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From Language Acquisition to Language Evolution
e models of language acquisition behind transmission mechanism
(how language gets transmitted to next generation of learners)

e perfect language acquisition implies perfect language
transmission... but for evolution need imperfect transmission

e phonological, morphological, syntactic and semantic changes are
observed

e points of view imported from evolutionary biology: population
dynamics, genetic drift, dynamical systems models

e language learning at individual level versus population level
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e Learning algorithm: computable function A : D — H from
primary linguistic data to a space of grammars

© Grammatical Theory: determines H
@ Acquisition Model: determines A

Possibilities for change in the language transmission

@ The data D are changed
@ The data D are insufficient

e First case: presence of mixed population of speakers of different
languages (not all data D consistent with same language)

e Second case: after finite 7,, algorithm gives hypothesis
Hm = A(7m) at some distance from target
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Toy Model: two competing languages
o L1,Ly CA* with L1 N Ly # 0

e sentences in £1 N L, are ambiguous and can be parsed by both
G1 and G» grammars

e assume each individual in the population is monolingual

e «y = percentage of population at time t (or number of
generations) that speaks £; and (1 — a;) = percentage that
speaks L,

e [P; = probability distribution for sentences of L;
e learning algorithm A : D — H = {G1,G>} computable

e data are drawn according to a probability distribution P on 24*
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e probability that learning algorithm will guess £1 after m inputs
Pm = IP)(-A(Tm) = El)

Pm = pm(A,P) depends on learning algorithm and distribution P
o if P on 2* is supported on L1 (so P = Py)

lim pm(A,P=P;) =1

m—>00

in this case G; is the target grammar the learning algorithm
converges to
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Population Dynamics of the two languages model

e assume size K of data 7k after which linguistic hypothesis
stabilizes (locking set)

e with probability px (A, P1) the language acquired will be £
e with probability 1 — px(.A,Py) it will be £;

e so the new generation will have fraction pk(.A,P1) of speakers of
language £ and fraction 1 — pk(.A,P1) of speakers of L,
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e assume the proportion for a given generation are « and 1 — «

e the following generation of learners will then receive examples
generated with probability distribution

P=aP;+(1-a)P,

e the following generation will then result in a population of
speakers with distribution A and 1 — A where

A = pk(A,aPy + (1 — a)Py)

e this gives the recursive dependence A = A(«) in language
transmission to the following generation
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Assumptions made in this model

e new learners (new generation) receive input from entire
community of speakers (previous generation) in proportion to the
language distribution across the population

e the probabilities IP1, P> of drawing sentences in £1, £, do not
change in time

e learning algorithm constructs a single hypothesis after each input

e populations can have unlimited growth
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Memoryless Learner with two languages model
e Initialize: randomly choose initial hypothesis G; or G,

e Receive Input s;: if current hypothesis parses s; get new input, if
not next step

e Single-Step Hill Climbing: switch to other hypothesis (in space
of two languages) and receive new input

e how does population evolve if this Trigger Learning Algorithm is
used?
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e set values (given P; and P):
a:IP‘l(ElﬂEz), 1—a:IP’1(£1 \Ez)
b:P2(£1ﬂ£2), 1-— b:]P)Q(£2 \ﬁl)

e a and b are the probabilities of users of languages £1 and L5 of
generating ambiguous sentences

e assume a very short “maturation time”: K =2

e Result: the ratio aiy41 of the t + 1-st generation satisfies
O[t_i_]_:AOé%‘i‘BOét‘f‘C

1 ) ) b2
A= ((1-b—(1-2)?), B=bl-b)+(1-2a), C=-

CS101 Win2015: Linguistics Language Evolution



Explanation:
e start with a; proportion of L£i-users
e compute probability of learner acquiring £ in two steps (K = 2)

e probabilities for a random example:
@ in L1~ L3 with probability a¢(1 — a)
@ in L1 N Ly with probability aza+ (1 — at)b
@ in Ly~ L1 with probability (1 — a¢)(1 — b)

e also probability 1/2 of choosing £; as initial hypothesis
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e if started with £, to have £; after two steps:
@ either £; retained in both steps
@ or switch from £ to £, at next step and back from L5 to £
at second step

