Models of Language Evolution

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

Main Reference

• Partha Niyogi, *The computational nature of language learning and evolution*, MIT Press, 2006.

From Language Acquisition to Language Evolution

- models of language acquisition behind transmission mechanism (how language gets transmitted to next generation of learners)
- perfect language acquisition implies perfect language transmission... but for evolution need *imperfect* transmission
- phonological, morphological, syntactic and semantic changes are observed
- points of view imported from evolutionary biology: population dynamics, genetic drift, dynamical systems models
- language learning at individual level versus population level

- ullet Learning algorithm: computable function $\mathcal{A}:\mathcal{D}\to\mathcal{H}$ from primary linguistic data to a space of grammars
 - **①** Grammatical Theory: determines \mathcal{H}
 - 2 Acquisition Model: determines A

Possibilities for change in the language transmission

- $oldsymbol{0}$ The data $\mathcal D$ are changed
- ullet First case: presence of mixed population of speakers of different languages (not all data ${\cal D}$ consistent with same language)
- Second case: after finite τ_m algorithm gives hypothesis $\mathfrak{h}_m = \mathcal{A}(\tau_m)$ at some distance from target

Toy Model: two competing languages

- ullet $\mathcal{L}_1,\mathcal{L}_2\subset \mathfrak{A}^\star$ with $\mathcal{L}_1\cap \mathcal{L}_2
 eq \emptyset$
- ullet sentences in $\mathcal{L}_1\cap\mathcal{L}_2$ are ambiguous and can be parsed by both \mathcal{G}_1 and \mathcal{G}_2 grammars
- assume each individual in the population is monolingual
- $\alpha_t =$ percentage of population at time t (or number of generations) that speaks \mathcal{L}_1 and $(1-\alpha_t) =$ percentage that speaks \mathcal{L}_2
- \mathbb{P}_i = probability distribution for sentences of \mathcal{L}_i
- ullet learning algorithm $\mathcal{A}:\mathcal{D}
 ightarrow \mathcal{H} = \{\mathcal{G}_1,\mathcal{G}_2\}$ computable
- ullet data are drawn according to a probability distribution ${\mathbb P}$ on ${\mathfrak A}^\star$

ullet probability that learning algorithm will guess \mathcal{L}_1 after m inputs

$$p_m = \mathbb{P}(\mathcal{A}(\tau_m) = \mathcal{L}_1)$$

 $p_m=p_m(\mathcal{A},\mathbb{P})$ depends on learning algorithm and distribution \mathbb{P}

ullet if ${\mathbb P}$ on ${\mathfrak A}^\star$ is supported on ${\mathcal L}_1$ (so ${\mathbb P}={\mathbb P}_1$)

$$\lim_{m\to\infty} p_m(\mathcal{A}, \mathbb{P} = \mathbb{P}_1) = 1$$

in this case \mathcal{G}_1 is the target grammar the learning algorithm converges to

Population Dynamics of the two languages model

- ullet assume size K of data au_K after which linguistic hypothesis stabilizes (locking set)
- ullet with probability $p_{\mathcal{K}}(\mathcal{A},\mathbb{P}_1)$ the language acquired will be \mathcal{L}_1
- ullet with probability $1-p_{\mathcal{K}}(\mathcal{A},\mathbb{P}_1)$ it will be \mathcal{L}_2
- so the new generation will have fraction $p_K(\mathcal{A}, \mathbb{P}_1)$ of speakers of language \mathcal{L}_1 and fraction $1 p_K(\mathcal{A}, \mathbb{P}_1)$ of speakers of \mathcal{L}_2

- ullet assume the proportion for a given generation are lpha and 1-lpha
- the following generation of learners will then receive examples generated with probability distribution

$$\mathbb{P} = \alpha \mathbb{P}_1 + (1 - \alpha) \mathbb{P}_2$$

ullet the following generation will then result in a population of speakers with distribution λ and $1-\lambda$ where

$$\lambda = p_{K}(\mathcal{A}, \alpha \mathbb{P}_{1} + (1 - \alpha)\mathbb{P}_{2})$$

• this gives the recursive dependence $\lambda=\lambda(\alpha)$ in language transmission to the following generation

