# Language Acquisition and Parameters: Part II

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

#### Transition Matrices in the Markov Chain Model

- absorbing states correspond to local maxima (unique absorbing state at the target gives learnability)
- probability matrix of a Markov Chain  $T = (T_{ij})$  with  $T_{ij} =$  probability  $\mathbb{P}(s_i \to s_j)$  of moving from state  $s_i$  to state  $s_j$
- ullet absorbing states: rows of  ${\mathcal T}$  with only one 1 entry and all zeros
- powers  $T^m$  of probability matrix: entry  $T^m_{ij}$  = probability of going from state  $s_i$  to state  $s_j$  in exactly m steps
- probabilities of reaching  $s_j$  in the limit with initial state  $s_i$ :

$$T_{\infty} = \lim_{m \to \infty} T^m$$





### Transition Matrix for the 3-parameter example

$$T = \left( \begin{array}{ccccc} 1/2 & 1/6 & & 1/3 & & \\ & 1 & & & & \\ & & 3/4 & 1/12 & & 1/6 & \\ & & 1/12 & & 11/12 & & & \\ & & & 1 & & & \\ & & & & 1/6 & 5/6 & & \\ & & & & 1/6 & 5/6 & & \\ & & & & 5/18 & & 2/3 & 1/18 \\ & & & & & 1/12 & 1/36 & 8/9 \end{array} \right)$$

• local maxima problem: two absorbing states



Limiting probabilities matrix for the 3-parameter example

- for learnability irrespective of initial state would need column of 1's at the target state
- here if starting at  $s_2$  or  $s_4$  end up at  $s_2$  (local maximum) instead of target  $s_5$ ; initial states  $s_5$ ,  $s_6$ ,  $s_7$ ,  $s_8$  converge to correct target  $s_5$
- starting at  $s_1$  or  $s_3$  will reach true target  $s_5$  with probability 3/5 and false target  $s_2$  with probability 2/5

- the last case in the example shows that there are initial states for which there is a "triggered path to the target", but the learner does not take that path with probability 1, only with a smaller probability
- if take same 3-parameter model but with target state s<sub>1</sub> and transition matrix

$$T = \begin{pmatrix} 1 \\ 1/6 & 5/6 \\ 5/18 & 2/3 & 1/18 \\ & 3/36 & 1/36 & 8/9 \\ 1/3 & & 23/36 & 1/36 \\ & 5/36 & & 31/36 \\ & & 1/18 & & 11/12 & 1/36 \\ & & & 1/18 & & 17/18 \end{pmatrix}$$
 then no other local maxima and  $T_{\infty}$  has first column of 1's

then no other local maxima and  $T_{\infty}$  has first column of 1's



## Eigenvalues and eigenvectors of transition matrices

- matrix T is stochastic:  $T_{ij} \ge 0$  and  $\sum_j T_{ij} = 1$  for all i
- Perron–Frobenius theorem: if T is irreducible (some power  $T^m$  has all entries  $T_{ii}^m > 0$ ) then
- spectral radius  $ho(T)=1=\mathsf{PF}$  eigenvalue
- PF eigenvalue is simple
- PF (left) eigenvector v with all  $v_i > 0$  (uniform:  $v_i = 1$ )
- period  $h = \operatorname{lcd}\{m : T_{ii}^m > 0\}$  number of eigenvalues  $|\lambda| = 1$
- ullet but irreducible condition means graph strongly connected: every vertex is reachable from every other vertex... in general does not happen with Markov chains: in general  ${\cal T}$  not irreducible



### non-irreducible transition matrices T of a Markov Chain

- ullet  $\lambda=1$  is always an eigenvalue
- ullet all other eigenvalues have  $|\lambda| < 1$
- multiplicity of  $\lambda=1$  is number of closed classes  $C_i$  in decomposition of the Markov Chain
- if T has a basis of linearly independent left eigenvectors  $\mathbf{v}_i$  with  $\mathbf{v}_i T = \lambda_i \mathbf{v}_i$  (and  $\mathbf{w}_i$  right eigenvectors  $T \mathbf{w}_i = \lambda_i \mathbf{w}_i$ )

$$T^m = \sum_i \lambda_i^m \ \mathbf{w}_i \mathbf{v}_i$$

linear combination of matrices  $\mathbf{w}_i \mathbf{v}_i$  (independent of m) with coefficients  $\lambda_i^m$ 



- initial probabilities  $\pi_i \geq 0$ , with  $\sum_i \pi_i = 1$ , of having state  $s_i$  as initial state
- after m steps:  $\pi_i^{(m)} = \sum_j \pi_j T_{ji}^m$
- limiting distribution:

$$\pi_i^{(\infty)} = \sum_j \pi_j T_{\infty,ji} = \lim_{m \to \infty} \sum_j \pi_j T_{ji}^m$$

probability of learner approaching state  $s_i$  in the limit

• if target state (say  $s_1$ ) is learnable, then  $\pi_1^{(\infty)} = 1$  and  $\pi_i^{(\infty)} = 0$  for  $i \neq 1$ 

