# Models of Language Evolution: Part II

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

#### Main Reference

• Partha Niyogi, *The computational nature of language learning and evolution*, MIT Press, 2006.

# Multiple Language Models

- ullet  $\mathcal{H} = \{\mathcal{G}_1, \dots, \mathcal{G}_n\}$  a space with n grammars
- ullet corresponding languages  $\mathcal{L}_1,\ldots,\mathcal{L}_n\subseteq\mathfrak{A}^\star$  on alphabet  $\mathfrak{A}$
- $\bullet$  probability measure  $\mathbb P$  on  $\mathfrak A^\star$  according to which sentences are drawn in data set  $\mathcal D$
- speakers of language  $\mathcal{L}_i$  draw sentences according to probability  $\mathbb{P}_i$  with support on  $\mathcal{L}_i \subset \mathfrak{A}^{\star}$  (positive examples)
- ullet distribution  ${\mathbb P}$  is a weighted combination

$$\mathbb{P} = \sum_{i} \alpha_{i} \mathbb{P}_{i}$$

where  $\alpha_i = \alpha_{i,t}$  are the fractions of population (time/generation t) that speak  $\mathcal{L}_i$ , with  $\sum_i \alpha_i = 1$ 

ullet learning algorithm  $\mathcal{A}:\mathcal{D}
ightarrow\mathcal{H}$  computable function



ullet probabilistic convergence: grammar  $\mathcal{G}_i$  is learnable if

$$\lim_{m\to\infty}\mathbb{P}(\mathcal{A}(\tau_m)=\mathcal{G}_i)=1$$

when  $\tau_m$  examples in  $\mathcal{L}_i$  drawn according to  $\mathbb{P}_i$ 

#### Population Dynamics

- ullet State Space:  $\mathcal{S}=$  space of all possible linguistic compositions of the population
- identify states  $s \in \mathcal{S}$  with possible probability distributions  $P = (P_{\mathcal{G}})$  on  $\mathcal{H}$  ...identify with previous  $\alpha = (\alpha_i)$
- Example: in 3-parameter model (with 8 possible grammars) have

$$S = \{P = (P_i)_{i=1,\dots,8} \mid P_i \ge 0, \sum_i P_i = 1\} = \Delta_7$$

• then distribution on  $\mathfrak{A}^*$  is  $\mathbb{P}(x) = \sum_i P_i \mathbb{P}_i(x)$ 



• finite sample: probability of formulating a certain hypothesis after a sample of size *m* 

$$p_m(\mathcal{G}_i) := \mathbb{P}(\mathcal{A}(\tau_m) = \mathcal{G}_i)$$

• limiting sample: limiting behavior for sample size  $m \to \infty$ 

$$p(\mathcal{G}_i) := \lim_{m \to \infty} \mathbb{P}(\mathcal{A}(\tau_m) = \mathcal{G}_i)$$

• given at generation/time t a distribution  $P_t \in \mathcal{S}$  of speakers of the different languages get recursion relation

$$P_{t+1} = F(P_t)$$

• take  $P_{t+1,i} = p_m(\mathcal{G}_i)$  in finite sample case, or  $P_{t+1,i} = p(\mathcal{G}_i)$  in limiting sample case  $(P_t$  here determines  $\mathbb{P})$ 

#### Markov Chain Model

- specify grammars  $\mathcal{G}_i$  through their syntactic parameters  $(n=2^N \text{ number of possible settings of parameters})$
- $\bullet$  trigger learning algorithm as Markov Chain with  $2^N$  nodes
- T = transition matrix of the Markov Chain
- ullet then probabilities  $p_m(\mathcal{G}_i) = \mathbb{P}(\mathcal{A}( au_m) = \mathcal{G}_i)$

$$p_m(G_i) = (2^{-N} \mathbf{1}_{2^N} T^m)_i$$

*i*-th component of vector obtained by applying (on the right) matrix  $T^m$  to normalized row vector  $2^{-N}\mathbf{1}_{2^N}$  (all components  $2^{-N}$ )

- ullet assuming starting with uniform distribution  $2^{-N} \mathbf{1}_{2^N} \in \mathcal{S}$
- limiting distribution  $p(G_i)$  with  $T_{\infty}$