Assumptions made in this model

- new learners (new generation) receive input from entire community of speakers (previous generation) in proportion to the language distribution across the population
- \bullet the probabilities $\mathbb{P}_1,\mathbb{P}_2$ of drawing sentences in $\mathcal{L}_1,\mathcal{L}_2$ do not change in time
- learning algorithm constructs a single hypothesis after each input
- populations can have unlimited growth

Memoryless Learner with two languages model

- \bullet Initialize: randomly choose initial hypothesis \mathcal{G}_1 or \mathcal{G}_2
- Receive Input s_i : if current hypothesis parses s_i get new input, if not next step
- Single-Step Hill Climbing: switch to other hypothesis (in space of two languages) and receive new input
- how does population evolve if this Trigger Learning Algorithm is used?

• set values (given \mathbb{P}_1 and \mathbb{P}_2):

$$egin{aligned} a &= \mathbb{P}_1(\mathcal{L}_1 \cap \mathcal{L}_2), & 1-a &= \mathbb{P}_1(\mathcal{L}_1 \smallsetminus \mathcal{L}_2) \ b &= \mathbb{P}_2(\mathcal{L}_1 \cap \mathcal{L}_2), & 1-b &= \mathbb{P}_2(\mathcal{L}_2 \smallsetminus \mathcal{L}_1) \end{aligned}$$

- ullet a and b are the probabilities of users of languages \mathcal{L}_1 and \mathcal{L}_2 of generating ambiguous sentences
- assume a very short "maturation time": K=2
- Result: the ratio α_{t+1} of the t+1-st generation satisfies

$$\alpha_{t+1} = A \alpha_t^2 + B \alpha_t + C$$

$$A = \frac{1}{2}((1-b)^2 - (1-a)^2), \quad B = b(1-b) + (1-a), \quad C = \frac{b^2}{2}$$

Explanation:

- ullet start with $lpha_t$ proportion of \mathcal{L}_1 -users
- ullet compute probability of learner acquiring \mathcal{L}_1 in two steps (K=2)
- probabilities for a random example:
 - in $\mathcal{L}_1 \setminus \mathcal{L}_2$ with probability $\alpha_t(1-a)$
 - in $\mathcal{L}_1 \cap \mathcal{L}_2$ with probability $\alpha_t a + (1 \alpha_t)b$
 - in $\mathcal{L}_2 \smallsetminus \mathcal{L}_1$ with probability $(1-lpha_t)(1-b)$
- ullet also probability 1/2 of choosing \mathcal{L}_1 as initial hypothesis

- if started with \mathcal{L}_1 , to have \mathcal{L}_1 after two steps:
 - ullet either \mathcal{L}_1 retained in both steps
 - or switch from \mathcal{L}_1 to \mathcal{L}_2 at next step and back from \mathcal{L}_2 to \mathcal{L}_1 at second step
- first case happens with probability $\alpha_t + (1 \alpha_t)b$
- second case happens with probability $\alpha_t(1-a)(1-\alpha_t)(1-b)$

- if started with \mathcal{L}_2 , to have \mathcal{L}_1 in two steps:
 - ullet either switch to \mathcal{L}_1 at first step and retain \mathcal{L}_1 at second
 - ullet or retain \mathcal{L}_2 at first and switch to \mathcal{L}_1 at second
- the first case happens with probability $\alpha_t(1-a)(\alpha_t+(1-\alpha_t)b)$
- the second case happens with probability $((1 \alpha_t) + \alpha_t a)\alpha_t (1 a)$
- putting all these possibilities together gives the right counting

Long term behavior

- if a = b simple exponential growth
- ullet for $a \neq b$ behavior similar to *logistic map*: in particular it has a regime with *chaotic behavior*
- ullet the chaotic regime is avoided because of the constraints $a,b\leq 1$
- ullet the fact that the recursion is a *quadratic* function reflects the choice K=2
- for higher values of K would get higher order polynomials

Result: for an arbitrary K

$$\alpha_{t+1} = \frac{B + \frac{1}{2}(A - B)(1 - A - B)^{K}}{A + B}$$
$$A = (1 - \alpha_{t})(1 - b), \quad B = \alpha_{t}(1 - a)$$

