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Example: a 3-parameter system of grammars

• E. Gibson, K. Wexler, Triggers, Linguistic Inquiry, 25 (1994)
407–454

X -bar production rule: two word-order parameters

• a parameterized Phrase Structure Grammar with production rules

XP → SpecX ′(Π1 = 0) or X ′Spec(Π1 = 1)

X ′ → CompX ′(Π2 = 0) or X ′Comp(Π2 = 1)

X ′ → X

• XP phrase of lexical type X (N noun, V verb, A adjective,...)

• Spec = specifier (e.g. “the old” in “the old book”)

• Comp = complement
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• Spec and Comp are constituents that can further be broken
down into structure comprising other Spec and Comp elements...

• so also have productions

Spec→ XP, Comp→ XP

• Spec and Comp positions in a phrase may be blank: productions

Spec→ ∅, Comp→ ∅

• Note that production rules are parameterized

• Spec-first languages Π1 = 0; Spec-final languages Π1 = 1

• similarly Comp-first and Comp-final languages, Π2 = 0, Π2 = 1

• Example: English is Spec-first Comp-final;
Bengali is Spec-first Comp-first
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A Transformational Parameter

• parameters Π1 and Π2 above are generative (word order)

• the V 2-parameter governs movement of words in a sentence

• Example: German sentences
- Karl kauft das Buch
- Ich weiß, dass Karl das Buch kauft

• the first sentence looks Comp-final, the second looks Comp-first

• deep structure (generated by grammar production rules) is
Comp-first; but an additional parameter Π3 = 1 (the
V 2-parameter) is set so that in surface structure (obtained by
transformational rules) finite verbs must move to second position
in declarative clauses

• special case of the Move-α transformations of Transformational
Grammars
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3-parameter model

• restrict to these three parameters Π1,Π2,Π3

• space of 8 possible grammars

• alphabet A just given by the syntactic categories (parts of
speech): V,N,A,...

Language Learning in the Principles and Parameters setting

• language acquisition = correctly identifying the parameters of
the target grammar
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Gibson and Wexler’s Triggering Learning Algorithm

• sequence of (positive) examples of sentences s1, s2, . . . , sn, . . .

• after each new example received, learner either stays on same
state or moves to new one (by affecting some parameter change)

• successful learning: identified target language and after some
example sN no longer move from a certain state

• two constraints:

1 only one parameter change at each step

2 if sn not recognized by present state, effect parameter change
only if this makes sn recognizable
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Steps of TLA algorithm:

1 Initialization: start at a random point in the space of
parameters and a grammar with those values of parameters

2 Input: receive positive example sentence s drawn with a
uniform distribution

3 Error detection: if current grammar generates s go to previous
step and receive new input; if grammar does not parse go to
next step

4 Single-step hill climbing: select a single parameter uniformly
randomly, check if flipping parameter makes s compatible; if
yes flip, if no get new input
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Learnability

• still learnability problem occurs: Gibson and Wexler showed the
8-parameter space of previous example is unlearnable with TLA

• source of the problem: local maxima (false solutions) that
process cannot escape

• ... but conjectured: learnability holds if there are triggers for
each pair of hypothesis and target in the parameterized space of
grammars

• trigger: a sentence s in target language that cannot be parsed
with hypothesis grammar and that give (indirect) information
about the target parameter structure

• ... but stochastic model shows still insufficient: even if such path
from hypothesis to target always exists, learner may with high
probability take a wrong path that leads to a (wrong) other local
maximum
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Parameter Space Learning as a Markov Chain

• N parameter: space H of grammars with 2N points

• each boolean vector of length N: a hypothesis state

• space endowed with Hamming distance
(distance = number of parameters that differ)

• possible transitions between states can only change one
parameter

• weights pij on transition from state i to state j : probability of
transition

• probabilities pij are determined by a probability distribution P on
the language L of the target grammar

• target state has an oriented loop to itself and no other outgoing
edges (absorbing state)
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Markov Chain and Learnability

• A : D → H (memoryless) learning algorithm

• G(t) ∈ H target grammar

• P probability on D (from probability on LG(t) : positive examples)

• closed set C of states: subset of states with no outgoing arc
directed at other states (outside C )

• learnability: A identifies G(t) in the limit with probability 1

• Fact: G(t) learnable through A algorithm and probability P
iff in associated Markov Chain every closed set C contains G(t)
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Construction of the Markov Chain

• one state of Markov chain for each parameter vector (2N nodes)

• when receiving input s (with probability P(s)) state Ls
• arrow from state Ls to set Ls′ iff both

1 next sentence s ′ is not parsed by Ls but is parsed by Ls′
2 Ls and Ls′ are a single parameter-flip from each other

• first property occurs with probability (sentences both in L(t) and
Ls′ but not in Ls) ∑

x∈(Ls′rLs)∩L(t)
P(x)

• second property with probability 1/N (parameter to flip chosen
uniformly at random)
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Probabilities

• P(s → s ′) =
∑

x∈(Ls′rLs)∩L(t)
P(x)

P(s → s) = 1−
∑
s′ 6=s

P(s → s ′) = 1−
∑
s′ 6=s

x∈(Ls′rLs)∩L(t)

P(x)

Construction procedure summary:

1 assign P on L(t)

2 assign a state to each language L with 2N states

3 compute Hamming distances

4 if dH(Ls ,Ls′) > 1 set P(s → s ′) = 0

5 normalize by target language: L′ = L ∩ L(t)

6 if Hamming distance 1: take P(s → s ′) = N−1P(L′s′ r L′)
7 take P(s → s) = 1−

∑
s′ 6=s P(s → s ′)
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States in Markov Chains

• equivalent states in a MC: s is reachable from s ′ (following an
oriented path) and vice versa

• recurrent state in a MC: chain returns to s in a finite number of
steps with probability 1

• transient state in a MC: not recurrent

• Pss′(n) = probability of going from state s to state s ′ in n steps

• state s ′ transient ⇒ limn→∞ Pss′(n) = 0 for all s

• canonical decomposition of a Markov Chain

T ∪ C1 ∪ · · · ∪ Cm

disjoint union of T = set of transient states, Cj = closed sets of
equivalence classes of recurrent states
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Why learnability result works?
(learnability iff all closed sets in Markov Chain contain target)

• if some closed set C does not contain target: if learner starts
inside C will never reach target (unlearnable)

• suppose all closed set contain target: show using MC
decomposition that all non-target states must be transient

• then limn→∞ Pss′(n) = 0 for s ′ transient shows with probability 1
must converge in the limit to target

• transience of non-target states: know target absorbing, so no
other state can be in same equivalence relation (cannot reach any
other state); target is recurrent (one arrow going back to itself in
one step); target state is a closed class Ci in MC decomposition,
but has to be in all closed sets so in all Ci ’s: only one C , rest is T
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