#### Interpreting limiting behavior

- ullet seen in case of Markov Chain Model, if non-unique closed class in Markov Chain decomposition, limiting  $T_{\infty}$  matrix can have initial states with different probabilities of reaching different targets
- ullet Example of matrix  $T_{\infty}$  in 3-parameter model seen before

$$T_{\infty} = \left( egin{array}{cccc} 2/5 & 3/5 & \ 1 & \ 2/5 & 3/5 & \ 1 & \ & 1 & \ & 1 & \ & 1 & \ & 1 & \ & 1 & \ \end{array} 
ight)$$

starting at  $s_1$  or  $s_3$  will reach  $s_5$  with probability 3/5 and  $s_2$  with probability 2/5

• interpret these probabilities as limiting composition of speakers population

## 3-parameter model with homogeneous initial population

- assume initial population consists only of speakers of one of the languages  $\mathcal{L}_i$  (that is, initial P has  $P_i = 1$  and all other  $P_j = 0$ )
- after a number of generations observe drift towards other languages: population no longer homogeneous (or remains homogeneous, depending on initial state)
- at next generation

$$p_m(\mathcal{G}_i) = (PT^m)_i$$
 or  $p(\mathcal{G}_i) = (PT_{\infty})_i$ 

with P the initial distribution

• then this gives new  $P = (P_i)$  and recompute  $p_m$  and p with this P for next generation, etc.



## Shortcomings of the model

- simulations in case of 3-parameter model show: +V2-languages remain stable; -V2-languages all drift towards +V2-languages
- $\bullet$  contrary to what known from historical linguistics: languages tend to lose the +V2-parameter (switching to -V2): both English and French historically switched from +V2 to -V2
- model relies on many ad hoc assumptions about the state space, the learning algorithm, the probability distributions... some of these are clearly not realistic/adequate to actual language evolution
- Problem: identify which assumptions are inadequate and modify them and improve the model

#### Can model the S-shape?

- An observation of Historical Linguistics: S-shape of Language Change
- a certain change in a language begins very gradually, then proceeds at a much faster rate, then tails off slowly again
- in evolutionary biology, a logistic shaped curve governs replacement of organisms and of genetic alleles that differ in Darwinian fitness
- in the case of linguistic change, what mechanism would produce this kind of shape?
- in the model of language evolution have dependence on maturation time K and probability distribution  $\mathbb{P}$  (a,b parameters in the 2-languages case; distribution P in multilingual case)

- simulations in 2-languages model finds:
  - ullet initial rate of language change is highest when K small
  - curves *not* S-shaped: if start with homogeneous  $\mathcal{L}_1$  population, percentage of  $\mathcal{L}_2$  speakers with generations first grows to *above* limiting value, then *decreases*
  - slopes and location of the peak and of asymptotic value depend on K
- not clear is these are spurious phenomena due to assumptions in the model, or they say something more about the S-shape empirical observation of historical linguists



# Effect of the dependence on $\mathbb{P}_i$

- ullet probability distributions  $\mathbb{P}_i$  with which sentences in  $\mathcal{L}_i$  are generated
- these are the underlying parameters of the dynamical system
- seen already in 2-languages model, as dependence on *a*, *b* parameters
- if think of these parameters as *changing* in time, can affect a language change by (gradual) modification of the parameters
- can use for "reverse engineering": if know a certain change occurs, find what diachronic modification of the parameters is needed in order to affect that change, then use to model other changes

# 3-parameter model with non-homogeneous initial population

- $P = (P_i)_{i=1,\dots,8}$  probability distribution on the 8 possible grammars of the 3-parameter model
- ullet  $P\in\Delta_7$  point in 7-dimensional simplex in  $\mathbb{R}^8_+$
- T = transition matrix of the Markov Chain of 3-parameter model
- given  $P_t$  (with  $P_0 = P$ ) this determines  $\mathbb{P} = \mathbb{P}_t$  on  $\mathfrak{A}^*$  which determines entries of  $T = T_t$
- ullet non-homogrneous Markov Chain with  $T=T_t$
- ullet for finite-sample size m use matrix  $T_t^m$
- ullet recursion step: next generation distribution  $P_{t+1} = P_t \; T_t^m$