Explanation: Markov Chain with two states describing the TLA

• Transition matrix T

$$T_{12} = (1 - \alpha_t)(1 - b) = A, \quad T_{21} = \alpha_t(1 - a) = B$$

and
$$T_{11} = 1 - T_{12}$$
 and $T_{22} = 1 - T_{21}$

 \bullet after m examples moved by transition matrix T^m

ullet probability of acquiring language \mathcal{L}_1 after m examples is

$$\frac{1}{2}(T_{11}^m + T_{21}^m)$$

• recursively have $T^m = TT^{m-1}$

$$T_{11}^m = (1 - A)T_{11}^{m-1} + BT_{12}^{m-1}$$

$$T_{11}^{m} = \frac{B}{A+B} + \frac{A(1-A-B)^{m}}{A+B}$$

similarly obtain inductively

$$T_{21}^m = \frac{B}{A+B} + \frac{B(1-A-B)^m}{A+B}$$

ullet putting these together gives succession rule at m=K

Population behavior in the model

• the function $f(\alpha) = f_{a,b,K}(\alpha)$

$$f_{a,b,K}(\alpha) = \frac{B(\alpha) + \frac{1}{2}(A(\alpha) - B(\alpha))(1 - A(\alpha) - B(\alpha))^K}{A(\alpha) + B(\alpha)}$$
$$A(\alpha) = (1 - \alpha)(1 - b), \quad B(\alpha) = \alpha(1 - a)$$

- ullet only one stable fixed point in $lpha \in [0,1]$ interval
- $f(0) = b^K/2$ and $f(1) = a^K/2$, f continuous, find only one $\alpha = f(\alpha)$ and can check at that point $|f'(\alpha)| < 1$
- ullet if a=b=1/2 fixed point is at lpha=1/2 (population converges to this mix from all initial conditions)

$$f_{\frac{1}{2},\frac{1}{2},K}(\alpha) = \alpha(1-b^K) + \frac{b^K}{2}$$

- ullet if a
 eq b with a > b: fixed point close to $\alpha = 0$: most population speaks \mathcal{L}_2
- ullet if a
 eq b with a < b: fixed point close to $\alpha = 1$: most population speaks \mathcal{L}_1
- transition of the fixed point from a value close to zero to a value close to one very sharp for small values of a, b, more gradual for larger values of a, b (close to one)

Limiting behavior when $K \to \infty$

limiting function and recursion

$$f_{a,b,\infty}(\alpha) = \frac{\alpha(1-a)}{\alpha(1-a) + (1-\alpha)(1-b)}$$
$$f'_{a,b,\infty}(\alpha) = \frac{(1-a)(1-b)}{((1-b) + \alpha(b-a))^2}$$
$$\alpha_{t+1} = f_{a,b,\infty}(\alpha_t)$$

- if a = b just have $\alpha_{t+1} = \alpha_t$ population preserved, no change
- fixed point behavior: if a > b two fixed points $\alpha = f_{a,b,\infty}(\alpha)$ at $\alpha = 0$ (unstable) and $\alpha = 1$ (stable)
- if a < b same two fixed points but with switched stability

Batch Error-Based Learner in the two languages model

- \bullet still memoryless learner, but replace trigger learning algorithm (TLA) with batch error-based
- learner waits until all set of K samples collected before choosing a hypothesis, then pick the one that best fits the entire set $\tau_K = (s_1, \ldots, s_K)$
- for each \mathcal{L}_i error-measure

$$e(\mathcal{L}_i) = \frac{k_i}{K}$$

with $k_i =$ number of sentences in $au_{\mathcal{K}}$ that cannot be parsed by \mathcal{L}_i

then hypothesis is chosen as

$$\mathcal{A}(au_{\mathcal{K}}) = rg \min_{i} e(\mathcal{L}_{i})$$

Procedure

- Group together sentences in $\tau_K = (s_1, \dots, s_K)$ into
 - **1** n_1 sentences in $\mathcal{L}_1 \setminus \mathcal{L}_2$
 - ② n_2 sentences in $\mathcal{L}_1 \cap \mathcal{L}_2$
 - **3** n_3 sentences in $\mathcal{L}_2 \setminus \mathcal{L}_1$

with
$$n_1 + n_2 + n_3 = K$$

- Choose \mathcal{L}_1 if $n_1 > n_3$; choose \mathcal{L}_2 if $n_3 > n_1$
- ullet if $n_1=n_3$ deterministic or randomized way of choosing either \mathcal{L}_i
- Example: choose \mathcal{L}_1 if $n_1 \geq n_3$

