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Language Acquisition Problem

Target Grammar G(t)

Example sentences sk ∈ LG(t)
Hypothesis Grammars h ∈ H
Learning Algorithm A

• Learners construct from data sk a model grammar h used to
generate new test sentences...

• the process converges to the target grammar G(t)

• with a selection procedure (learning algorithm A)
for the model grammars h ∈ H

CS101 Win2015: Linguistics Language Acquisition



• main difference between child and adult language learning: child
only exposed to sk not to G(t)

• key aspect is passage from passive reception of sample sentences
sk to active forming of new test sentences

• after n sentences s1, . . . , sn ∈ LG(t) : grammatical hypothesis
hn ∈ H

• successful language learning requires hn → G(t) as n→∞

• a notion of convergence requires a notion of distance between
grammars

lim
n→∞

d(hn,G(t)) = 0
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Set of Grammars H

Context-free Grammars

Tree-adjoining Grammars

Probabilistic CFGs; probabilistic TAGs

Head-driven Phrase Structure Grammars

Lexical-Functional Grammars

• H is set of all grammars that can be hypothesized by learner

• in the case of Probabilistic CFG and TAGs: convergence
statements should be made in the almost-everywhere sense with
respect to the probability measure
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Example

• suppose H = {h1, h2} two possibilities

• after N sample sentences s1, . . . , sN hypothesis hN ∈ H

• some part ε of the population will have hN = h1, and a part
1− ε will have hN = h2

• behavior of the next generation will depend on how similar h1 and
h2 are, how large N, what the specific learning algorithm A is...

• want to construct a dynamical system that describes this type of
learning process
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Linguistics vs Biology

• long history of exchanging methods and ideas between
Biology and Linguistics

Darwin’s evolution and Historical Linguistics

Phylogenetic trees

Syntactic Parameters as Language DNA

• Evolutionary process: necessary ingredients

Variation across population

Heredity: offsprings resemble parents

Transmission with errors: mutation, change

Selection process (least effort)
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Grammars and Languages

• Grammar G generates L = LG language (all strings obtained
from production rules of grammar)

• Given L: not unique grammar G with L = LG
• Language L is in the class of recursively enumerable languages
(Type 0): can enumerate grammars Gm with LGm = L (at most
countable)

• Church thesis: partial recursive functions ⇔ computable

• set H of hypothesis grammars is some enumerable set

• learning algorithm A is some partial recursive function from set
of sample sentences to H
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Assumptions

• sample sentences sk encountered one at a time:
learning independent of order

• learning algorithm A should drive convergence to a target
grammar independently of order of the sk

• also assume occurrences of sample sentences sk as drawn
according to independent identically distributed according to an
underlying probability distribution

• probability distribution µ on A?, alphabet (lexicon) A

• only positive examples: µ supported on L ⊂ A?
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Other Assumptions

• Consistent learner: after N samples hN is consistent with all the
sk , for k = 1, . . . ,N

• Empirical risk minimizing learner:

hN = arg min
h∈H
R(h | (s1, . . . , sN))

with R some risk function measuring the fit of h to the data
(s1, . . . , sN) (the argmin need not be unique)

• Memoryless learner: hn+1 depends only on sn+1 and hn but not
on s1, . . . , sn
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• Enumerative learner:
- first choose an enumeration of h ∈ H

H = {h(1), h(2), . . . , h(m), . . .}

- then start with h(1) and compare with datum s1, stop if consistent
- if not continue down the list, stop at first h(m) consistent with s1
- set first hypothesis h1 = h(m)

- compare this with s2, if compatible stop and take as h2
- if not continue down the list until find one compatible with s1
and s2, etc.

• Learnability: a set H of grammars is learnable if for all G in the
set d(hn,G)→ 0 for n→∞

• generalization error: d(hn,G) distance between learner’s
hypothesis and target
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Learning Algorithm

• Dk = {(s1, . . . , sk) | si ∈ A?} = Ak set of all possible sequences
of k sample sentences

• under the hypothesis of only positive examples all si ∈ L

• D = ∪k≥1Dk set of all finite data sequences

• A : D → H partial recursive function

A : t ∈ D 7→ A(t) = ht ∈ H

the learner’s hypothesis
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Distance functions on the space of grammars

• different notions of convergence on the space H of grammars

• i-language vs e-language

• purely extensional form: d(h, h′) only depends on Lh and Lh′ (so
all grammars producing the same language have distance zero:
metric on a quotient space of equivalence classes)