#### Stability Analysis

ullet given distributions  $\mathbb{P}_i$  used in computing transition matrix T

$$\mathcal{T}_{ij} = \mathbb{P}(s_i \to s_j) = \sum_{x \in \mathfrak{A}^* : \mathcal{A}(s_i, x) = s_j} \mathbb{P}(x)$$

 $\mathcal{A}(s,x)$  determines algorithm's next hypothesis, given current state of Markov Chain s and input x

- let  $T_i$  be transition matrix when  $\mathbb{P} = \mathbb{P}_i$  (target language is  $\mathcal{L}_i$ )
- data  $\mathcal{D}$  all coming from  $\mathcal{L}_i$  drawn according to  $\mathbb{P}_i$  (instead of mixture of languages with combination  $\mathbb{P}$ )
- at generation/time t new distribution will be

$$\mathbb{P} = \mathbb{P}_t = \sum_i P_{t,i} \, \mathbb{P}_i,$$

where  $P_t$  distribution of languages at generation t



• get  $T_t$  transition matrix by

$$(T_t)_{ab} = \sum_{x \in \mathfrak{A}^* : \mathcal{A}(s_a, x) = s_b} \sum_i P_{t,i} \, \mathbb{P}_i(x) = \sum_i P_{t,i} \, (T_i)_{ab}$$

- fixed points are solutions of  $P_{t+1} = P_t$
- finite-sample case size m:  $P = (P_i)$  satisfying

$$P = \frac{1}{8} \mathbf{1}_8 (\sum_i P_i T_i)^m$$

• limiting case: can show it becomes solution  $P = (P_i)$  of

$$P = \mathbf{1}_{8} (I_{8\times8} - \sum_{i} P_{i} T_{i} + \mathbf{1}_{8\times8})^{-1}$$

where  $I_{N\times N}$  identity and  $\mathbf{1}_{N\times N}$  matrix with all entries 1

• assuming initial distribution  $1/8 \, \mathbf{1}_8$ 



## Multilingual Learners

- realistically, leaners in a multilingual population do not zoom in on a unique grammar, but become *multilingual* themselves (even if in previous generation each individual speaks only one language)
- a more realistic model should take this into account
- ullet instead of learning algorithm  $\mathcal{A}:\mathcal{D}
  ightarrow\mathcal{H}$  consider as a map

$$\mathcal{A}:\mathcal{D} o\mathcal{M}(\mathcal{H})$$

with  $\mathcal{M}(\mathcal{H})=$  set of probability measures on  $\mathcal{H}$ 

• if  $\mathcal{H}$  has n elements, identify  $\mathcal{M}(\mathcal{H}) = \Delta_{n-1}$  simplex



# Bilingualism

- ullet learning algorithm  $\mathcal{A}:\mathcal{D} o [0,1]$
- ullet a bilingual speaker (languages  $\mathcal{L}_1$  and  $\mathcal{L}_2$ ) produces sentences  $x\in\mathfrak{A}^\star$  according to probability

$$\mathbb{P}_{\lambda}(x) = \lambda \mathbb{P}_{1}(x) + (1 - \lambda)\mathbb{P}_{2}(x)$$

with  $\mathbb{P}_i$  supported on  $\mathcal{L}_i \subset \mathfrak{A}^*$ 

- ullet for a single speaker a particular value  $\lambda$  is fixed
- $\bullet$  over the entire population it varies according to a distribution  $P(\lambda)$  over [0,1]

ullet probability of a sentence  $x\in \mathfrak{A}^\star$  being produced, when input comes from entire population

$$\mathbb{P}(x) = \int_0^1 \mathbb{P}_{\lambda}(x) P(\lambda) d\lambda$$

$$\mathbb{P}(x) = \mathbb{P}_1(x) \int_0^1 \lambda P(\lambda) d\lambda + \mathbb{P}_2(x) \int_0^1 (1 - \lambda) P(\lambda) d\lambda$$

$$\mathbb{P}(x) = \mathbb{E}_P(\lambda) \mathbb{P}_1(x) + (1 - \mathbb{E}_P(\lambda)) \mathbb{P}_2(x)$$

with expectation value

$$\mathbb{E}_P(\lambda) = \int_0^1 \lambda \, P(\lambda) \, d\lambda$$

• so input from population with probabilities  $\mathbb{P}_{\lambda}$  distributed according to  $P(\lambda)$  same as input from single speaker with probability  $\mathbb{P}_{\mathbb{E}_P(\lambda)}$ 

