Models of Language Acquisition

Matilde Marcolli
CS101: Mathematical and Computational Linguistics

Winter 2015
Language Acquisition Problem

- Target Grammar $G^{(t)}$
- Example sentences $s_k \in L_{G^{(t)}}$
- Hypothesis Grammars $h \in H$
- Learning Algorithm A

- Learners construct from data s_k a model grammar h used to generate new test sentences...
- the process converges to the target grammar $G^{(t)}$
- with a selection procedure (learning algorithm A) for the model grammars $h \in H$
• main difference between child and adult language learning: child only exposed to s_k not to $G^{(t)}$

• key aspect is passage from **passive** reception of sample sentences s_k to **active** forming of new test sentences

• after n sentences $s_1, \ldots, s_n \in \mathcal{L}_{G^{(t)}}$: **grammatical hypothesis** $h_n \in \mathcal{H}$

• successful language learning requires $h_n \rightarrow G^{(t)}$ as $n \rightarrow \infty$

• a notion of convergence requires a notion of distance between grammars

$$\lim_{n \rightarrow \infty} d(h_n, G^{(t)}) = 0$$
Set of Grammars \mathcal{H}

- Context-free Grammars
- Tree-adjoining Grammars
- Probabilistic CFGs; probabilistic TAGs
- Head-driven Phrase Structure Grammars
- Lexical-Functional Grammars

\mathcal{H} is set of all grammars that can be hypothesized by learner

- in the case of Probabilistic CFG and TAGs: convergence statements should be made in the almost-everywhere sense with respect to the probability measure
Example

- suppose $\mathcal{H} = \{h_1, h_2\}$ two possibilities
- after N sample sentences s_1, \ldots, s_N hypothesis $h_N \in \mathcal{H}$
- some part ϵ of the population will have $h_N = h_1$, and a part $1 - \epsilon$ will have $h_N = h_2$
- behavior of the next generation will depend on how similar h_1 and h_2 are, how large N, what the specific learning algorithm A is...
- want to construct a dynamical system that describes this type of learning process
Linguistics vs Biology

• long history of exchanging methods and ideas between Biology and Linguistics

 - Darwin’s evolution and Historical Linguistics
 - Phylogenetic trees
 - Syntactic Parameters as Language DNA

• Evolutionary process: necessary ingredients

 - Variation across population
 - Heredity: offsprings resemble parents
 - Transmission with errors: mutation, change
 - Selection process (least effort)
Grammars and Languages

- Grammar \mathcal{G} generates $\mathcal{L} = \mathcal{L}_G$ language (all strings obtained from production rules of grammar)

- Given \mathcal{L}: not unique grammar \mathcal{G} with $\mathcal{L} = \mathcal{L}_G$

- Language \mathcal{L} is in the class of recursively enumerable languages (Type 0): can enumerate grammars \mathcal{G}_m with $\mathcal{L}_{\mathcal{G}_m} = \mathcal{L}$ (at most countable)

- Church thesis: partial recursive functions \Leftrightarrow computable

- set \mathcal{H} of hypothesis grammars is some enumerable set

- learning algorithm \mathcal{A} is some partial recursive function from set of sample sentences to \mathcal{H}
Assumptions

• sample sentences s_k encountered one at a time: learning independent of order

• learning algorithm \mathcal{A} should drive convergence to a target grammar independently of order of the s_k

• also assume occurrences of sample sentences s_k as drawn according to independent identically distributed according to an underlying probability distribution

• probability distribution μ on \mathcal{A}^*, alphabet (lexicon) \mathcal{A}

• only positive examples: μ supported on $\mathcal{L} \subset \mathcal{A}^*$
Other Assumptions

- **Consistent learner:** after N samples h_N is consistent with all the s_k, for $k = 1, \ldots, N$

- **Empirical risk minimizing learner:**

\[
 h_N = \arg \min_{h \in \mathcal{H}} \mathcal{R}(h \mid (s_1, \ldots, s_N))
\]

with \mathcal{R} some risk function measuring the fit of h to the data (s_1, \ldots, s_N) (the argmin need not be unique)

- **Memoryless learner:** h_{n+1} depends only on s_{n+1} and h_n but not on s_1, \ldots, s_n
• **Enumerative learner:**
 - first choose an enumeration of $h \in \mathcal{H}$

 $$\mathcal{H} = \{h^{(1)}, h^{(2)}, \ldots, h^{(m)}, \ldots\}$$

 - then start with $h^{(1)}$ and compare with datum s_1, stop if consistent
 - if not continue down the list, stop at first $h^{(m)}$ consistent with s_1
 - set first hypothesis $h_1 = h^{(m)}$
 - compare this with s_2, if compatible stop and take as h_2
 - if not continue down the list until find one compatible with s_1 and s_2, etc.

