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Multiple Language Models

• H = {G1, . . . ,Gn} a space with n grammars

• corresponding languages L1, . . . ,Ln ⊆ A? on alphabet A

• probability measure P on A? according to which sentences are
drawn in data set D

• speakers of language Li draw sentences according to probability
Pi with support on Li ⊂ A? (positive examples)

• distribution P is a weighted combination

P =
∑
i

αiPi

where αi = αi ,t are the fractions of population (time/generation t)
that speak Li , with

∑
i αi = 1

• learning algorithm A : D → H computable function
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• probabilistic convergence: grammar Gi is learnable if

lim
m→∞

P(A(τm) = Gi ) = 1

when τm examples in Li drawn according to Pi

Population Dynamics

• State Space: S = space of all possible linguistic compositions of
the population

• identify states s ∈ S with possible probability distributions
P = (PG) on H ...identify with previous α = (αi )

• Example: in 3-parameter model (with 8 possible grammars) have

S = {P = (Pi )i=1,...,8 |Pi ≥ 0,
∑
i

Pi = 1} = ∆7

• then distribution on A? is P(x) =
∑

i Pi Pi (x)
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• finite sample: probability of formulating a certain hypothesis
after a sample of size m

pm(Gi ) := P(A(τm) = Gi )

• limiting sample: limiting behavior for sample size m→∞

p(Gi ) := lim
m→∞

P(A(τm) = Gi )

• given at generation/time t a distribution Pt ∈ S of speakers of
the different languages get recursion relation

Pt+1 = F (Pt)

• take Pt+1,i = pm(Gi ) in finite sample case, or Pt+1,i = p(Gi ) in
limiting sample case (Pt here determines P)
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Markov Chain Model

• specify grammars Gi through their syntactic parameters
(n = 2N number of possible settings of parameters)

• trigger learning algorithm as Markov Chain with 2N nodes

• T = transition matrix of the Markov Chain

• then probabilities pm(Gi ) = P(A(τm) = Gi )

pm(Gi ) = (2−N12NT
m)i

i-th component of vector obtained by applying (on the right)
matrix Tm to normalized row vector 2−N12N (all components 2−N)

• assuming starting with uniform distribution 2−N12N ∈ S

• limiting distribution p(Gi ) with T∞
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Interpreting limiting behavior

• seen in case of Markov Chain Model, if non-unique closed class
in Markov Chain decomposition, limiting T∞ matrix can have
initial states with different probabilities of reaching different targets

• Example of matrix T∞ in 3-parameter model seen before

T∞ =



2/5 3/5
1

2/5 3/5
1

1
1
1
1


starting at s1 or s3 will reach s5 with probability 3/5 and s2 with
probability 2/5

• interpret these probabilities as limiting composition of speakers
population
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3-parameter model with homogeneous initial population

• assume initial population consists only of speakers of one of the
languages Li (that is, initial P has Pi = 1 and all other Pj = 0)

• after a number of generations observe drift towards other
languages: population no longer homogeneous (or remains
homogeneous, depending on initial state)

• at next generation

pm(Gi ) = (PTm)i or p(Gi ) = (PT∞)i

with P the initial distribution

• then this gives new P = (Pi ) and recompute pm and p with this
P for next generation, etc.
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Shortcomings of the model

• simulations in case of 3-parameter model show: +V2-languages
remain stable; -V2-languages all drift towards +V2-languages

• contrary to what known from historical linguistics: languages
tend to lose the +V2-parameter (switching to -V2): both English
and French historically switched from +V2 to -V2

• model relies on many ad hoc assumptions about the state space,
the learning algorithm, the probability distributions... some of these
are clearly not realistic/adequate to actual language evolution

• Problem: identify which assumptions are inadequate and modify
them and improve the model

CS101 Win2015: Linguistics Language Evolution 2



Can model the S-shape?

• An observation of Historical Linguistics: S-shape of Language
Change

• a certain change in a language begins very gradually, then
proceeds at a much faster rate, then tails off slowly again

• in evolutionary biology, a logistic shaped curve governs
replacement of organisms and of genetic alleles that differ in
Darwinian fitness

• in the case of linguistic change, what mechanism would produce
this kind of shape?

• in the model of language evolution have dependence on
maturation time K and probability distribution P (a, b parameters
in the 2-languages case; distribution P in multilingual case)
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• simulations in 2-languages model finds:

initial rate of language change is highest when K small

curves not S-shaped: if start with homogeneous L1
population, percentage of L2 speakers with generations first
grows to above limiting value, then decreases

slopes and location of the peak and of asymptotic value
depend on K

• not clear is these are spurious phenomena due to assumptions in
the model, or they say something more about the S-shape
empirical observation of historical linguists

CS101 Win2015: Linguistics Language Evolution 2



CS101 Win2015: Linguistics Language Evolution 2



Effect of the dependence on Pi

• probability distributions Pi with which sentences in Li are
generated

• these are the underlying parameters of the dynamical system

• seen already in 2-languages model, as dependence on a, b
parameters

• if think of these parameters as changing in time, can affect a
language change by (gradual) modification of the parameters