- $\bullet$  learner (next generation) will also acquire bilingualism with a factor  $\lambda$  which is deduced (via the learning algorithm) from the incoming data
- again subdivide *m* input data sentences into groups
  - **1**  $n_1$  sentences in  $\mathcal{L}_1 \setminus \mathcal{L}_2$
  - ②  $n_2$  sentences in  $\mathcal{L}_1 \cap \mathcal{L}_2$
  - **3**  $n_3$  sentences in  $\mathcal{L}_2 \setminus \mathcal{L}_1$

with  $n_1 + n_2 + n_3 = m$ 

- three possible learning algorithms
  - **1**  $A_1$  sets  $\lambda = \frac{n_1}{n_1 + n_3}$  (ignoring ambiguous sentences)
  - 2  $A_1$  sets  $\lambda = \frac{n_1}{n_1 + n_2 + n_3}$  (ambiguous sentences read as in  $\mathcal{L}_2$ )
  - 3  $A_3$  sets  $\lambda = \frac{n_1 + n_2}{n_1 + n_2 + n_3}$  (ambiguous sentences read as in  $\mathcal{L}_1$ )



- ullet at time/generation t set  $u_t := \mathbb{E}_P(\lambda)$  average over population in that generation
- $\bullet$  recursive relation  $u_{t+1}$  from  $u_t$  in terms of parameters

$$a = \mathbb{P}_1(\mathcal{L}_1 \cap \mathcal{L}_2)$$
  $b = \mathbb{P}_2(\mathcal{L}_1 \cap \mathcal{L}_2)$ 

different weight put on the ambiguous sentences by the probability distributions  $\mathbb{P}_i$  of the two languages

• Result: recursion for the three algorithms

$$\mathcal{A}_1: \quad u_{t+1} = \quad \frac{u_t(1-a)}{u_t(1-a)+(1-u_t)(1-b)}$$
 $\mathcal{A}_2: \quad u_{t+1} = \quad u_t(1-a)$ 
 $\mathcal{A}_3: \quad u_{t+1} = \quad u_t(1-b)+b$ 

# Explanation

• case of  $A_2$ :

$$u_{t+1} = \mathbb{E}(\frac{n_1}{n_1 + n_2 + n_3}) = \frac{\mathbb{E}(n_1)}{m} = \mathbb{P}_1(\mathcal{L}_1 \setminus \mathcal{L}_2)\mathbb{E}_P(\lambda) = (1-a)u_t$$

• case of  $A_3$ :

$$u_{t+1} = \mathbb{E}(\frac{n_1 + n_2}{n_1 + n_2 + n_3}) = \frac{\mathbb{E}(n_1)}{m} + \frac{\mathbb{E}(n_2)}{m}$$
  
=  $u_t(1-a) + u_t a + (1-u_t)b$ 

• case of  $A_1$ :

$$u_{t+1} = \mathbb{E}(\frac{n_1}{n_1 + n_3}) = \sum \binom{m}{n_1 n_2 n_3} \alpha^{n_1} \beta^{n_2} \gamma^{n_3} \frac{n_1}{n_1 + n_3}$$
with  $\alpha = (1 - a)u_t$ ,  $\beta = au_t + b(1 - u_t)$ ,  $\gamma = (1 - b)(1 - u_t)$ 

$$u_{t+1} = \sum_{k=0}^{m} \sum_{n_1=0}^{k} \binom{k}{n_1} \binom{m}{k} \alpha^{n_1} \beta^{m-k} \gamma^{k-n_1} \frac{n_1}{k}$$

$$= \sum_{k=0}^{m} \binom{m}{k} \beta^{m-k} (1 - \beta)^k \frac{\alpha}{1 - \beta} = \frac{\alpha}{1 - \beta}$$

$$= \frac{u_t (1 - a)}{u_t (1 - a) + (1 - u_t)(1 - b)}$$