Models of Language Acquisition

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

Language Acquisition Problem

- Target Grammar $\mathcal{G}^{(t)}$
- ullet Example sentences $s_k \in \mathcal{L}_{\mathcal{G}^{(t)}}$
- $\bullet \ \ \mathsf{Hypothesis} \ \ \mathsf{Grammars} \quad \mathfrak{h} \in \mathcal{H}$
- ullet Learning Algorithm ${\cal A}$
- Learners construct from data s_k a model grammar $\mathfrak h$ used to generate new test sentences...
- ullet the process converges to the target grammar $\mathcal{G}^{(t)}$
- ullet with a selection procedure (learning algorithm ${\mathcal A}$) for the model grammars ${\mathfrak h}\in{\mathcal H}$

- ullet main difference between child and adult language learning: child only exposed to s_k not to $\mathcal{G}^{(t)}$
- key aspect is passage from passive reception of sample sentences s_k to active forming of new test sentences
- after n sentences $s_1,\ldots,s_n\in\mathcal{L}_{\mathcal{G}^{(t)}}$: grammatical hypothesis $\mathfrak{h}_n\in\mathcal{H}$
- ullet successful language learning requires $\mathfrak{h}_n o \mathcal{G}^{(t)}$ as $n o \infty$
- a notion of convergence requires a notion of distance between grammars

$$\lim_{n\to\infty} d(\mathfrak{h}_n,\mathcal{G}^{(t)}) = 0$$

Set of Grammars \mathcal{H}

- Context-free Grammars
- Tree-adjoining Grammars
- Probabilistic CFGs; probabilistic TAGs
- Head-driven Phrase Structure Grammars
- Lexical-Functional Grammars
- ullet ${\cal H}$ is set of all grammars that can be hypothesized by learner
- in the case of Probabilistic CFG and TAGs: convergence statements should be made in the almost-everywhere sense with respect to the probability measure

Example

- suppose $\mathcal{H} = \{\mathfrak{h}_1, \mathfrak{h}_2\}$ two possibilities
- ullet after N sample sentences s_1,\ldots,s_N hypothesis $\mathfrak{h}_N\in\mathcal{H}$
- some part ϵ of the population will have $\mathfrak{h}_N = \mathfrak{h}_1$, and a part 1ϵ will have $\mathfrak{h}_N = \mathfrak{h}_2$
- behavior of the next generation will depend on how similar \mathfrak{h}_1 and \mathfrak{h}_2 are, how large N, what the specific learning algorithm \mathcal{A} is...
- want to construct a dynamical system that describes this type of learning process

Linguistics vs Biology

- long history of exchanging methods and ideas between Biology and Linguistics
 - Darwin's evolution and Historical Linguistics
 - Phylogenetic trees
 - Syntactic Parameters as Language DNA
- Evolutionary process: necessary ingredients
 - Variation across population
 - Heredity: offsprings resemble parents
 - Transmission with errors: mutation, change
 - Selection process (least effort)

Grammars and Languages

- ullet Grammar ${\cal G}$ generates ${\cal L}={\cal L}_{\cal G}$ language (all strings obtained from production rules of grammar)
- ullet Given $\mathcal L$: not unique grammar $\mathcal G$ with $\mathcal L=\mathcal L_{\mathcal G}$
- Language \mathcal{L} is in the class of recursively enumerable languages (Type 0): can enumerate grammars \mathcal{G}_m with $\mathcal{L}_{\mathcal{G}_m} = \mathcal{L}$ (at most countable)
- Church thesis: partial recursive functions ⇔ computable
- ullet set ${\mathcal H}$ of hypothesis grammars is some enumerable set
- \bullet learning algorithm ${\mathcal A}$ is some partial recursive function from set of sample sentences to ${\mathcal H}$

Assumptions

- sample sentences s_k encountered one at a time: learning independent of order
- ullet learning algorithm ${\mathcal A}$ should drive convergence to a target grammar independently of order of the s_k
- ullet also assume occurrences of sample sentences s_k as drawn according to independent identically distributed according to an underlying probability distribution
- probability distribution μ on \mathfrak{A}^{\star} , alphabet (lexicon) \mathfrak{A}
- ullet only positive examples: μ supported on $\mathcal{L}\subset\mathfrak{A}^{\star}$

