Language Acquisition: Parameter Setting

Matilde Marcolli

CS101: Mathematical and Computational Linguistics

Winter 2015

Example: a 3-parameter system of grammars

• E. Gibson, K. Wexler, *Triggers*, Linguistic Inquiry, 25 (1994) 407–454

X-bar production rule: two word-order parameters

• a parameterized Phrase Structure Grammar with production rules

$$XP o \operatorname{Spec} X'(\Pi_1 = 0) \text{ or } X' \operatorname{Spec}(\Pi_1 = 1)$$
 $X' o \operatorname{Comp} X'(\Pi_2 = 0) \text{ or } X' \operatorname{Comp}(\Pi_2 = 1)$ $X' o X$

- XP phrase of lexical type X (N noun, V verb, A adjective,...)
- Spec = specifier (e.g. "the old" in "the old book")
- Comp = complement

- Spec and Comp are constituents that can further be broken down into structure comprising other Spec and Comp elements...
- so also have productions

$$\operatorname{Spec} \to XP$$
, $\operatorname{Comp} \to XP$

• Spec and Comp positions in a phrase may be blank: productions

$$\operatorname{Spec} \to \emptyset, \quad \operatorname{Comp} \to \emptyset$$

- Note that production rules are parameterized
- Spec-first languages $\Pi_1 = 0$; Spec-final languages $\Pi_1 = 1$
- similarly Comp-first and Comp-final languages, $\Pi_2=0,\ \Pi_2=1$
- Example: English is Spec-first Comp-final; Bengali is Spec-first Comp-first

A Transformational Parameter

- parameters Π_1 and Π_2 above are generative (word order)
- the V2-parameter governs movement of words in a sentence
- Example: German sentences
- Karl kauft das Buch
- Ich weiß, dass Karl das Buch kauft
- the first sentence looks Comp-final, the second looks Comp-first
- deep structure (generated by grammar production rules) is Comp-first; but an additional parameter $\Pi_3=1$ (the V2-parameter) is set so that in surface structure (obtained by transformational rules) finite verbs must move to second position in declarative clauses
- \bullet special case of the Move- α transformations of Transformational Grammars

3-parameter model

- \bullet restrict to these three parameters Π_1,Π_2,Π_3
- space of 8 possible grammars
- ullet alphabet ${\mathfrak A}$ just given by the syntactic categories (parts of speech): V,N,A,...

Language Learning in the Principles and Parameters setting

• language acquisition = correctly identifying the parameters of the target grammar

Gibson and Wexler's Triggering Learning Algorithm

- sequence of (positive) examples of sentences $s_1, s_2, \ldots, s_n, \ldots$
- after each new example received, learner either stays on same state or moves to new one (by affecting some parameter change)
- ullet successful learning: identified target language and after some example s_N no longer move from a certain state
- two constraints:
 - only one parameter change at each step
 - ② if s_n not recognized by present state, effect parameter change only if this makes s_n recognizable

Steps of TLA algorithm:

- Initialization: start at a random point in the space of parameters and a grammar with those values of parameters
- Input: receive positive example sentence s drawn with a uniform distribution
- Error detection: if current grammar generates s go to previous step and receive new input; if grammar does not parse go to next step
- Single-step hill climbing: select a single parameter uniformly randomly, check if flipping parameter makes s compatible; if yes flip, if no get new input

Learnability

- still learnability problem occurs: Gibson and Wexler showed the 8-parameter space of previous example is unlearnable with TLA
- source of the problem: local maxima (false solutions) that process cannot escape
- ... but *conjectured*: learnability holds if there are triggers for each pair of hypothesis and target in the parameterized space of grammars
- trigger: a sentence s in target language that cannot be parsed with hypothesis grammar and that give (indirect) information about the target parameter structure
- ... but stochastic model shows still insufficient: even if such path from hypothesis to target always exists, learner may with high probability take a wrong path that leads to a (wrong) other local maximum

Parameter Space Learning as a Markov Chain

- N parameter: space \mathcal{H} of grammars with 2^N points
- ullet each boolean vector of length N: a hypothesis state
- space endowed with Hamming distance (distance = number of parameters that differ)
- possible transitions between states can only change one parameter
- weights p_{ij} on transition from state i to state j: probability of transition
- ullet probabilities p_{ij} are determined by a probability distribution $\mathbb P$ on the language $\mathcal L$ of the target grammar
- target state has an oriented loop to itself and no other outgoing edges (absorbing state)

