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Language Evolution and Fitness

• Language evolution modeled on ideas from biological evolution

a reproductive process: learning algorithm (individuals of new
generation produce language using linguistic input data from
previous generation)

transmission errors: multilingual models and population
dynamics

fitness test?

• in biological evolution reproductive fitness drives evolution by
natural selection

• Problem: is there a good fitness function in linguistics?

• develop a notion of communicative efficiency
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Origins of Language

• how did language arise, from our pre-human ancestors?

• like everything else in the biological world: by Darwinian
evolution by natural selection

• evolutionary advantage in terms of reproductive fitness

• communicative efficiency provides biological fitness

• related idea: coherence (homogeneous linguistic population) is
an emergent phenomenon resulting from the behavior of
interacting individual linguistic agents

• passage to a coherent state resulting from a bifurcation in the
dynamics
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Mutual Intelligibility

• L1 and L2 two languages: want to define a communicative
fitness or mutual intelligibility function F (L1,L2)

• how to improve (or maximize) F (L1,L2) depends on ambiguities
in the languages and on learning algorithms

• want an algorithm that identifies arg maxL′ F (L,L′) or
approximates it arbitrarily well

• if L has ambiguities arg maxL′ F (L,L′) need not be L′ = L
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Language as Probabilistic Association between Form and Meaning

• language as an association matrix linking referents to signals

• M referents and N signals: A = (Aij) an M × N-matrix, values
of entries Aij = strength of the association

• this matrix drives both production and comprehension
(assigning signals to meanings and meanings to signals)

• also used as framework to model “communication in the animal
and the machine”

• set of all possible signals is the set of all strings A?; set of all
possible meanings is set of strings over a semantic alphabet:
infinite matrices
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• S = set of signals; M = set of meanings (finite or countable)

• assume S = A?1 and M = A?2 (linguistic and semantic alphabets)

• Communication System: probability measure µ on S ×M

• generalizes the (normalized) “association matrix” to infinite case

• Encoding Matrix (production): si ∈ S and mj ∈M

Pij = µ(si |mj) =
µ(si ,mj)∑
k µ(sk ,mj)

set equal zero if denominator sum is zero

• Decoding Matrix (comprehension):

Qij = µ(mi | sj) =
µ(sj ,mi )∑
k µ(sj ,mk)

and zero if denominator sum is zero
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• in other models P and Q not required to come from the same
measure µ, but this is a way to ensure consistency between active
and passive usage of a language

• Note that µ determines P and Q, but these matrices don’t
determine µ: can consider equivalence classes of measures µ that
determine same P,Q

• Useful signals: (actually used in production or comprehension)

Sµ = {s ∈ S | ∃m ∈M, µ(s,m) > 0}

• this should correspond in formal language theory to the set of
well formed (grammatical) sentenced

• Expressible meanings: (can be expressed within the language)

Mµ = {m ∈M|∃s ∈ S, µ(s,m) > 0}
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Communication

• two systems µ1 and µ2

• probability of a meaning being successfully communicated from
µ1 to µ2 or from µ2 to µ1 (with σ distribution on M)

P(1→ 2) =
∑
i

σ(mi )
∑
j

µ1(sj |mi ) µ2(mi | sj)

P(2→ 1) =
∑
i

σ(mi )
∑
j

µ2(sj |mi ) µ1(mi | sj)

• Communicability F (µ1, µ2) = 1
2(P(1→ 2) + P(2→ 1))

F (µ1, µ2) =
1

2
(Tr(P(1) Λ τQ(2)) + Tr(P(2) Λ τQ(1)))

Λ = diagonal matrix entries Λii = σ(mi )
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• F (µ1, µ2) probability of understanding each other in two way
communication: 0 ≤ F (µ1, µ2) = F (µ2, µ1) ≤ 1

• F (µ, µ) communicability between linguistic agents with same
language: 0 < F (µ, µ) ≤ 1

• Note: if had S =M and µ supported on diagonal, P and Q
would be identity and F (µ, µ) = 1

• Role of distribution σ on M: not marginal of µ, but determined
by “external world”, which meanings are more likely to be
communicated in a given context, F may be larger or smaller
depending on this external context (two linguistic agents may
communicate better or worse in different contexts)
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Best Response

• suppose one language given µ = µ0

• Want to maximize communicability

F (µ0, µ?) = sup
µ

F (µ0, µ)

• Algorithm that approaches the best response µ?