Other Assumptions

- Consistent learner: after N samples \mathfrak{h}_N is consistent with all the s_k , for k = 1, ..., N
- Empirical risk minimizing learner:

$$\mathfrak{h}_{N} = \arg\min_{\mathfrak{h}\in\mathcal{H}} \mathcal{R}(\mathfrak{h} | (s_{1}, \ldots, s_{N}))$$

with \mathcal{R} some risk function measuring the fit of \mathfrak{h} to the data (s_1, \ldots, s_N) (the argmin need not be unique)

• Memoryless learner: \mathfrak{h}_{n+1} depends only on s_{n+1} and \mathfrak{h}_n but not on s_1, \ldots, s_n

Enumerative learner:

- first choose an enumeration of $\mathfrak{h} \in \mathcal{H}$

$$\mathcal{H} = \{\mathfrak{h}^{(1)}, \mathfrak{h}^{(2)}, \dots, \mathfrak{h}^{(m)}, \dots\}$$

- then start with $\mathfrak{h}^{(1)}$ and compare with datum s_1 , stop if consistent
- if not continue down the list, stop at first $\mathfrak{h}^{(m)}$ consistent with s_1
- set first hypothesis $\mathfrak{h}_1 = \mathfrak{h}^{(m)}$
- compare this with s_2 , if compatible stop and take as \mathfrak{h}_2
- if not continue down the list until find one compatible with s_1 and s_2 , etc.
- Learnability: a set $\mathcal H$ of grammars is learnable if for all $\mathcal G$ in the set $d(\mathfrak h_n,\mathcal G)\to 0$ for $n\to\infty$
- generalization error: $d(\mathfrak{h}_n, \mathcal{G})$ distance between learner's hypothesis and target

Learning Algorithm

- $\mathcal{D}^k = \{(s_1, \dots, s_k) | s_i \in \mathfrak{A}^*\} = \mathfrak{A}^k$ set of all possible sequences of k sample sentences
- ullet under the hypothesis of only positive examples all $s_i \in \mathcal{L}$
- $\mathcal{D} = \bigcup_{k \geq 1} \mathcal{D}^k$ set of all finite data sequences
- ullet $\mathcal{A}:\mathcal{D}
 ightarrow \mathcal{H}$ partial recursive function

$$\mathcal{A}:t\in\mathcal{D}\mapsto\mathcal{A}(t)=\mathfrak{h}_t\in\mathcal{H}$$

the learner's hypothesis

Distance functions on the space of grammars

- ullet different notions of convergence on the space ${\cal H}$ of grammars
- i-language vs e-language
- purely extensional form: $d(\mathfrak{h},\mathfrak{h}')$ only depends on $\mathcal{L}_{\mathfrak{h}}$ and $\mathcal{L}_{\mathfrak{h}'}$ (so all grammars producing the same language have distance zero: metric on a quotient space of equivalence classes)
- purely intensional form: fix enumeration $\mathfrak{h}^{(k)}$ of the enumerable set \mathcal{H} and set $d(\mathfrak{h}^{(k)},\mathfrak{h}^{(\ell)})=|k-\ell|$
- or distance in terms of grammar complexity (Kolmogorov ordering)
- distance by Hamming metric on the set of syntactic parameters (if think of identifying a grammar as setting parameters correctly)

Inductive Inference Approach

- text τ for a language \mathcal{L} : infinite sequence s_1, \ldots, s_N, \ldots of examples, $s_k \in \mathcal{L}$
- ullet assume every element of ${\cal L}$ appears at least once in au
- $\tau_k \in \mathcal{D}^k$ subset of first k elements (s_1, \ldots, s_k) of τ
- given a distance function d on \mathcal{H} , a target grammar \mathcal{G} and a text τ for $\mathcal{L}_{\mathcal{G}}$, a learning algorithm \mathcal{A} identifies \mathcal{G} if

$$\lim_{k\to\infty}d(\mathcal{A}(\tau_k),\mathcal{G})=0$$

• given sequence $s = (s_1, ..., s_k)$ length $\ell(s) = k$; concatenation $x \circ y = (x_1, ..., x_k, y_1, ..., y_m)$