Result: population dynamics $\alpha_{t+1} = f_{a,b,K}(\alpha_t)$ with

$$f_{a,b,K}(\alpha) = \sum {K \choose n_1 n_2 n_3} p_1(\alpha)^{n_1} p_2(\alpha)^{n_2} p_3(\alpha)^{n_3}$$

with sum over $(n_1, n_2, n_3) \in \mathbb{Z}_+^3$ with $n_1 + n_2 + n_3 = K$ and $n_1 \geq n_3$

$$p_1(\alpha) = \alpha(1-a), \quad p_2(\alpha) = \alpha a + (1-\alpha)b, \quad p_3(\alpha) = (1-\alpha)(1-b)$$

Properties of Dynamics

- $b=1 \Rightarrow p_3(\alpha)=0$; $a=1 \Rightarrow p_1(\alpha)=0$
- ullet have $1-a=\mathbb{P}_1(\mathcal{L}_1\smallsetminus\mathcal{L}_2)$ and $1-b=\mathbb{P}_2(\mathcal{L}_2\smallsetminus\mathcal{L}_1)$
- so b = 1 implies $n_3 = 0$ and a = 1 implies $n_1 = 0$
- ullet so for b=1 always $n_1\geq n_3$ so always \mathcal{L}_1

• for a = 1 have $n_1 \ge n_3$ only when $n_3 = 0$ so get

$$f_{1,b,K}(\alpha) = (1 - (1 - \alpha)(1 - b))^K$$

- ullet then lpha=0 not a fixed point but lpha=1 is fixed
- stability of $\alpha = 1$ fixed point depends on K and b: stability iff

$$b>1-rac{1}{K}$$

- when passes to unstable, *bifurcation* occurs and new (stable) fixed point appears in interior of interval (0,1)
- when $a \neq 1$ and $b \neq 1$: for most values $\alpha = 1$ stable fixed point, and two fixed points $\alpha_1 < \alpha_2$ in (0,1), first stable, second unstable

Asymptotic Behavior when $K \to \infty$

- ullet assume $K o\infty$ with $rac{n_1}{K} o p_1$ and $rac{n_3}{K} o p_3$
- ullet then if $p_1>p_3$ have lpha(1-a)>(1-lpha)(1-b) and $lpha_t o 1$
- ullet when $K=\infty$ have lpha=0 and lpha=1 stable fixed points and unstable

$$\alpha = \frac{1-b}{(1-b)+(1-a)}$$

• Note: asymmetry of behavior when $n_1 = n_3$ (choosing \mathcal{L}_1) becomes less and less noticeable in the large K limit

Cue-Based Learner in the two languages model

- learner examines data for indications of how to set linguistic parameters
- \bullet a set $\mathcal{C}\subset\mathcal{L}_1\smallsetminus\mathcal{L}_2$ of examples that are cues to target being \mathcal{L}_1
- ullet if elements from ${\mathcal C}$ occur sufficiently frequently in ${\mathcal D}$ learning algorithm chooses ${\mathcal L}_1$, if not it chooses ${\mathcal L}_2$
- learner receives K samples input $\tau_K = (s_1, \dots, s_K)$
- k/K = fraction of the input that is in the cue set
- ullet probability that a user of language \mathcal{L}_1 produces a cue: $p=\mathbb{P}_1(\mathcal{C})$
- ullet probability that learner receives a cue as input $= lpha_t \, p$
- threshold \mathfrak{t} with $k/K > \mathfrak{t}$: achieved with probability

$$\sum {\binom{K}{i}} (p\alpha_t)^i (1 - p\alpha_t)^{K-i}$$

where sum is over i in the range $K\mathfrak{t} \leq i \leq K_{\text{cons}}$

Population Dynamics with cue-based learner

• recursion relation for the fractions of population speaking the two languages:

$$\alpha_{t+1} = f_{p,K}(\alpha_t) = \sum_{K \in i \leq K} {K \choose i} (p\alpha_t)^i (1 - p\alpha_t)^{K-i}$$

