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Probably Approximately Correct Model of Language Learning

e General setting of Statistical Learning Theory: objects of learning
are functions

e concept class: set F of possible target functions

e hypothesis class set H of functions f : X — Y
typically assume F = H

o for language case: X = set 1" of all possible strings on an
alphabet, Y = {0,1}

e given a language £ C 2A* consider the associated indicator
function (characteristic function) . : 2* — {0,1}

XL(X):{(l) i;é
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e Language £ can be seen as
@ recursively enumerable subset £ C A*
@ Turing machine (program) that recognizes £

© indicator function x

e distance function on the space of languages (something better
than the discrete 0/1 metric): L!(IP)-distance

e use a probability measure P on 2* (Bernoulli, Markov,...)

e define L!(P)-distance as

(L. L) = |xe(s) = xe(s)| P(s)

seA*

e c-neighborhood of a language £

Ne(L) = {L'| dp(L, L) < €}
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e Examples are randomly presented to a learner according to the
probability distribution P

e Note: both positive and negative examples
e view examples as pairs (x, y) with x € 2A* and y = x2(x)

e Data set: D = UiDy

Dy ={(z1,.-- zk)| zi = (xi,yi), xi € A", yi € {0,1}}

e learning algorithm
A:D—H

after k data points learner conjectures a function he e H

e procedure that minimizes empirical risk:

k
N . 1
hi(x) = argmin > " |y; — h(x;)|
j=1
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o hy = A(0g) with 0k € Dy a random element

e successful learning: hypothesis By converges to target x . as
k — o0

e hypothesis hy is a random function (because 6 € Dy random)
so need convergence in probabilistic sense

lim P (d]p(/Au(,XE) > e) =0

k—o0

e this means weak convergence of random variables

e Note double role of probability P: in defining L!(IP)-distance for
convergence; and also in drawing random data J, € Dy
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e target function is

£® = arg min Ep (Ixzcm — xcl)

e a set of elements S = {s1,...,s,} in A* is shattered by the set
of functions H if, for every set of binary vectors b = (b, ..., bp)
there is a function hp € H such that hy(x;) = 1 iff bj =1

e this means that for every way of partitioning the set S into two
parts, there is a function in H that implements the partition
(H must have at least 2" elements)

e Vapnik—Chervonenkis dimension of H is D if there is at least one
set of D elements that is shattered by H and no set of D + 1
elements is (if no such D then dimy¢cH = o)
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Learnability

e Fact: Set H of languages (identified with indicator functions
Xr): languages L of H are learnable iff Vapnik—Chervonenkis
dimension dimy¢c H < oo

e here learnability as weak convergence he = A(6k) = xr

k

~ N 1

hi(og) = xz,09) = argmin > | 1y; = xc(g)|
j=1

empirical risk minimization

e why finite Vapnik—Chervonenkis dimension is needed? Lower
bound on learnability...
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Lower bound for learning
e suppose Vapnik—Chervonenkis dimension dimy¢cH = D

e construct a probability distribution P on 20* with respect to
which learner needs to draw at least
1

D 3
> =2 e il
mz Iog2(2) + |0g2(85)

in order to have
P(d(hm, h) > €) <

e so in particular if D = oo don't have learnability (for this P)
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construction of P

e since dimyc H = D have a set x1,...,xp that is shattered by H:

e assign measure P(x;) = J to these points

@ assign measure zero to all other points in 2*

e in this measure two functions hy, hy € H have distance
dp(hi, ho) = 0 iff they agree on all points x;

e mod out H by equivalence relation hy ~ hy if hi(x;) = ha(x;)
forall 1 </ < D: set of equivalence classes 1, has 2D points
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Partitioning of H

e draw a sequence z = (zi, ..., Zm,) of random data according to
the probability distribution P

e suppose z contains £ distinct elements among the
X ={x1,...,xp} (the remaining D — ¢ do not occur in z)

o there are then 2¢ possible ways in which can label z =z, by a
potential candidate target function h € H ..

e these choices determine a partitioning of 4 into disjoint subsets
H=Hi1U-  UHo

each 7; in this partition contains exactly 2°—¢ different functions
that agree on the £ distinct elements in z
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Estimate of sum

2[

S d(Alzy). h) = 37 7 d(A(z). h)

heH i=1 heH;

e the 20— functions in H; all agree on data set z, while on
remaining D — ¢ elements of X the functions h and A(zp) in H;
disagree somewhere

e if A(z,) and h disagree in j places then d(.A(zp), h) > j/D and

this can happen in (DJ._K) possible ways:

< /D—0\j _ 204D —1)
hez;lid(A(Zh)’h)ij_;< j )DZQD

D _
= Y pen d(A(z), h) > 200

CS101 Win2015: Linguistics Language Acquisition 2



Candidate target function

e set Sy = {z |z has ¢ distinct elements}

3 P(z)ziD S d(A(2), ) > %P(Sz)

zeSy heH
e change order of sum: 2703, 3™ P(z)d(A(z2), h)
e to have inequality there must be at least one h = h, with
D—7¢
> B()d(A(2), h) > S B(S)

z€Sy

e this h = h, is a candidate target function with a certain estimate
of inaccuracy of learning hypothesis
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Inaccuracy estimate

e Set of draws of m data on which learner’s hypothesis A(z)
differs from candidate target h, by more than a given size j:

Sg ={z € S¢| d(A(z), h) > B}

e lower bound on P(Sg):

DoIB(s) < Y Be)d(AR)h) + YD B)d(AR), h)
z€Sg 2€50~8p

< P(Sp) + B(P(Se) — P(Sp))
gives P(Sg) > (1 — B)P(Ss) > (55" — B)B(Sr)
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arrange for P(S.) > ¢

e if target h, then with probability P(S.) learner hypothesis more
than e away from target

e take arbitrary ¢ to be ¢ = D/2 and € < 1/8, then
D—7/

(5"~ BP(S) > SP(S0)

o if have P(Sp/») > 8 get also P(S,) > ¢

e so can arrange that probability of learner hypothesis differing
from target more than € is greater than §

e find conditions for P(Sp /) > 80
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arrange for P(Sp /o) > 89

e P(S;) = probability of drawing ¢ distinct elements of
X ={x1,...,xp} in midentically distributed trials

° (?) ways of choosing ¢ elements; for each choice ¢! ways in

which items can appear in first £ positions

) Slf") C Sy set of all z=(z,...,zy) with i-th choice of placing
the ¢ distinct elements in first ¢ positions (remaining m — ¢
positions: same ¢ elements disposed in any way)

RS = (5) ()"

e the 55’) disjoint so

P(S¢) = (?)5! ]P’(Séi)) = (?)g! (%)é(g)mfe
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e for D = 2/ have

e also have
L

% :11:[1(1+é) > (1+%)‘/2

—m.3
P(Sp/2) 2 277(5)/

e then have P(Sp /) > 86 for

D 3 1
m < 7 |og2(§) + |og2(%)

e conclusion: in constructed probability P learner needs at least m
larger than above to achieve P(d(A(z), hy) > €) < 0
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Unlearnability problem remains!

@ The set of all finite languages is unlearnable
@ The set of all regular languages is unlearnable

@ The set of all context-free languages is unlearnable

e impose further constraints on learning

e limit the size of grammars... constraint on the number of
production rules
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Example

® H, « = class of Regular Grammars recognized by deterministic
finite state automata

e with at most n states

e with fix number of letters #2 = k

n\ "
#/Hn,k < (k>

e then Vapnik—Chervonenkis dimension

e size of this family

dimyc Hpx < Iogz((z> ) < nklogy(n)
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