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From Language Acquisition to Language Evolution

• models of language acquisition behind transmission mechanism
(how language gets transmitted to next generation of learners)

• perfect language acquisition implies perfect language
transmission... but for evolution need imperfect transmission

• phonological, morphological, syntactic and semantic changes are
observed

• points of view imported from evolutionary biology: population
dynamics, genetic drift, dynamical systems models

• language learning at individual level versus population level
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• Learning algorithm: computable function A : D → H from
primary linguistic data to a space of grammars

1 Grammatical Theory: determines H
2 Acquisition Model: determines A

Possibilities for change in the language transmission

1 The data D are changed

2 The data D are insufficient

• First case: presence of mixed population of speakers of different
languages (not all data D consistent with same language)

• Second case: after finite τm algorithm gives hypothesis
hm = A(τm) at some distance from target
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Toy Model: two competing languages

• L1,L2 ⊂ A? with L1 ∩ L2 6= ∅

• sentences in L1 ∩ L2 are ambiguous and can be parsed by both
G1 and G2 grammars

• assume each individual in the population is monolingual

• αt = percentage of population at time t (or number of
generations) that speaks L1 and (1− αt) = percentage that
speaks L2
• Pi = probability distribution for sentences of Li
• learning algorithm A : D → H = {G1,G2} computable

• data are drawn according to a probability distribution P on A?
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• probability that learning algorithm will guess L1 after m inputs

pm = P(A(τm) = L1)

pm = pm(A,P) depends on learning algorithm and distribution P

• if P on A? is supported on L1 (so P = P1)

lim
m→∞

pm(A,P = P1) = 1

in this case G1 is the target grammar the learning algorithm
converges to
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Population Dynamics of the two languages model

• assume size K of data τK after which linguistic hypothesis
stabilizes (locking set)

• with probability pK (A,P1) the language acquired will be L1
• with probability 1− pK (A,P1) it will be L2
• so the new generation will have fraction pK (A,P1) of speakers of
language L1 and fraction 1− pK (A,P1) of speakers of L2
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• assume the proportion for a given generation are α and 1− α

• the following generation of learners will then receive examples
generated with probability distribution

P = αP1 + (1− α)P2

• the following generation will then result in a population of
speakers with distribution λ and 1− λ where

λ = pK (A, αP1 + (1− α)P2)

• this gives the recursive dependence λ = λ(α) in language
transmission to the following generation
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Assumptions made in this model

• new learners (new generation) receive input from entire
community of speakers (previous generation) in proportion to the
language distribution across the population

• the probabilities P1,P2 of drawing sentences in L1,L2 do not
change in time

• learning algorithm constructs a single hypothesis after each input

• populations can have unlimited growth
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Memoryless Learner with two languages model

• Initialize: randomly choose initial hypothesis G1 or G2
• Receive Input si : if current hypothesis parses si get new input, if
not next step

• Single-Step Hill Climbing: switch to other hypothesis (in space
of two languages) and receive new input

• how does population evolve if this Trigger Learning Algorithm is
used?
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• set values (given P1 and P2):

a = P1(L1 ∩ L2), 1− a = P1(L1 r L2)

b = P2(L1 ∩ L2), 1− b = P2(L2 r L1)

• a and b are the probabilities of users of languages L1 and L2 of
generating ambiguous sentences

• assume a very short “maturation time”: K = 2

• Result: the ratio αt+1 of the t + 1-st generation satisfies

αt+1 = A α2
t + B αt + C

A =
1

2
((1− b)2 − (1− a)2), B = b(1− b) + (1− a), C =

b2

2
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Explanation:

• start with αt proportion of L1-users

• compute probability of learner acquiring L1 in two steps (K = 2)

• probabilities for a random example:

in L1 r L2 with probability αt(1− a)

in L1 ∩ L2 with probability αta + (1− αt)b

in L2 r L1 with probability (1− αt)(1− b)

• also probability 1/2 of choosing L1 as initial hypothesis
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• if started with L1, to have L1 after two steps:

either L1 retained in both steps

or switch from L1 to L2 at next step and back from L2 to L1
at second step

• first case happens with probability αt + (1− αt)b

• second case happens with probability αt(1− a)(1− αt)(1− b)
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• if started with L2, to have L1 in two steps:

either switch to L1 at first step and retain L1 at second

or retain L2 at first and switch to L1 at second

• the first case happens with probability αt(1− a)(αt + (1− αt)b)

• the second case happens with probability
((1− αt) + αta)αt(1− a)

• putting all these possibilities together gives the right counting
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Long term behavior