## Rate of convergence

• rate of convergence of  $\pi_i^{(m)}$  to  $\pi_i^{(\infty)}$  is rate of convergence of  $T^m$  to  $T_{\infty}$ , which is rate of convergence of  $\lambda_i \to 0$  for  $|\lambda_i| < 1$ 

$$\|\pi^{(m)} - \pi^{(\infty)}\| = \|\sum_{i \geq 2} \lambda_i^m \pi \mathbf{w}_i \mathbf{v}_i\| \leq \max_{i \geq 2} \{|\lambda_i|^m\} \sum_{i \geq 2} \|\pi \mathbf{w}_i \mathbf{v}_i\|$$

• estimate rate of decay of second largest eigenvalue

## Summary

- Oconstruct Markov Chain for Parameter space
- compute transition matrix T
- compute eigenvalues
- if multiplicity of eigenvalue  $\lambda=1$  is more than one: target is unlearnable (local maxima problem)
- o if multiplicity one, check if basis of independent eigenvectors
- if yes, find rate of decay of second largest eigenvalue: learnability at that speed
- o if not, project onto subspaces of lower dimension

## Markov Chains and Learning Algorithms

- how broad is the Markov Chain method in modeling learning algorithms?
- suppose given  $\mathcal{A}: \mathcal{D} \to \mathcal{H}$ ; hypotheses  $\mathfrak{h}_n = \mathcal{G}$  and  $\mathfrak{h}_{n+1} = \mathcal{G}'$
- probability of passing from  $\mathcal{A}(\tau_n) = \mathfrak{h}_n = \mathcal{G}$  to  $\mathcal{A}(\tau_{n+1}) = \mathfrak{h}_{n+1} = \mathcal{G}'$  at n+1-st input is measure of set

$$A_{n,\mathcal{G}} \cap A_{n+1,\mathcal{G}'} = \{\tau \mid \mathcal{A}(\tau_n) = \mathcal{G}\} \cap \{\tau \mid \mathcal{A}(\tau_{n+1}) = \mathcal{G}'\}$$

• measure with respect to  $\mu^{\infty}$  on  $\mathfrak{A}^{\omega}$  determined by  $\mu$  on  $\mathfrak{A}^{\star}$  (supported on target language  $\mathcal{L}$  for positive examples only)

$$\mathbb{P}(\mathfrak{h}_{n+1} = \mathcal{G}' \mid \mathfrak{h}_n = \mathcal{G}) = \frac{\mu_{\infty}(A_{n,\mathcal{G}} \cap A_{n+1,\mathcal{G}'})}{\mu_{\infty}(A_{n,\mathcal{G}})}$$

assuming  $\mu_{\infty}(A_{n,\mathcal{G}}) > 0$ 



## Inhomogeneous Markov Chain

- $\bullet$  state space = set of possible grammars  $\mathcal{H}=$  set of possible (binary) syntactic parameters
- Transition matrix at *n*-th step:

$$egin{aligned} T_n(s,s') &= \mathbb{P}(s 
ightarrow s') = \mathbb{P}(\mathcal{A}( au_{n+1}) = \mathcal{G}_{s'} \,|\, \mathcal{A}( au_n) = \mathcal{G}_s) \ &= rac{\mu_\infty(A_{n,\mathcal{G}_s} \cap A_{n+1,\mathcal{G}_{s'}})}{\mu_\infty(A_{n,\mathcal{G}_s})} \end{aligned}$$

- these satisfy  $\sum_{s'} T_n(s,s') = 1$  for all s
- to define  $T_n(s,s')$  also when  $\mu_\infty(A_{n,\mathcal{G}_s})=0$  take a set of  $\alpha_s>0$  with  $\sum_s \alpha_s=1$  and set

$$T_n(s, s') = \alpha_{s'}, \quad \text{when} \quad \mu_{\infty}(A_{n, \mathcal{G}_s}) = 0.$$

• the transition matrix  $T = T_n$  is time dependent



- ullet Conclusion: any deterministic learning algorithm  $\mathcal{A}:\mathcal{D}\to\mathcal{H}$  can be modeled by an inhomogeneous Markov Chain
- ullet the inhomogeneous Markov Chain depends on  ${\mathcal A}$ , on the target language  ${\mathcal L}_{\mathcal G}$  and on the measure  $\mu$
- memoryless learner hypothesis:  $A(\tau_{n+1}) = F(A(\tau_n), \tau(n+1))$

$$\Rightarrow$$
  $T_n(s,s') = T(s.s') = \mu(\lbrace x \in \mathfrak{A}^* \mid F(s,x) = s' \rbrace)$ 

- memory limited learning algorithms: m-memory limited if  $\mathcal{A}(\tau_n)$  only depends on last m sentences in text  $\tau_m$  and the previous grammatical hypothesis
- ullet Fact: if  ${\cal H}$  learnable by a memory limited algorithm, in fact learnable by a memoryless algorithm