- ullet when p=0 cues never produced, only stable equilibrium is lpha=0 (reached in one step)
- for p small, $\alpha = 0$ stays unique stable fixed point
- as *p* increases *bifurcation* occurs:
 - two new fixed points arise $\alpha_1 < \alpha_2$
 - $\alpha = 0$ remains stable; α_1 is unstable; α_2 is stable
- \bullet at p=1 stable fixed points $\alpha=0$ and $\alpha=1$ and one unstable fixed point in between

Fixed Point Analysis (more details)

• fixed points $\alpha = f(\alpha)$ of function

$$f_{p,K}(\alpha) = \sum_{K \in i \leq K} {K \choose i} (p\alpha)^i (1 - p\alpha)^{K-i}$$

• for all p and K have $f_{p,K}(0) = 0$, for stability check |f'(0)| < 1:

$$f'_{p,K}(\alpha) = pF'(p\alpha)$$
 with $f_{p,K}(\alpha) = F(p\alpha)$

$$F(\alpha) = \sum_{K \le i \le K} {K \choose i} \alpha^i (1 - \alpha)^{K - i}$$

• differentiate term by term gives $F'(\alpha)$:

$$\sum_{K_1 \leq k \leq K-1} \binom{K}{k} \left(k \alpha^{k-1} (1-\alpha)^{K-k} - (K-k) \alpha^k (1-\alpha)^{K-k-1} \right) + K \alpha^{K-1}$$

with $K_{\mathfrak{t}}$ smallest integer larger than $K\mathfrak{t}$

• Expanding and grouping terms

$$F'(\alpha) = K \left(\sum_{K_1 \leq k \leq K-1} \frac{(K-1)!}{(K-k)!(k-1)!} \alpha^{k-1} (1-\alpha)^{K-k} \right)$$

$$-K\left(\sum_{K_{\mathfrak{t}}\leq k\leq K-1}\frac{(K-1)!}{k!(K-k-1)!}\alpha^{k}(1-\alpha)^{K-k-1}-\alpha^{K-1}\right)$$

cancellations leave

$$F'(\alpha) = K \binom{K-1}{K_t - 1} \alpha^{K_t - 1} (1 - \alpha)^{K - K_t}$$

- $f'_{p,K}(0) = pF'(0) = 0$ hence stability of $\alpha = 0$
- $f_{p,K}(1) = F(p) < 1$ (for p < 1); since $f_{p,K}(0) = 0$ with $f'_{p,K}(0) = 0$ and continuous: even number of crossings of graph of $f_{p,K}$ and diagonal in (0,1]
- if 2m such points $\alpha_1, \ldots, \alpha_{2m}$ with slope $f'_{p,K}(\alpha_j)$ alternating larger and smaller than 1 (slope of diagonal)
- is each successive interval $(\alpha_{2j-1},\alpha_{2j+1})$ derivative $f'_{p,K}$ changes from larger to smaller to larger than 1, so $f'_{p,K}(\alpha)-1$ changes sign twice, so derivative $f''_{p,K}$ has zero, same for every interval $(\alpha_{2j-2},\alpha_{2j})$

- second derivative $f_{p,K}''(\alpha) = p^2 F''(p\alpha)$
- \bullet show that $f_{p,K}''$ vanishes at most once in $(0,1)\Rightarrow$ at most two fixed points in (0,1]
- in fact have

$$F''(\alpha) = K \binom{K-1}{K_{\mathfrak{t}}-1} \alpha^{K_{\mathfrak{t}}-2} (1-\alpha)^{K-K_{\mathfrak{t}}-1} (K_{\mathfrak{t}}-1-(K-1)\alpha)$$

Limiting Behavior for $K \to \infty$ (with $k/K \to p\alpha$)

- ullet if $plpha < \mathfrak{t}$ all learners choose \mathcal{L}_2
- ullet if $plpha > \mathfrak{t}$ all learners choose \mathcal{L}_1
- \bullet for $p<\mathfrak{t}$ (hence $p\alpha<\mathfrak{t}$ for all $\alpha\in[0,1])$ only stable fixed point $\alpha=0$
- for $p > \mathfrak{t}$ two stable fixed points $\alpha = 0$ and $\alpha = 1$ with basins of attraction $\alpha_0 \in [0, \mathfrak{t}/p)$ and $\alpha_0 \in (\mathfrak{t}/p, 1]$
- ullet in this model a change from \mathcal{L}_1 to \mathcal{L}_2 (or vice versa) achieved by moving p across threshold