• Fact: if \mathcal{A} identifies \mathcal{G} then for all $\epsilon > 0$ there is a locking data set $\ell_{\epsilon} \subset \mathcal{D}$ with $\ell_{\epsilon} \subset \mathcal{L}_{\mathcal{G}}$ and $d(\mathcal{A}(\ell_{\epsilon}), \mathcal{G}) < \epsilon$ and

$$d(\mathcal{A}(\ell_{\epsilon} \circ x), \mathcal{G}) < \epsilon, \quad \forall x \in \mathcal{D} \cap \mathcal{L}_{\mathcal{G}}$$

- \bullet meaning: after encountering locking data, learner will remain ϵ -close to target with any additional input data
- argument: if no locking data set exists, for any ℓ there will be some x with $d(\mathcal{A}(\ell \circ x), \mathcal{G}) \geq \epsilon ...$ this can be used to construct a text τ for \mathcal{L} on which \mathcal{A} does not identify target \mathcal{G} :
- start with a given text $\rho=s_1,s_2,\dots s_N,\dots$ construct new one $au\colon$ set $au_1=s_1$
- if $d(\mathcal{A}(\tau_1),\mathcal{G}) \geq \epsilon$ take $\tau_2 = \tau_1 \circ s_2$
- if $d(\mathcal{A}(\tau_1), \mathcal{G}) < \epsilon$ take the x such that $d(\mathcal{A}(\tau_1 \circ x), \mathcal{G}) \ge \epsilon$ and set $\tau_2 = \tau_1 \circ x \circ s_2$

- continue: $\tau_{k+1} = \tau_k \circ x_k \circ s_{k+1}$ if $d(\mathcal{A}(\tau_k), \mathcal{G}) < \epsilon$ and $\tau_{k+1} = \tau_k \circ s_k$ if $d(\mathcal{A}(\tau_k), \mathcal{G}) \ge \epsilon$
- valid text because s_i added at each stage
- but ... $\mathcal{A}(\tau_k)$ cannot converge to \mathcal{G} because if at some stage τ_k hypothesis \mathfrak{h}_k is in an ϵ -neighborhood of \mathcal{G} , at stage $\tau_k \circ \mathsf{x}_k$ hypothesis is outside of ϵ -neighborhood (infinitely often)
- ullet conclusion: if a grammar is learnable, then there is a locking data set that constraints the learner's hypothesis to an ϵ -neighborhood of the target... seems nice, but... it has some undesirable consequences

Unlearnability of Grammars

- take $d(\mathfrak{h},\mathfrak{h}')=0$ if $\mathcal{L}_{\mathfrak{h}}=\mathcal{L}_{\mathfrak{h}'}$ and $d(\mathfrak{h},\mathfrak{h}')=1$ otherwise take $\epsilon=1/2$
- by previous if \mathcal{A} identifies target grammar \mathcal{G} there is a locking data set $\ell \subset \mathcal{L}_{\mathcal{G}}$ with $d(\mathcal{A}(\ell),\mathcal{G})=0$ and $d(\mathcal{A}(\ell \circ x),\mathcal{G})=0$ for all additional data x in $\mathcal{L}_{\mathcal{G}}$
- ullet Consequence: if ${\cal H}$ contains all finite languages and at least one infinite language then ${\cal H}$ is not learnable
- argument: use metric as above, suppose learnable with algorithm \mathcal{A} , then can identify the infinite language \mathcal{L}_{∞} among other, using the (finite) locking set data $\ell_{\mathcal{L}_{\infty}}$ of length k... consider language made only of $\ell_{\mathcal{L}_{\infty}}$ (finite language in \mathcal{H}), construct text τ for this language with $\tau_k = \ell_{\mathcal{L}_{\infty}}...$ on this text \mathcal{A} converges to \mathcal{L}_{∞} hence it does not recognize the finite language from its text

Consequences

- the set of Regular Grammars is unlearnable
- the set of Context-free Grammars is unlearnable
- \bullet what if changing the metric? convergence in the 0/1 discrete metric = eventually constant
- this convergence "behaviorally plausible" (right extensional set) but "cognitively implausible" (no intensional model of grammar involved)
- but previous unlearnability result can be extended to other metrics
- criteria for learnability?