• if a = b simple exponential growth

• for a 6= b behavior similar to logistic map: in particular it has a
regime with chaotic behavior

• the chaotic regime is avoided because of the constraints a, b ≤ 1

• the fact that the recursion is a quadratic function reflects the
choice K = 2

• for higher values of K would get higher order polynomials
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Result: for an arbitrary K

αt+1 =
B + 1

2(A− B)(1− A− B)K

A + B

A = (1− αt)(1− b), B = αt(1− a)

Explanation: Markov Chain with two states describing the TLA

• Transition matrix T

T12 = (1− αt)(1− b) = A, T21 = αt(1− a) = B

and T11 = 1− T12 and T22 = 1− T21

• after m examples moved by transition matrix Tm
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• probability of acquiring language L1 after m examples is

1

2
(Tm

11 + Tm
21)

• recursively have Tm = TTm−1

Tm
11 = (1− A)Tm−1

11 + BTm−1
12

Tm
11 =

B

A + B
+

A(1− A− B)m

A + B

• similarly obtain inductively

Tm
21 =

B

A + B
+

B(1− A− B)m

A + B

• putting these together gives succession rule at m = K
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Population behavior in the model

• the function f (α) = fa,b,K (α)

fa,b,K (α) =
B(α) + 1

2(A(α)− B(α))(1− A(α)− B(α))K

A(α) + B(α)

A(α) = (1− α)(1− b), B(α) = α(1− a)

• only one stable fixed point in α ∈ [0, 1] interval

• f (0) = bK/2 and f (1) = aK/2, f continuous, find only one
α = f (α) and can check at that point |f ′(α)| < 1

• if a = b = 1/2 fixed point is at α = 1/2 (population converges
to this mix from all initial conditions)

f 1
2
, 1
2
,K (α) = α(1− bK ) +

bK

2
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• if a 6= b with a > b: fixed point close to α = 0: most population
speaks L2
• if a 6= b with a < b: fixed point close to α = 1: most population
speaks L1
• transition of the fixed point from a value close to zero to a value
close to one very sharp for small values of a, b, more gradual for
larger values of a, b (close to one)
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Limiting behavior when K →∞

• limiting function and recursion

fa,b,∞(α) =
α(1− a)

α(1− a) + (1− α)(1− b)

f ′a,b,∞(α) =
(1− a)(1− b)

((1− b) + α(b − a))2

αt+1 = fa,b,∞(αt)

• if a = b just have αt+1 = αt population preserved, no change

• fixed point behavior: if a > b two fixed points α = fa,b,∞(α) at
α = 0 (unstable) and α = 1 (stable)

• if a < b same two fixed points but with switched stability
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Batch Error-Based Learner in the two languages model

• still memoryless learner, but replace trigger learning algorithm
(TLA) with batch error-based

• learner waits until all set of K samples collected before choosing
a hypothesis, then pick the one that best fits the entire set
τK = (s1, . . . , sK )

• for each Li error-measure

e(Li ) =
ki
K

with ki = number of sentences in τK that cannot be parsed by Li
• then hypothesis is chosen as

A(τK ) = arg min
i

e(Li )
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Procedure

• Group together sentences in τK = (s1, . . . , sK ) into

1 n1 sentences in L1 r L2
2 n2 sentences in L1 ∩ L2
3 n3 sentences in L2 r L1

with n1 + n2 + n3 = K

• Choose L1 if n1 > n3; choose L2 if n3 > n1

• if n1 = n3 deterministic or randomized way of choosing either Li
• Example: choose L1 if n1 ≥ n3
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Result: population dynamics αt+1 = fa,b,K (αt) with

fa,b,K (α) =
∑(

K

n1n2n3

)
p1(α)n1p2(α)n2p3(α)n3

with sum over (n1, n2, n3) ∈ Z3
+ with n1 +n2 +n3 = K and n1 ≥ n3

p1(α) = α(1−a), p2(α) = αa+(1−α)b, p3(α) = (1−α)(1−b)

Properties of Dynamics
• b = 1 ⇒ p3(α) = 0; a = 1 ⇒ p1(α) = 0

• have 1− a = P1(L1 r L2) and 1− b = P2(L2 r L1)

• so b = 1 implies n3 = 0 and a = 1 implies n1 = 0

• so for b = 1 always n1 ≥ n3 so always L1
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• for a = 1 have n1 ≥ n3 only when n3 = 0 so get

f1,b,K (α) = (1− (1− α)(1− b))K

• then α = 0 not a fixed point but α = 1 is fixed

• stability of α = 1 fixed point depends on K and b: stability iff

b > 1− 1

K

• when passes to unstable, bifurcation occurs and new (stable)
fixed point appears in interior of interval (0, 1)