• **Learnability:** a set \mathcal{H} of grammars is learnable if for all G in the set $d(h_n, G) \to 0$ for $n \to \infty$

• **generalization error:** $d(h_n, G)$ distance between learner’s hypothesis and target
Learning Algorithm

- $\mathcal{D}^k = \{(s_1, \ldots, s_k) \mid s_i \in \mathcal{A}^*\} = \mathcal{A}^k$ set of all possible sequences of k sample sentences
- under the hypothesis of only positive examples all $s_i \in \mathcal{L}$
- $\mathcal{D} = \bigcup_{k \geq 1} \mathcal{D}^k$ set of all finite data sequences
- $\mathcal{A} : \mathcal{D} \rightarrow \mathcal{H}$ partial recursive function

$$\mathcal{A} : t \in \mathcal{D} \mapsto \mathcal{A}(t) = h_t \in \mathcal{H}$$

the learner’s hypothesis
Distance functions on the space of grammars

• different notions of convergence on the space \mathcal{H} of grammars
• i-language vs e-language

• purely extensional form: $d(\mathcal{h}, \mathcal{h}')$ only depends on $\mathcal{L}_\mathcal{h}$ and $\mathcal{L}_\mathcal{h}'$ (so all grammars producing the same language have distance zero: metric on a quotient space of equivalence classes)

• purely intensional form: fix enumeration $\mathcal{h}^{(k)}$ of the enumerable set \mathcal{H} and set $d(\mathcal{h}^{(k)}, \mathcal{h}^{(\ell)}) = |k - \ell|$

• or distance in terms of grammar complexity (Kolmogorov ordering)

• distance by Hamming metric on the set of syntactic parameters (if think of identifying a grammar as setting parameters correctly)
Inductive Inference Approach

- **text** τ for a language \mathcal{L}: infinite sequence s_1, \ldots, s_N, \ldots of examples, $s_k \in \mathcal{L}$

- assume every element of \mathcal{L} appears at least once in τ

- $\tau_k \in \mathcal{D}^k$ subset of first k elements (s_1, \ldots, s_k) of τ

- given a distance function d on \mathcal{H}, a target grammar \mathcal{G} and a text τ for \mathcal{L}_G, a learning algorithm A identifies \mathcal{G} if

\[
\lim_{k \to \infty} d(A(\tau_k), \mathcal{G}) = 0
\]

- given sequence $s = (s_1, \ldots, s_k)$ length $\ell(s) = k$; concatenation $x \circ y = (x_1, \ldots, x_k, y_1, \ldots, y_m)$
Fact: if A identifies G then for all $\epsilon > 0$ there is a locking data set $\ell_\epsilon \subset \mathcal{D}$ with $\ell_\epsilon \subset \mathcal{L}_G$ and $d(A(\ell_\epsilon), G) < \epsilon$ and

$$d(A(\ell_\epsilon \circ x), G) < \epsilon, \quad \forall x \in \mathcal{D} \cap \mathcal{L}_G$$

meaning: after encountering locking data, learner will remain ϵ-close to target with any additional input data

argument: if no locking data set exists, for any ℓ there will be some x with $d(A(\ell \circ x), G) \geq \epsilon$... this can be used to construct a text τ for L on which A does not identify target G:
- start with a given text $\rho = s_1, s_2, \ldots s_N, \ldots$ construct new one τ: set $\tau_1 = s_1$
- if $d(A(\tau_1), G) \geq \epsilon$ take $\tau_2 = \tau_1 \circ s_2$
- if $d(A(\tau_1), G) < \epsilon$ take the x such that $d(A(\tau_1 \circ x), G) \geq \epsilon$ and set $\tau_2 = \tau_1 \circ x \circ s_2$
• continue: $\tau_{k+1} = \tau_k \circ x_k \circ s_{k+1}$ if $d(\mathcal{A}(\tau_k), \mathcal{G}) < \epsilon$ and $\tau_{k+1} = \tau_k \circ s_k$ if $d(\mathcal{A}(\tau_k), \mathcal{G}) \geq \epsilon$

• valid text because s_i added at each stage

• but ... $\mathcal{A}(\tau_k)$ cannot converge to \mathcal{G} because if at some stage τ_k hypothesis h_k is in an ϵ-neighborhood of \mathcal{G}, at stage $\tau_k \circ x_k$ hypothesis is outside of ϵ-neighborhood (infinitely often)

• conclusion: if a grammar is learnable, then there is a locking data set that constraints the learner’s hypothesis to an ϵ-neighborhood of the target... seems nice, but... it has some undesirable consequences
Unlearnability of Grammars