Markov Chain and Learnability

- ullet $\mathcal{A}:\mathcal{D}
 ightarrow \mathcal{H}$ (memoryless) learning algorithm
- ullet $\mathcal{G}^{(t)} \in \mathcal{H}$ target grammar
- ullet $\mathbb P$ probability on $\mathcal D$ (from probability on $\mathcal L_{\mathcal G^{(t)}}$: positive examples)
- \bullet closed set C of states: subset of states with no outgoing arc directed at other states (outside C)
- ullet learnability: ${\cal A}$ identifies ${\cal G}^{(t)}$ in the limit with probability 1
- Fact: $\mathcal{G}^{(t)}$ learnable through \mathcal{A} algorithm and probability \mathbb{P} iff in associated Markov Chain every closed set \mathcal{C} contains $\mathcal{G}^{(t)}$

Construction of the Markov Chain

- one state of Markov chain for each parameter vector (2^N nodes)
- ullet when receiving input s (with probability $\mathbb{P}(s)$) state \mathcal{L}_s
- ullet arrow from state \mathcal{L}_s to set $\mathcal{L}_{s'}$ iff both
 - **①** next sentence s' is not parsed by \mathcal{L}_s but is parsed by $\mathcal{L}_{s'}$
 - $m{Q}$ \mathcal{L}_s and $\mathcal{L}_{s'}$ are a single parameter-flip from each other
- ullet first property occurs with probability (sentences both in $\mathcal{L}^{(t)}$ and $\mathcal{L}_{s'}$ but not in \mathcal{L}_s)

$$\sum_{x \in (\mathcal{L}_{s'} \setminus \mathcal{L}_s) \cap \mathcal{L}^{(t)}} \mathbb{P}(x)$$

ullet second property with probability 1/N (parameter to flip chosen uniformly at random)

Probabilities

•
$$\mathbb{P}(s \to s') = \sum_{x \in (\mathcal{L}_{s'} \setminus \mathcal{L}_s) \cap \mathcal{L}^{(t)}} \mathbb{P}(x)$$

$$\mathbb{P}(s \to s) = 1 - \sum_{s' \neq s} \mathbb{P}(s \to s') = 1 - \sum_{\substack{s' \neq s \\ x \in (\mathcal{L}_{s'} \setminus \mathcal{L}_s) \cap \mathcal{L}^{(t)}}} \mathbb{P}(x)$$

Construction procedure summary:

- lacksquare assign $\mathbb P$ on $\mathcal L^{(t)}$
- $oldsymbol{2}$ assign a state to each language \mathcal{L} with 2^N states
- 3 compute Hamming distances
- on normalize by target language: $\mathcal{L}' = \mathcal{L} \cap \mathcal{L}^{(t)}$
- **1** if Hamming distance 1: take $\mathbb{P}(s \to s') = N^{-1}\mathbb{P}(\mathcal{L}'_{s'} \setminus \mathcal{L}')$
- $m{0}$ take $\mathbb{P}(s o s)=1-\sum_{s'
 eq s}\mathbb{P}(s o s')$

States in Markov Chains

- \bullet equivalent states in a MC: s is reachable from s' (following an oriented path) and vice versa
- ullet recurrent state in a MC: chain returns to s in a finite number of steps with probability 1
- transient state in a MC: not recurrent
- $\mathbb{P}_{ss'}(n) = \text{probability of going from state } s \text{ to state } s' \text{ in } n \text{ steps}$
- ullet state s' transient $\Rightarrow \lim_{n \to \infty} \mathbb{P}_{ss'}(n) = 0$ for all s
- canonical decomposition of a Markov Chain

$$T \cup C_1 \cup \cdots \cup C_m$$

disjoint union of T = set of transient states, $C_j = \text{closed}$ sets of equivalence classes of recurrent states

Why learnability result works? (learnability iff all closed sets in Markov Chain contain target)

- if some closed set *C* does not contain target: if learner starts inside *C* will never reach target (unlearnable)
- suppose all closed set contain target: show using MC decomposition that all non-target states must be transient
- then $\lim_{n\to\infty} \mathbb{P}_{ss'}(n) = 0$ for s' transient shows with probability 1 must converge in the limit to target
- transience of non-target states: know target absorbing, so no other state can be in same equivalence relation (cannot reach any other state); target is recurrent (one arrow going back to itself in one step); target state is a closed class C_i in MC decomposition, but has to be in all closed sets so in all C_i 's: only one C, rest is T