

1

D
)`(

`

D
)m−` =

(2`)!

`! ``
2−m

• also have

(2`)!

`! ``
=
∏̀
j=1

(1 +
j

`
) ≥ (1 +

1

2
)`/2

P(SD/2) ≥ 2−m(
3

2
)D/4

• then have P(SD/2) > 8δ for

m <
D

4
log2(

3

2
) + log2(

1

8δ
)

• conclusion: in constructed probability P learner needs at least m
larger than above to achieve P(d(A(z), h?) > ε) < δ
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Unlearnability problem remains!

The set of all finite languages is unlearnable

The set of all regular languages is unlearnable

The set of all context-free languages is unlearnable

• impose further constraints on learning

• limit the size of grammars... constraint on the number of
production rules
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Example

• Hn,k = class of Regular Grammars recognized by deterministic
finite state automata

• with at most n states

• with fix number of letters #A = k

• size of this family

#Hn,k ≤
(
n

k

)n

• then Vapnik–Chervonenkis dimension

dimVC Hn,k ≤ log2(

(
n

k

)n

) ≤ nk log2(n)
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