e first case happens with probability a; + (1 — ;)b
e second case happens with probability a;(1 — a)(1 — a;)(1 — b)
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o if started with £y, to have £; in two steps:
@ either switch to £; at first step and retain £; at second
@ or retain L, at first and switch to £; at second
e the first case happens with probability (1 — a)(at + (1 — a¢)b)

e the second case happens with probability
((]. — Oét) + Ozta)ozt(l — a)

e putting all these possibilities together gives the right counting
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Long term behavior
e if a = b simple exponential growth

e for a # b behavior similar to logistic map: in particular it has a
regime with chaotic behavior

e the chaotic regime is avoided because of the constraints a, b <1

e the fact that the recursion is a quadratic function reflects the
choice K =2

e for higher values of K would get higher order polynomials
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Result: for an arbitrary K

B+iA-B)(1-A-B)K
et = A+ B

A=(1-a)(1—-b), B=a(l-a)
Explanation: Markov Chain with two states describing the TLA
e Transition matrix T
To=(1-a)(1—-b)=A, Tau=a(l—a)=B
and T;1=1—Tipand Ton =1— Ty

e after m examples moved by transition matrix 77
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e probability of acquiring language £; after m examples is
1 m m
E(Tll + T31)

e recursively have T = TT™~1

Th=01-ATo14+BT5

B AL-A-B)"
A+ B A+ B

m __
7_11—

e similarly obtain inductively

B B(l—A-—B)m

Ta=27g+ A+ B

e putting these together gives succession rule at m = K
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Population behavior in the model
e the function f(a) = f, p k()

B(a) + 3(A(a) — B(a))(1 = A(a) — B(a))"
A(a) 4+ B(a)

fabk(a) =
Ala) =(1—a)(l—b), B(a)=a(l-2a)

e only one stable fixed point in « € [0, 1] interval

e 7(0) = b¥ /2 and f(1) = a¥/2, f continuous, find only one
a = f(a) and can check at that point |f'(«)] < 1

e if a=b=1/2 fixed point is at « = 1/2 (population converges
to this mix from all initial conditions)

K bK
f%,%,K(O‘) = Oé(]. —b )—I— 7
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e if a # b with a > b: fixed point close to & = 0: most population
speaks L,

e if a £ b with a < b: fixed point close to @ = 1: most population
speaks L1

e transition of the fixed point from a value close to zero to a value
close to one very sharp for small values of a, b, more gradual for
larger values of a, b (close to one)
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Limiting behavior when K — oo
e limiting function and recursion

B a(l —a)
fa,b,oo(a) = a(l—a)+ (1 —a)(1—b)

’ _ (1-2a)(1-b)
ool = (@) L a(b— a)?

Q41 = a,b,oo(at)

e if a = b just have ayy1 = «; population preserved, no change

e fixed point behavior: if a > b two fixed points o = f; j oo () at
a = 0 (unstable) and o =1 (stable)

e if 2 < b same two fixed points but with switched stability
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Batch Error-Based Learner in the two languages model

e still memoryless learner, but replace trigger learning algorithm
(TLA) with batch error-based

e learner waits until all set of K samples collected before choosing
a hypothesis, then pick the one that best fits the entire set

TK:(Sl,...,SK)

e for each L; error-measure

with k; = number of sentences in 7 that cannot be parsed by £C;

e then hypothesis is chosen as

A(1k) = argmin e(L;)
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Procedure

e Group together sentences in 7x = (s1,...,Sk) into
@ ny sentences in £1 \ L»
@ n, sentences in £1 N Lo
© n3 sentences in Lo\ L1
with ni +n +n3 =K
e Choose L1 if ny > n3; choose L if n3 > nq
e if N1 = n3 deterministic or randomized way of choosing either £;

e Example: choose £y if ny > n3
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Result: population dynamics a1 = f, 5 k(crt) with

o) =3 (7 Jorla) pa(a)pafa)

ninon3
with sum over (n1, ny, n3) € Zi with n;y +ny+n3 = K and n; > n3
pi(a) = a(l—a), p(a)=aa+(1—a)b, p3(a)=(1—a)(l->b)