• take \(d(h, h') = 0 \) if \(L_h = L_{h'} \) and \(d(h, h') = 1 \) otherwise
 take \(\epsilon = 1/2 \)

• by previous if \(A \) identifies target grammar \(G \) there is a locking data set \(\ell \subset L_G \) with \(d(A(\ell), G) = 0 \) and \(d(A(\ell \circ x), G) = 0 \) for all additional data \(x \) in \(L_G \)

• Consequence: if \(\mathcal{H} \) contains all finite languages and at least one infinite language then \(\mathcal{H} \) is not learnable

• argument: use metric as above, suppose learnable with algorithm \(A \), then can identify the infinite language \(L_\infty \) among other, using the (finite) locking set data \(\ell_{L_\infty} \) of length \(k \)...
 consider language made only of \(\ell_{L_\infty} \) (finite language in \(\mathcal{H} \)), construct text \(\tau \) for this language with \(\tau_k = \ell_{L_\infty} \)...
 on this text \(A \) converges to \(L_\infty \) hence it does not recognize the finite language from its text
Consequences

- the set of Regular Grammars is **unlearnable**
- the set of Context-free Grammars is **unlearnable**
- what if changing the metric? convergence in the $0/1$ discrete metric = eventually constant
- this convergence “behaviorally plausible” (right extensional set) but “cognitively implausible” (no intensional model of grammar involved)
- but previous unlearnability result can be extended to other metrics
- criteria for learnability?
Learnability Criterion

- **Result**: a family \mathcal{H} is learnable iff for all $h \in \mathcal{H}$ there is a subset $D_h \subset \mathcal{L}_h$ such that if $h' \in \mathcal{H}$ has $D_h \subset \mathcal{L}_{h'}$ then $\mathcal{L}_{h'} \not\subset \mathcal{L}_h$

- avoids previous problem where lock data set for one language determines another language

- **argument**:
 (1) assume \mathcal{H} learnable then have A and for h a locking data set ℓ_h suppose this belongs to some other language $\ell_h \subset \mathcal{L}_{h'}$ with $\mathcal{L}_{h'} \not\subset \mathcal{L}_h$
 then can construct a text τ for $\mathcal{L}_{h'}$ using ℓ_h with $d(A(\tau_k), h') \not\to 0$
 this contradicts learnability
(2) Conversely, assume property in the statement holds and show can construct \mathcal{A} that makes \mathcal{H} learnable
enumerate $\mathcal{H} = \{h^{(k)}\}_{k \in \mathbb{N}}$ and take $\mathcal{D}_k = \mathcal{D}_{h^{(k)}}$
declare \mathcal{A} by procedure:
- given τ_k search in list smallest $i \leq k$ with $\mathcal{D}_i \subset \tau_k \subset \mathcal{L}_{h^{(k)}}$
- if none take $h^{(1)}$
show this \mathcal{A} identifies all $\mathcal{L}_k = \mathcal{L}_{h^{(k)}}$ correctly:
- at τ_k can hypothesize \mathcal{L}_k (correct) or could have chosen some \mathcal{L}_j with $j < k$, need to exclude this possibility
- it cannot hypothesizes $h^{(j)}$ with $j < k$ if $\mathcal{L}_j \subset \mathcal{L}_k$ because cannot have $\mathcal{D}_k \subset \mathcal{L}_j$
- if $\mathcal{L}_j \not\subset \mathcal{L}_k$ some sentence s in $\mathcal{L}_k \setminus \mathcal{L}_j$ will appear in some τ_m
and after than cannot hypothesize $\mathcal{L}_j
Probabilistic Learnability

• \mathcal{G} target grammar, measure $\mu = \mu_{\mathcal{G}}$ on \mathcal{A}^* with support on $\mathcal{L}_{\mathcal{G}}$

• text τ for \mathcal{G} produced as independent identically distributed random variables according to μ

• almost everywhere learning (with probability one):
 $\exists \mathcal{A}$ such that
 $$\mu_\infty \left(\{\tau \mid \lim_{n \to \infty} d(\mathcal{A}(\tau_k), \mathcal{G}) = 0\} \right) = 1$$

where μ_∞ probability measure on the ω-language (Cantor set) determined by measure μ on the cylinder sets

• family \mathcal{H} is probability-one-learnable if all \mathcal{G} in \mathcal{H} is almost everywhere learnable for $\mu = \mu_{\mathcal{G}}$
Recursively Enumerable languages are probabilistically learnable

- Result: with prior knowledge of the probability distributions $\mu_\mathcal{L}$, the set \mathcal{H} of recursively enumerable languages is probability-one-learnable.

