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Transition Matrices in the Markov Chain Model

e absorbing states correspond to local maxima (unique absorbing
state at the target gives learnability)

e probability matrix of a Markov Chain T = (Tj;) with Tj; =
probability P(s; — s;) of moving from state s; to state s;

e absorbing states: rows of T with only one 1 entry and all zeros

e powers T of probability matrix: entry T,-j-" = probability of
going from state s; to state s; in exactly m steps

e probabilities of reaching s; in the limit with initial state s;:

T = lim TTM

m—>00
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Transition Matrix for the 3-parameter example

1/2 1/6
1

1/12

3/4

1/12
11/12

1/3

1
1/6
5/18

1/6

5/6
2/3 1/18
1/12 1/36 8/9

e local maxima problem: two absorbing states
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Limiting probabilities matrix for the 3-parameter example

2/5 3/5
1
2/5 3/5
1
To = .
1
1
1

e for learnability irrespective of initial state would need column of
1's at the target state

e here if starting at sp or s4 end up at s, (local maximum) instead
of target ss; initial states ss, g, S7, Sg converge to correct target s

e starting at s; or s3 will reach true target ss with probability 3/5
and false target s, with probability 2/5
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e the last case in the example shows that there are initial states for
which there is a “triggered path to the target”, but the learner
does not take that path with probability 1, only with a smaller
probability

e if take same 3-parameter model but with target state s; and
transition matrix

1
1/6 5/6
5/18 2/3 1/18
r_ 3/36 1/36 8/9
| 13 23/36  1/36
5,/36 31/36
1/18 11/12  1/36
1/18 17/18

then no other local maxima and T, has first column of 1's
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Eigenvalues and eigenvectors of transition matrices
e matrix T is stochastic: T; > 0 and ZJ- Tij=1forall i

e Perron—Frobenius theorem: if T is irreducible (some power T™
has all entries T;7 > 0) then

- spectral radius p(T) = 1 = PF eigenvalue

- PF eigenvalue is simple

- PF (left) eigenvector v with all v; > 0 (uniform: v; = 1)

- period h =led{m : T." > 0} number of eigenvalues [A\| =1

e but irreducible condition means graph strongly connected: every
vertex is reachable from every other vertex... in general does not
happen with Markov chains: in general T not irreducible
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non-irreducible transition matrices T of a Markov Chain
e )\ =1 is always an eigenvalue
e all other eigenvalues have |\| < 1

e multiplicity of A = 1 is number of closed classes C; in
decomposition of the Markov Chain

e if T has a basis of linearly independent left eigenvectors v; with
v; T = \v; (and w; right eigenvectors Tw; = \;w;)

T = Z )\;n W;v;

linear combination of matrices w;v; (independent of m) with
coefficients A"
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e initial probabilities ; > 0, with >, m; = 1, of having state s; as
initial state

e after m steps: 7T(m) = Zj T TJ’,"

i

e limiting distribution:
(00) _ . I H .Tm
A =S Ty = lim YT
J J

probability of learner approaching state s; in the limit

o if target state (say ;) is learnable, then 7> =1

and 7% = 0 for i#1

i
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Rate of convergence
m .
e rate of convergence of 7r,( ) to WI(OO) is rate of convergence of

T™ to To, which is rate of convergence of \; — 0 for |\;| < 1

(") = n Ol = | 32 AP < st} 3w
1= 1=

e estimate rate of decay of second largest eigenvalue
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Summary

o

2]
o
o

© 0

construct Markov Chain for Parameter space
compute transition matrix T
compute eigenvalues

if multiplicity of eigenvalue A = 1 is more than one: target is
unlearnable (local maxima problem)

if multiplicity one, check if basis of independent eigenvectors

if yes, find rate of decay of second largest eigenvalue:
learnability at that speed

if not, project onto subspaces of lower dimension
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Markov Chains and Learning Algorithms

e how broad is the Markov Chain method in modeling learning
algorithms?

e suppose given A : D — H; hypotheses h, =G and h,4 1 =G’
e probability of passing from A(7,) =h, =G to

A(Tn+1) = bar1 = G’ at n+ 1-st input is measure of set

Ang N Ant1g = {7 A7) = G} {7 | A(7a11) = G}

e measure with respect to u°° on 2A“ determined by p on 0*
(supported on target language L for positive examples only)

) troo(Ang N Ant1,g)
P(hpt1 =6 n=9)= : :
(b +1 ’h ) ;uoo(An,g)

assuming fioo(Ang) > 0
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Inhomogeneous Markov Chain

e state space = set of possible grammars H = set of possible
(binary) syntactic parameters

e Transition matrix at n-th step:
To(s,s") =P(s = s') = P(A(7p41) = Gs | A(T5) = Gs)

_ Hoo(Ang, NAniag,)
:LLOO(An7gs)

o these satisfy Y, Tn(s,s’) =1 for all s

e to define T,(s,s’) also when fi00(Ang,) = 0 take a set of as >0
with > as =1 and set

Tu(s,s') = asy, when pux(Ang.)=0.

e the transition matrix T = T, is time dependent
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e Conclusion: any deterministic learning algorithm A : D — H can
be modeled by an inhomogeneous Markov Chain

e the inhomogeneous Markov Chain depends on A, on the target
language Lg and on the measure

e memoryless learner hypothesis: A(7p+1) = F(A(7h), 7(n + 1))

= Tu(s,s')=T(s.s') = u({x € A | F(s,x) =5}

e memory limited learning algorithms: m-memory limited if A(7,)
only depends on last m sentences in text 7, and the previous
grammatical hypothesis

e Fact: if H learnable by a memory limited algorithm, in fact
learnable by a memoryless algorithm
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