• construct a family of languages µε such that F (µ0, µε) gets
arbitrarily close to supµ F (µ0, µ) when ε→ 0
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Finite Languages: simplified model

Assume:

1 Languages are finite with µ an M × N matrix

2 The distribution σ is uniform 1/M

3 The measure µ0 has unique maximum property: for all s ∈ S
there is a unique m = m(s) ∈M and for m ∈M a unique
s = s(m) ∈ S with

µ0(s |m(s)) = max
m∈M

µ0(s |m), µ0(s(m) |m) = max
s∈S

µ0(s |m)
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Best Decoder

• Find a matrix Q? with∑
ij

µ0(si |mj) Q?,ij = max
Q

∑
ij

µ0(si |mj) Qij

maximize over non-negative row-stochastic matrices

• this is given by

Q?,ij =

{
1 µ0(si |mj) = maxk µ0(si |mk)
0 otherwise
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Best Encoder

• Find a matrix P? with∑
ij

P?,ij µ0(mj | si ) = max
P

∑
ij

Pij µ0(mj | si )

maximize over non-negative column-stochastic matrices

• this is given by

P?,ij =

{
1 µ0(mj | si ) = maxk µ0(mj | sk)
0 otherwise

Constrain relating them needs to be satisfied: ∃µ?

µ?(si |mj) = P?,ij , µ?(mj | si ) = Q?,ij

Problem: this does not always work
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Approximations

• define P0
ij = µ0(si |mj) and Q0

ij = µ0(mj | si )

• Result: for µ0 finite with unique max and σ uniform

sup
µ

F (µ0, µ) =
1

2M
Tr(P0 τQ? + P?

τQ0)

• this follows from two properties:

F (µ0, µ) ≤ 1
2MTr(P0 τQ? + P?

τQ0) for all µ

∀ε∃µε with

lim
ε→0

(
1

2M
Tr(P0 τQ? + P?

τQ0)− F (µ0, µε)) = 0

• first property true by definition of best decoder and best encoder
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Construction of the measures µε with

lim
ε→0

µε(si |mj) = P?,ij lim
ε→0

µε(mj | si ) = Q?,ij

• Auxiliary matrix X :

Xij =

{
1 P?,ij + Q?,ij > 0
0 otherwise

• form a Graph: GX

vertices = entries of matrix X that are = 1

edges = lines connecting 1 entries on the same row and on
the same column
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• Fact: if measure µ0 has unique maximum property then the
graph does not have loops (tree or multiconnected forest)

• then construction of µε:

for each component of GX : take each pair of vertices

if connected by horizontal (vertical) line: look at
corresponding entries of Q? (or P?): one of them is one the
other is zero

orient the edge from the vertex with entry 0 to the one with
entry 1

start from one of the vertices: replace corresponding entry of
X with ε

follow oriented path replace successive elements of X with εk

(increasing k along reverse orientation of edges: unambiguous
because no loops): matrix Aε

measure µε:

µε(si ,mj) =
Aεij∑
k,` Aεk`
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Limiting behavior of µε

• normalize each column of Aε so that sum adds up to one to get
µε(si |mj)

• want to show these µε(si |mj) converge to P?,ij

• each column of Aε contains contains at most one edge of a
connected component of GX because P? (resp. Q?) has at most
one 1 entry per column (resp. row) so X has at most two

• for ε→ 0 only lowest power of ε dominant, others to zero faster

• dominant term is column entry where P? is 1: in the limit it
gives the column of P?

• argument for µε(mj | si ) = Q?,ij is similar using rows
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More general cases

• dropping all assumptions of unique maximum for µ0, uniform
distribution σ, and finite N and M:

N. Komarova, P. Niyogi, Optimizing the mutual intelligibility
of mutual agents in a shared world, Artificial Intelligence
Journal, 154 (2004) 1–42.
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Learning

• in this model: trying to communicate with an agent whose
language is µ: best response strategy is trying to approximate µ?
constructing some µε (while µ? itself need not exist)

• but measure µ is unknown to learner: two possible scenarios

full information: can sample µ directly for (meaning,sentence)
pairs; then strategy is sample µ as accurately as possible,
construct P? and Q? and from those µε

partial information: meaning is not directly accessible, only
sentences are, and a feedback response on whether
interpretation of sentence by learner is correct
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Learning with full information

• Event Eij : sentence si is produced to communicate meaning mj

• probability of event Eij is σ(mj)µ(si |mj)

• for large n events drawn uniformly randomly frequencies kij/n
approximate probability

• can estimate the σ(mj)µ(si |mj) using sampling
frequencies kij/n

• use estimated σ(mj)µ(si |mj) to compute P?, Q?, µε
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Learning with Partial Information

• learner guesses meaning without direct access to it: if correct
guess know meaning, if not only have negative information,
asymmetric

• suppose guess meaning uniformly randomly among M = #M
possible meanings: guess mj with probability 1/M

• Event Eij : sentence si is produced, meaning mj is guessed,
successfully

• probability of event Eij is 1
Mσ(mj)µ(si |mj)

• also can be empirically estimated from frequencies of correct
guessing kij/n

• so apparently different setup leads to very similar procedure
anyway
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Communicative Efficiency: a phonetics example

• suppose English words are transmitted from a speaker to a
receiver

• each word is a list of phonemes: if every phoneme is received
correctly communicative efficiency would be 1

• some phonemes are notoriously difficult to distinguish in
transmissions: p and b for example

• this causes ambiguities in words such as bit versus pit or pat
versus bat

• since this can cause different meaning associations to sentences
there is a loss of communicative efficiency