- Comments: knowledge of the measure is needed in the argument (need to know the $d(n) =$ number of examples after which high probability of assigning correct membership).

- A better notion of probabilistic learnability, probability-one-learnable in a distribution-free sense: $\exists A$ that learns target grammar with measure one for all measures.

- ... but in distribution-free sense class of learnable languages same as in non-probabilistic sense, no improvement.
argument:
- enumeration $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_m, \ldots$ of all recursively enumerable languages
- choose enumeration $s_1, s_2, \ldots, s_n, \ldots$ of all the finite strings in \mathcal{A}^*
- string (text) τ in \mathcal{A}^ω and a language \mathcal{L}_k agree on membership up to order n if for all $i \leq n$ have $s_i \in \tau$ iff $s_i \in \mathcal{L}_k$
- consider set of all texts for \mathcal{L}_k for which one of the first n elements in \mathcal{A}^* is in \mathcal{L}_k but not in τ_m

$$A_{k,n,m} = \{ \tau \text{ text for } \mathcal{L}_k \mid \exists i \leq n : s_i \in \mathcal{L}_k \setminus \tau_m \}$$

- $A_{k,n,m} \supseteq A_{k,n,m+1}$ and $\bigcap_{m=1}^{\infty} A_{k,n,m} = \emptyset$ so

$$\lim_{m \to \infty} \mu_{\infty,k}(A_{k,n,m}) = 0$$
• number of examples after which high probability of assigning
correct membership to \(s_i \) for \(i \leq n \), if target is some \(\mathcal{L}_k \) with \(k \leq n \)

\[
d(n) = \min n \text{ such that } \mu_{\infty,i}(A_i,n,m) \leq 2^{-n}, \quad \forall i \leq n
\]

monotonically increasing function: eventually identify target
language with measure one

• how the learning algorithm \(A \) works:
 - given input sequence of length \(m \), find first \(n \leq m \) with \(d(n) \leq m \)
 - among languages \(\mathcal{L}_1, \ldots, \mathcal{L}_n \) find least integer \(k \leq n \) for which
 \(\mathcal{L}_k \) agrees with test sequence up to \(n \) (if can’t find one take \(k = 1 \))

• now need to show the set of texts on which \(A \) does not converge
to \(\mathcal{L}_k \) is of measure zero

\[
\mathcal{B} = \{ \tau \mid A(\tau_n) \neq \mathcal{L}_k, \text{ for infinitely many } n \}
\]
• if τ in B then $A(\tau_m) \neq \mathcal{L}_k$ infinitely often: it can happen because τ_m and \mathcal{L}_k do not agree through n or because there is some other \mathcal{L}_j with $j < k$ that agrees with τ_m to order n

• can’t be second case infinitely often because τ and \mathcal{L}_j eventually disagree... so first case

• consider set

$$X_k = \cap_i \cup_{m > i} A_{k, n(m), m}$$

with $n = n(m)$ the first $n \leq m$ with $d(n) \leq m$

• previous observation implies $B \subset X_k$

• also can check that

$$\cap_i \cup_{m > i} A_{k, n(m), m} \subseteq \cap_i \cup_{n > i} A_{k, n, d(n)}$$

• by construction have finite sum of measures hence

$$\sum_m \mu_{\infty, k}(A_{k, n, d(n)}) < \infty \Rightarrow \mu_{\infty, k}(X_k) = 0$$

Borel–Cantelli lemma: $\sum_n \mathbb{P}(Y_n) < \infty \Rightarrow \mathbb{P}(\cap_n \cup_{k \geq n} Y_n) = 0$
Other notions of learnability

- **active learner**: learner can make queries about membership of arbitrary elements \(s \in \mathcal{A}^* \); then regular languages are learnable (in polynomial time) but context-free remain unlearnable.

- **recursive texts**: \(\tau \) such that \(\{\tau_n, n \in \mathbb{N}\} \) is a recursive set, algorithm should converge to target language on recursive set; then Phrase Structure Grammars are learnable, but \(\mathcal{A} \) is not a computable function.

- **informant texts**: text \(\tau \) contains both positive and negative examples, all \(s \in \mathcal{A}^* \) in the text with label for belonging to \(\mathcal{L} \) or not; then all recursively enumerable languages are learnable.

- **observations on language learning in children** suggests mostly positive examples though.

- **learning with mistakes**: learning target language up to \(k \) mistakes; this gives a hierarchy of learnable languages increasing with \(k \).
References

- M. Blum, L. Blum, *Towards a mathematical theory of inductive inference*, Information and Control, 28 (1975) 125–155