• purely intensional form: fix enumeration h(k) of the enumerable
set H and set d(h(k), h(`)) = |k − `|

• or distance in terms of grammar complexity
(Kolmogorov ordering)

• distance by Hamming metric on the set of syntactic parameters
(if think of identifying a grammar as setting parameters correctly)
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Inductive Inference Approach

• text τ for a language L: infinite sequence s1, . . . , sN , . . . of
examples, sk ∈ L

• assume every element of L appears at least once in τ

• τk ∈ Dk subset of first k elements (s1, . . . , sk) of τ

• given a distance function d on H, a target grammar G and a text
τ for LG , a learning algorithm A identifies G if

lim
k→∞

d(A(τk),G) = 0

• given sequence s = (s1, . . . , sk) length `(s) = k ; concatenation
x ◦ y = (x1, . . . , xk , y1, . . . , ym)
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• Fact: if A identifies G then for all ε > 0 there is a locking data
set `ε ⊂ D with `ε ⊂ LG and d(A(`ε),G) < ε and

d(A(`ε ◦ x),G) < ε, ∀x ∈ D ∩ LG

• meaning: after encountering locking data, learner will remain
ε-close to target with any additional input data

• argument: if no locking data set exists, for any ` there will be
some x with d(A(` ◦ x),G) ≥ ε... this can be used to construct a
text τ for L on which A does not identify target G:
- start with a given text ρ = s1, s2, . . . sN , . . . ... construct new one
τ : set τ1 = s1
- if d(A(τ1),G) ≥ ε take τ2 = τ1 ◦ s2
- if d(A(τ1),G) < ε take the x such that d(A(τ1 ◦ x),G) ≥ ε and
set τ2 = τ1 ◦ x ◦ s2
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• continue: τk+1 = τk ◦ xk ◦ sk+1 if d(A(τk),G) < ε and
τk+1 = τk ◦ sk if d(A(τk),G) ≥ ε

• valid text because si added at each stage

• but ... A(τk) cannot converge to G because if at some stage τk
hypothesis hk is in an ε-neighborhood of G, at stage τk ◦ xk
hypothesis is outside of ε-neighborhood (infinitely often)

• conclusion: if a grammar is learnable, then there is a locking
data set that constraints the learner’s hypothesis to an
ε-neighborhood of the target... seems nice, but... it has some
undesirable consequences

CS101 Win2015: Linguistics Language Acquisition



Unlearnability of Grammars

• take d(h, h′) = 0 if Lh = Lh′ and d(h, h′) = 1 otherwise
take ε = 1/2

• by previous if A identifies target grammar G there is a locking
data set ` ⊂ LG with d(A(`),G) = 0 and d(A(` ◦ x),G) = 0 for all
additional data x in LG
• Consequence: if H contains all finite languages and at least one
infinite language then H is not learnable

• argument: use metric as above, suppose learnable with algorithm
A, then can identify the infinite language L∞ among other, using
the (finite) locking set data `L∞ of length k... consider language
made only of `L∞ (finite language in H), construct text τ for this
language with τk = `L∞ ... on this text A converges to L∞ hence
it does not recognize the finite language from its text
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Consequences

• the set of Regular Grammars is unlearnable

• the set of Context-free Grammars is unlearnable

• what if changing the metric? convergence in the 0/1 discrete
metric = eventually constant

• this convergence “behaviorally plausible” (right extensional set)
but “cognitively implausible” (no intensional model of grammar
involved)

• but previous unlearnability result can be extended to other
metrics

• criteria for learnability?
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Learnability Criterion

• Result: a family H is learnable iff for all h ∈ H there is a subset
Dh ⊂ Lh such that if h′ ∈ H has Dh ⊂ Lh′ then Lh′ 6⊂ Lh
• avoids previous problem where lock data set for one language
determines another language

• argument:
(1) assume H learnable then have A and for h a locking data set `h
suppose this belongs to some other language `h ⊂ Lh′ with
Lh′ ( Lh
then can construct a text τ for Lh′ using `h with d(A(τk), h′) 6→ 0
this contradicts learnability
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(2) Conversely, assume property in the statement holds and show
can construct A that makes H learnable
enumerate H = {h(k)}k∈N and take Dk = Dh(k)

define A by procedure:
- given τk search in list smallest i ≤ k with Di ⊂ τk ⊂ Lh(k)
- if none take h(1)

show this A identifies all Lk = Lh(k) correctly:
- at τk can hypothesize Lk (correct) or could have chosen some Lj
with j < k , need to exclude this possibility
- it cannot hypothesizes h(j) with j < k if Lj ⊂ Lk because cannot
have Dk ⊂ Lj
- if Lj 6⊂ Lk some sentence s in Lk r Lj will appear in some τm
and after than cannot hypothesize Lj
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Probabilistic Learnability