Properties of Dynamics

eb=1= p3s(a)=0,a=1 = pi(a) =0

ehave 1 —a=Pi(L1 N L2)and 1 — b =Py(Lr \ L)
e so b=1 implies n3 =0 and a =1 implies n; =0

e so for b =1 always n; > n3 so always £
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e for a =1 have n; > n3 only when n3 = 0 so get
fok(@) = (1 —(1—a)(1 - b))~

e then a = 0 not a fixed point but o« = 1 is fixed

e stability of a = 1 fixed point depends on K and b: stability iff

1
b>1_ ©
“1T K

e when passes to unstable, bifurcation occurs and new (stable)
fixed point appears in interior of interval (0, 1)

e when a # 1 and b # 1: for most values @ = 1 stable fixed point,
and two fixed points a3 < ap in (0,1), first stable, second unstable

CS101 Win2015: Linguistics Language Evolution



Asymptotic Behavior when K — oo
e assume K — oo with 2 — p; and 2 — p3
e then if py > p3 have a(1 —a) > (1 —a)(1 —b) and ay — 1

e when K = 0o have a = 0 and o = 1 stable fixed points and
unstable
1-b

(1-b)+(1-2a)

o=

e Note: asymmetry of behavior when n; = n3 (choosing £1)
becomes less and less noticeable in the large K limit
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Cue-Based Learner in the two languages model

e learner examines data for indications of how to set linguistic
parameters

e aset C C L1~ Ly of examples that are cues to target being £

o if elements from C occur sufficiently frequently in D learning
algorithm chooses L, if not it chooses L2

e learner receives K samples input 74 = (s1,. .., Sk)

e k/K = fraction of the input that is in the cue set

e probability that a user of language £; produces a cue: p = P1(C)
e probability that learner receives a cue as input = a; p

e threshold t with k/K > t: achieved with probability

5 (% )tparya - paoy

where sum is over j in the range Kt <i < K
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Population Dynamics with cue-based learner

e recursion relation for the fractions of population speaking the
two languages:

a1 = for(ar) = > <}:<> (pa) (1 — pay)K

Kt<i<K
e when p = 0 cues never produced, only stable equilibrium is
a = 0 (reached in one step)
e for p small, & = 0 stays unique stable fixed point

e as p increases bifurcation occurs:
@ two new fixed points arise a1 < ap

@ o = 0 remains stable; «q is unstable; «» is stable

e at p = 1 stable fixed points @ = 0 and @ = 1 and one unstable
fixed point in between
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Fixed Point Analysis (more details)

e fixed points o = f(«) of function

pn@)= 2 () tera pay

Kt<i<K

o for all p and K have f, x(0) = 0, for stability check |f'(0)] < 1:

fox(a) = pF'(pa) with £, k(a) = F(pa)

Fla)= (’I_(>a"(1—a)’<f

Ki<i<K
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e differentiate term by term gives F'(«):
> <’;> (ka* 11— a) =K — (K — k)a*(1 — a)7* 1)+ KoK !

Ki<k<K—1

with K; smallest integer larger than Kt

e Expanding and grouping terms

: (K-1)! )
Fly=k| > womgu-p* -0
Ki<k<K—1
K —1)! e ke
-K Z Mak(l—a)’(k 1_ K1
Ki<k<K-1
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e cancellations leave
K-1
F'(a) = K<Kt B 1>aK‘1(1 —a)f=K

o £ ,(0) = pF'(0) = 0 hence stability of & =0

o f, k(1) = F(p) <1 (for p < 1); since f, x(0) = 0 with
f,.k(0) = 0 and continuous: even number of crossings of graph of
fp,k and diagonal in (0, 1]

e if 2m such points aq, ..., asn with slope f « (@) alternating
larger and smaller than 1 (slope of dlagonal)

e is each successive interval (aoj_1, apj41) derivative f’ K changes
/

from larger to smaller to larger than 1, so £ (o) — 1 changes sign

twice, so derivative f”K has zero, same for every interval

(a2j—2a a2])
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e second derivative f (o) = p? F"(pa)

e show that f/,c vanishes at most once in (0,1) = at most two
fixed points in (0, 1]

e in fact have
K —

1
F'(a) = K(K ) K21 — o)A K (K -1 — (K — 1)a)
t—
Limiting Behavior for K — oo (with k/K — pa)
e if pa < t all learners choose L5
e if pa > t all learners choose £

e for p < t (hence pa < t for all & € [0, 1]) only stable fixed point
a=0

e for p > t two stable fixed points & = 0 and a = 1 with basins of
attraction ag € [0,t/p) and ag € (t/p, 1]

e in this model a change from £; to L (or vice versa) achieved by
moving p across threshold
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