• can use for “reverse engineering”: if know a certain change
occurs, find what diachronic modification of the parameters is
needed in order to affect that change, then use to model other
changes
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3-parameter model with non-homogeneous initial population

• P = (Pi )i=1,...,8 probability distribution on the 8 possible
grammars of the 3-parameter model

• P ∈ ∆7 point in 7-dimensional simplex in R8
+

• T = transition matrix of the Markov Chain of 3-parameter model

• given Pt (with P0 = P) this determines P = Pt on A? which
determines entries of T = Tt

• non-homogrneous Markov Chain with T = Tt

• for finite-sample size m use matrix Tm
t

• recursion step: next generation distribution Pt+1 = Pt T
m
t
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Stability Analysis

• given distributions Pi used in computing transition matrix T

Tij = P(si → sj) =
∑

x∈A? :A(si ,x)=sj

P(x)

A(s, x) determines algorithm’s next hypothesis, given current state
of Markov Chain s and input x

• let Ti be transition matrix when P = Pi (target language is Li )

• data D all coming from Li drawn according to Pi (instead of
mixture of languages with combination P)

• at generation/time t new distribution will be

P = Pt =
∑
i

Pt,i Pi ,

where Pt distribution of languages at generation t
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• get Tt transition matrix by

(Tt)ab =
∑

x∈A? :A(sa,x)=sb

∑
i

Pt,i Pi (x) =
∑
i

Pt,i (Ti )ab

• fixed points are solutions of Pt+1 = Pt

• finite-sample case size m: P = (Pi ) satisfying

P =
1

8
18(
∑
i

PiTi )
m

• limiting case: can show it becomes solution P = (Pi ) of

P = 18(I8×8 −
∑
i

PiTi + 18×8)−1

where IN×N identity and 1N×N matrix with all entries 1

• assuming initial distribution 1/8 18
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Multilingual Learners

• realistically, leaners in a multilingual population do not zoom in
on a unique grammar, but become multilingual themselves (even if
in previous generation each individual speaks only one language)

• a more realistic model should take this into account

• instead of learning algorithm A : D → H consider as a map

A : D →M(H)

with M(H) = set of probability measures on H

• if H has n elements, identify M(H) = ∆n−1 simplex
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Bilingualism

• learning algorithm A : D → [0, 1]

• a bilingual speaker (languages L1 and L2) produces sentences
x ∈ A? according to probability

Pλ(x) = λP1(x) + (1− λ)P2(x)

with Pi supported on Li ⊂ A?

• for a single speaker a particular value λ is fixed

• over the entire population it varies according to a distribution
P(λ) over [0, 1]
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• probability of a sentence x ∈ A? being produced, when input
comes from entire population

P(x) =

∫ 1

0
Pλ(x)P(λ) dλ

P(x) = P1(x)

∫ 1

0
λP(λ) dλ+ P2(x)

∫ 1

0
(1− λ)P(λ) dλ

P(x) = EP(λ)P1(x) + (1− EP(λ))P2(x)

with expectation value

EP(λ) =

∫ 1

0
λP(λ) dλ

• so input from population with probabilities Pλ distributed
according to P(λ) same as input from single speaker with
probability PEP(λ)
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• learner (next generation) will also acquire bilingualism with a
factor λ which is deduced (via the learning algorithm) from the
incoming data

• again subdivide m input data sentences into groups

1 n1 sentences in L1 r L2
2 n2 sentences in L1 ∩ L2
3 n3 sentences in L2 r L1

with n1 + n2 + n3 = m

• three possible learning algorithms

1 A1 sets λ = n1
n1+n3

(ignoring ambiguous sentences)

2 A1 sets λ = n1
n1+n2+n3

(ambiguous sentences read as in L2)

3 A3 sets λ = n1+n2
n1+n2+n3

(ambiguous sentences read as in L1)
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• at time/generation t set ut := EP(λ) average over population in
that generation

• recursive relation ut+1 from ut in terms of parameters

a = P1(L1 ∩ L2) b = P2(L1 ∩ L2)

different weight put on the ambiguous sentences by the probability
distributions Pi of the two languages

• Result: recursion for the three algorithms

A1 : ut+1 =
ut(1− a)

ut(1− a) + (1− ut)(1− b)

A2 : ut+1 = ut(1− a)

A3 : ut+1 = ut(1− b) + b
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Explanation

• case of A2:

ut+1 = E(
n1

n1 + n2 + n3
) =

E(n1)

m
= P1(L1rL2)EP(λ) = (1−a)ut

• case of A3:

ut+1 = E(
n1 + n2

n1 + n2 + n3
) =

E(n1)

m
+

E(n2)

m

= ut(1− a) + uta + (1− ut)b
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• case of A1:

ut+1 = E(
n1

n1 + n3
) =

∑(
m

n1n2n3

)
αn1βn2γn3

n1
n1 + n3

with α = (1− a)ut , β = aut + b(1− ut), γ = (1− b)(1− ut)

ut+1 =
m∑

k=0

k∑
n1=0

(
k

n1

)(
m

k

)
αn1βm−kγk−n1

n1
k

=
m∑

k=0

(
m

k

)
βm−k(1− β)k

α

1− β
=

α

1− β

=
ut(1− a)

ut(1− a) + (1− ut)(1− b)
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