Learnability Criterion

- Result: a family $\mathcal H$ is learnable iff for all $\mathfrak h \in \mathcal H$ there is a subset $\mathcal D_{\mathfrak h} \subset \mathcal L_{\mathfrak h}$ such that if $\mathfrak h' \in \mathcal H$ has $\mathcal D_{\mathfrak h} \subset \mathcal L_{\mathfrak h'}$ then $\mathcal L_{\mathfrak h'} \not\subset \mathcal L_{\mathfrak h}$
- avoids previous problem where lock data set for one language determines another language

• argument:

(1) assume $\mathcal H$ learnable then have $\mathcal A$ and for $\mathfrak h$ a locking data set $\ell_{\mathfrak h}$ suppose this belongs to some other language $\ell_{\mathfrak h} \subset \mathcal L_{\mathfrak h'}$ with $\mathcal L_{\mathfrak h'} \subsetneq \mathcal L_{\mathfrak h}$

then can construct a text τ for $\mathcal{L}_{\mathfrak{h}'}$ using $\ell_{\mathfrak{h}}$ with $d(\mathcal{A}(\tau_k), \mathfrak{h}') \not\to 0$ this contradicts learnability

- (2) Conversely, assume property in the statement holds and show can construct $\mathcal A$ that makes $\mathcal H$ learnable enumerate $\mathcal H=\{\mathfrak h^{(k)}\}_{k\in\mathbb N}$ and take $\mathcal D_k=\mathcal D_{\mathfrak h^{(k)}}$ define $\mathcal A$ by procedure:
- given au_k search in list smallest $i \leq k$ with $\mathcal{D}_i \subset au_k \subset \mathcal{L}_{\mathfrak{h}^{(k)}}$
- if none take $\mathfrak{h}^{(1)}$
- show this ${\mathcal A}$ identifies all ${\mathcal L}_k={\mathcal L}_{{\mathfrak h}^{(k)}}$ correctly:
- at τ_k can hypothesize \mathcal{L}_k (correct) or could have chosen some \mathcal{L}_j with j < k, need to exclude this possibility
- it cannot hypothesizes $\mathfrak{h}^{(j)}$ with j < k if $\mathcal{L}_j \subset \mathcal{L}_k$ because cannot have $\mathcal{D}_k \subset \mathcal{L}_j$
- if $\mathcal{L}_j \not\subset \mathcal{L}_k$ some sentence s in $\mathcal{L}_k \setminus \mathcal{L}_j$ will appear in some τ_m and after than cannot hypothesize \mathcal{L}_j

Probabilistic Learnability

- ullet ${\cal G}$ target grammar, measure $\mu=\mu_{\cal G}$ on ${\mathfrak A}^\star$ with support on ${\cal L}_{\cal G}$
- \bullet text τ for ${\mathcal G}$ produced as independent identically distributed random variables according to μ
- almost everywhere learning (with probability one): $\exists \mathcal{A}$ such that

$$\mu_{\infty}\left(\left\{\tau\mid \lim_{n\to\infty}d(\mathcal{A}(\tau_k),\mathcal{G})=0\right\}\right)=1$$

where μ_{∞} probability measure on the ω -language (Cantor set) determined by measure μ on the cylinder sets

ullet family ${\cal H}$ is probability-one-learnable if all ${\cal G}$ in ${\cal H}$ is almost everywhere learnable for $\mu=\mu_{\cal G}$

Recursively Enumerable languages are probabilistically learnable

- ullet Result: with prior knowledge of the probability distributions $\mu_{\mathcal{L}}$ the set \mathcal{H} of recursively enumerable languages is probability-one-learnable
- Comments: knowledge of the measure is needed in the argument (need to know the d(n) = number of examples after which high probability of assigning correct membership)
- ullet a better notion of probabilistic learnability, probability-one-learnable in a distribution-free sense: $\exists \mathcal{A}$ that learns target grammar with measure one for all measures
- ... but in distribution-free sense class of learnable languages same as in non-probabilistic sense, no improvement

argument:

- ullet enumeration $\mathcal{L}_1,\mathcal{L}_2,\ldots,\mathcal{L}_m,\ldots$ of all recursively enumerable languages
- ullet choose enumeration $s_1, s_2, \ldots, s_n, \ldots$ of all the finite strings in \mathfrak{A}^\star
- string (text) τ in \mathfrak{A}^{ω} and a language \mathcal{L}_k agree on membership up to order n if for all $i \leq n$ have $s_i \in \tau$ iff $s_i \in \mathcal{L}_k$
- consider set of all texts for \mathcal{L}_k for which one of the first n elements in \mathfrak{A}^* is in \mathcal{L}_k but not in τ_m

$$A_{k,n,m} = \{ \tau \text{ text for } \mathcal{L}_k \mid \exists i \leq n : s_i \in \mathcal{L}_k \setminus \tau_m \}$$

• $A_{k,n,m} \supseteq A_{k,n,m+1}$ and $\bigcap_{m=1}^{\infty} A_{k,n,m} = \emptyset$ so

$$\lim_{m\to\infty}\mu_{\infty,k}(A_{k,n,m})=0$$

• number of examples after which high probability of assigning correct membership to s_i for $i \leq n$, if target is some \mathcal{L}_k with $k \leq n$

$$d(n) = \min n \text{ such that } \mu_{\infty,i}(A_{i,n,m}) \leq 2^{-n}, \quad \forall i \leq n$$

monotonically increasing function: eventually identify target language with measure one

- ullet how the learning algorithm ${\cal A}$ works:
- given input sequence of length m, find first $n \leq m$ with $d(n) \leq m$
- among languages $\mathcal{L}_1, \ldots, \mathcal{L}_n$ find least integer $k \leq n$ for which \mathcal{L}_k agrees with test sequence up to n (if can't find one take k = 1)
- ullet now need to show the set of texts on which ${\mathcal A}$ does not converge to ${\mathcal L}_k$ is of measure zero

$$\mathcal{B} = \{ \tau \mid \mathcal{A}(\tau_n) \neq \mathcal{L}_k, \text{ for infinitely many } n \}$$

- if τ in B then $\mathcal{A}(\tau_m) \neq \mathcal{L}_k$ infinitely often: it can happen because τ_m and \mathcal{L}_k do not agree through n or because there is some other \mathcal{L}_j with j < k that agrees with τ_m to order n
- ullet can't be second case infinitely often because au and \mathcal{L}_j eventually disagree... so first case
- consider set

$$X_k = \cap_i \cup_{m>i} A_{k,n(m),m}$$

with n = n(m) the first $n \le m$ with $d(n) \le m$

- previous observation implies $B \subset X_k$
- also can check that

$$\cap_i \cup_{m>i} A_{k,n(m),m} \subseteq \cap_i \cup_{n>i} A_{k,n,d(n)}$$

• by construction have finite sum of measures hence

$$\sum_{m} \mu_{\infty,k}(A_{k,n,d(n)}) < \infty \quad \Rightarrow \quad \mu_{\infty,k}(X_k) = 0$$

Borel–Cantelli lemma: $\sum_n \mathbb{P}(Y_n) < \infty \Rightarrow \mathbb{P}(\cap_n \cup_{k \geq n} Y_n) = 0$

Other notions of learnability

- ullet active learner: learner can make queries about membership of arbitrary elements $s\in\mathfrak{A}^{\star}$; then regular languages are learnable (in polynomial time) but context-free remain unlearnable
- ullet recursive texts: au such that $\{ au_n, n \in \mathbb{N}\}$ is a recursive set, algorithm should converge to target language on recursive set; then Phrase Structure Grammars are learnable, but \mathcal{A} is not a computable function
- ullet informant texts: text au contains both positive and negative examples, all $s\in \mathfrak{A}^\star$ in the text with label for belonging to $\mathcal L$ or not; then all recursively enumerable languages are learnable
- observations on language learning in children suggests mostly positive examples though
- ullet learning with mistakes: learning target language up to k mistakes; this gives a hierarchy of learnable languages increasing with k

References

- Partha Niyogi, The Computational Nature of Language Learning and Evolution, MIT Press, 2006
- M. Blum, L. Blum, Towards a mathematical theory of inductive inference, Information and Control, 28 (1975) 125–155
- E. Mark Gold, Language identification in the limit, Information and Control, 10 (1967) N.5, 447–474.
- Dana Angluin, *Inductive inference of formal languages from positive data*, Information and Control, 45 (1980) 117–135.