• G target grammar, measure µ = µG on A? with support on LG
• text τ for G produced as independent identically distributed
random variables according to µ

• almost everywhere learning (with probability one):
∃A such that

µ∞

(
{τ | lim

n→∞
d(A(τk),G) = 0}

)
= 1

where µ∞ probability measure on the ω-language (Cantor set)
determined by measure µ on the cylinder sets

• family H is probability-one-learnable if all G in H is almost
everywhere learnable for µ = µG
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Recursively Enumerable languages are probabilistically learnable

• Result: with prior knowledge of the probability distributions µL
the set H of recursively enumerable languages is
probability-one-learnable

• Comments: knowledge of the measure is needed in the argument
(need to know the d(n) = number of examples after which high
probability of assigning correct membership)

• a better notion of probabilistic learnability,
probability-one-learnable in a distribution-free sense: ∃A that
learns target grammar with measure one for all measures

• ... but in distribution-free sense class of learnable languages
same as in non-probabilistic sense, no improvement
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argument:
• enumeration L1,L2, . . . ,Lm, . . . of all recursively enumerable
languages

• choose enumeration s1, s2, . . . , sn, . . . of all the finite strings in A?

• string (text) τ in Aω and a language Lk agree on membership up
to order n if for all i ≤ n have si ∈ τ iff si ∈ Lk
• consider set of all texts for Lk for which one of the first n
elements in A? is in Lk but not in τm

Ak,n,m = {τ text for Lk | ∃i ≤ n : si ∈ Lk r τm}

• Ak,n,m ⊇ Ak,n,m+1 and ∩∞m=1Ak,n,m = ∅ so

lim
m→∞

µ∞,k(Ak,n,m) = 0
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• number of examples after which high probability of assigning
correct membership to si for i ≤ n, if target is some Lk with k ≤ n

d(n) = min n such that µ∞,i (Ai ,n,m) ≤ 2−n, ∀i ≤ n

monotonically increasing function: eventually identify target
language with measure one

• how the learning algorithm A works:
- given input sequence of length m, find first n ≤ m with d(n) ≤ m
- among languages L1, . . . ,Ln find least integer k ≤ n for which
Lk agrees with test sequence up to n (if can’t find one take k = 1)

• now need to show the set of texts on which A does not converge
to Lk is of measure zero

B = {τ | A(τn) 6= Lk , for infinitely many n}
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• if τ in B then A(τm) 6= Lk infinitely often: it can happen
because τm and Lk do not agree through n or because there is
some other Lj with j < k that agrees with τm to order n

• can’t be second case infinitely often because τ and Lj eventually
disagree... so first case

• consider set
Xk = ∩i ∪m>i Ak,n(m),m

with n = n(m) the first n ≤ m with d(n) ≤ m

• previous observation implies B ⊂ Xk

• also can check that

∩i ∪m>i Ak,n(m),m ⊆ ∩i ∪n>i Ak,n,d(n)

• by construction have finite sum of measures hence∑
m

µ∞,k(Ak,n,d(n)) <∞ ⇒ µ∞,k(Xk) = 0

Borel–Cantelli lemma:
∑

n P(Yn) <∞ ⇒ P(∩n ∪k≥n Yn) = 0
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Other notions of learnability

• active learner: learner can make queries about membership of
arbitrary elements s ∈ A?; then regular languages are learnable (in
polynomial time) but context-free remain unlearnable

• recursive texts: τ such that {τn, n ∈ N} is a recursive set,
algorithm should converge to target language on recursive set; then
Phrase Structure Grammars are learnable, but A is not a
computable function

• informant texts: text τ contains both positive and negative
examples, all s ∈ A? in the text with label for belonging to L or
not; then all recursively enumerable languages are learnable

• observations on language learning in children suggests mostly
positive examples though

• learning with mistakes: learning target language up to k
mistakes; this gives a hierarchy of learnable languages increasing
with k
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