• subdivide the lexicon into cohorts: equivalence classes of words
that become indistinguishable if certain phonemes are no longer
distinguished
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• pi = probabilities (frequencies) of words in the original lexicon W

• information content of the lexicon measured by Shannon entropy

S(W) = −
∑
wi∈W

pi log(pi )

• after passing to cohorts W/∼ probabilities Pk =
∑

wi∈Ck
pi

• information content of set of cohorts

S(W/∼) = −
∑

Ck∈W/∼

Pk log(Pk)

• normalized Information Loss

IL(W,∼) =
S(W)− S(W/∼)

S(W)

measures the “functional load” in communication carried by the
ability to distinguished those phonemes
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Communicative Fitness

• H set of n possible languages

• identify languages with measures µk on M×S
(meanings and sentences/signals)

• mutual intelligibility matrix

Aij =
∑
m∈M

σ(m)
∑
s∈S

µi (s |m)µj(m | s)

probability that a speaker of language µi is understood by a
receiver who speaks language µj

CS101 Win2015: Linguistics Language Evolution 3



• simplified model: assume Aii = 1 (each language has perfect
intelligibility with itself) and Aij = a for some 0 ≤ a ≤ 1 for all
pairs i 6= j , same for all pairs

• also assume population of constant size with every person
speaking only one language

• linguistic distribution of the population: αk ≥ 0, with∑n
k=1 αk = 1

• individual communicative fitness of a speaker of language µk :
average communicative efficiency with the rest of the population

• mutual intelligibility of µi and µj

F (µi , µj) =
1

2
(Aij + Aji )
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• so average communicative efficiency of a speaker of µi

fi = f0 +
n∑

j=1

F (µi , µj)αj

f0 = background, independent of language (but dependent of how
much specific environment facilitates communication)

• if everybody spoke the same language µ (assuming Aii = 1)
would have f = f0 + 1; if other languages are present, lower value
of fitness f

• following basic rule of evolution by natural selection: assume
individuals reproduce in proportion to their fitness

• assuming successful communication is an evolutionary advantage
in the Darwinian sense

• in this model also make the assumption that children learn
language from their parents and not from the entire community
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• further simplify the model by assuming each learner has only one
teacher (literally ”mother tongue”)

• also allow for mistakes during language acquisition

• probability of a transition from language µi to language µj is Qij

(depends on A: on how close the different languages are)

• Population Dynamics

αt+1,j =

∑n
i=1 αt,i fi Qij∑n
k=1 αt,k fk

reproduction proportional to fitness: percentage of new generation
produced by speakers of language µi in previous generation is fiαt,i

(normalized by
∑

k fkαt,k)
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ODE: turn difference equation into ordinary differential equation

• normalization condition
∑

k αk = 1 gives
∑

k α̇t,k = 0

• positivity αk ≥ 0 becomes condition α̇t,k |αt,k=0 ≥ 0

• continuous time differential equation

α̇t,k =
n∑

i=1

fi αt,i Qij − φαt,k

with φ(t) =
∑

k fk αt,k average fitness of the population
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• for case with Aii = 1 and Aij = a for i 6= j fitness

fi = (1− a)αi + a + f0

• learning fidelity: probability 1
n ≤ q ≤ 1 of learning same language

as primary teacher

Qii = q and Qij =
(1− q)

n − 1
when i 6= j

perfect learning q = 1; random guessing q = 1/n

• then differential equation

α̇t,k = (1− a)

−α3
t,k + α2

t,kq +
∑
j 6=k

α2
t,j

(
1− q

n − 1
− αt,k

)
−

(a + f0)(1− q)(nαt,k − 1)

n − 1
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Equilibrium Solutions (critical points α̇t,k = 0)

• each xj root of polynomial (with γ =
∑

j x2
j )

Pa,q,n(x) = (1− a)

(
−x3 + x2q + (γ − x)

(
1− q

n − 1
− x

))

−(a + f0)(1− q)(nx − 1)

n − 1

• if x` = X and all other xk = 1−X
n−1 (so

∑
j xj = 1) then equation

becomes

X 3−X 2q+
(1− X )2

n − 1

(
X − 1− q

n − 1

)
+

(a + f0)(1− q)(nX − 1)

(1− a)(n − 1)
= 0
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• Cubic polynomial: three solutions given by 1
n , and r±

r± =
−(1− a)(1 + (n − 2)q)∓

√
D

2(a− 1)(n − 1)

D = 4(−1−a(n−2)−f0(n−1))(1−q)(n−1)(1−a)+(1−a)2(1+(n−2)q)2

• So in total 2n + 1 solutions:

1 uniform solution xk = 1/n for all k

2 one x` = r+ and all other xk = (1− r+)/(n − 1) (n
possibilities for x`)

3 one x` = r ′− and all other xk = (1− r−)/(n − 1) (n
possibilities for x`)

the last two cases lead to one preferred language (and all the
others with same distribution)
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