• when a 6= 1 and b 6= 1: for most values α = 1 stable fixed point,
and two fixed points α1 < α2 in (0, 1), first stable, second unstable
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Asymptotic Behavior when K →∞

• assume K →∞ with n1
K → p1 and n3

K → p3

• then if p1 > p3 have α(1− a) > (1− α)(1− b) and αt → 1

• when K =∞ have α = 0 and α = 1 stable fixed points and
unstable

α =
1− b

(1− b) + (1− a)

• Note: asymmetry of behavior when n1 = n3 (choosing L1)
becomes less and less noticeable in the large K limit
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Cue-Based Learner in the two languages model

• learner examines data for indications of how to set linguistic
parameters

• a set C ⊂ L1 r L2 of examples that are cues to target being L1
• if elements from C occur sufficiently frequently in D learning
algorithm chooses L1, if not it chooses L2
• learner receives K samples input τK = (s1, . . . , sK )

• k/K = fraction of the input that is in the cue set

• probability that a user of language L1 produces a cue: p = P1(C )

• probability that learner receives a cue as input = αt p

• threshold t with k/K > t: achieved with probability∑(
K

i

)
(pαt)

i (1− pαt)
K−i

where sum is over i in the range K t ≤ i ≤ K
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Population Dynamics with cue-based learner

• recursion relation for the fractions of population speaking the
two languages:

αt+1 = fp,K (αt) =
∑

K t≤i≤K

(
K

i

)
(pαt)

i (1− pαt)
K−i

• when p = 0 cues never produced, only stable equilibrium is
α = 0 (reached in one step)

• for p small, α = 0 stays unique stable fixed point

• as p increases bifurcation occurs:

two new fixed points arise α1 < α2

α = 0 remains stable; α1 is unstable; α2 is stable

• at p = 1 stable fixed points α = 0 and α = 1 and one unstable
fixed point in between
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Fixed Point Analysis (more details)

• fixed points α = f (α) of function

fp,K (α) =
∑

K t≤i≤K

(
K

i

)
(pα)i (1− pα)K−i

• for all p and K have fp,K (0) = 0, for stability check |f ′(0)| < 1:

f ′p,K (α) = pF ′(pα) with fp,K (α) = F (pα)

F (α) =
∑

K t≤i≤K

(
K

i

)
αi (1− α)K−i
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• differentiate term by term gives F ′(α):

∑
Kt≤k≤K−1

(
K

k

)(
kαk−1(1− α)K−k − (K − k)αk(1− α)K−k−1

)
+KαK−1

with Kt smallest integer larger than K t

• Expanding and grouping terms

F ′(α) = K

 ∑
Kt≤k≤K−1

(K − 1)!

(K − k)!(k − 1)!
αk−1(1− α)K−k



−K

 ∑
Kt≤k≤K−1

(K − 1)!

k!(K − k − 1)!
αk(1− α)K−k−1 − αK−1


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• cancellations leave

F ′(α) = K

(
K − 1

Kt − 1

)
αKt−1(1− α)K−Kt

• f ′p,K (0) = pF ′(0) = 0 hence stability of α = 0

• fp,K (1) = F (p) < 1 (for p < 1); since fp,K (0) = 0 with
f ′p,K (0) = 0 and continuous: even number of crossings of graph of
fp,K and diagonal in (0, 1]

• if 2m such points α1, . . . , α2m with slope f ′p,K (αj) alternating
larger and smaller than 1 (slope of diagonal)

• is each successive interval (α2j−1, α2j+1) derivative f ′p,K changes
from larger to smaller to larger than 1, so f ′p,K (α)− 1 changes sign
twice, so derivative f ′′p,K has zero, same for every interval
(α2j−2, α2j)
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• second derivative f ′′p,K (α) = p2 F ′′(pα)

• show that f ′′p,K vanishes at most once in (0, 1) ⇒ at most two
fixed points in (0, 1]

• in fact have

F ′′(α) = K

(
K − 1

Kt − 1

)
αKt−2(1− α)K−Kt−1(Kt − 1− (K − 1)α)

Limiting Behavior for K →∞ (with k/K → pα)

• if pα < t all learners choose L2
• if pα > t all learners choose L1
• for p < t (hence pα < t for all α ∈ [0, 1]) only stable fixed point
α = 0

• for p > t two stable fixed points α = 0 and α = 1 with basins of
attraction α0 ∈ [0, t/p) and α0 ∈ (t/p, 1]

• in this model a change from L1 to L2 (or vice versa) achieved by
moving p across threshold
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