
JOURNAL OF MODERN DYNAMICS WEB SITE: http://www.math.psu.edu/jmd
VOLUME 1, NO. 4, 2007, 545–596

FIFTY YEARS OF ENTROPY IN DYNAMICS: 1958–2007

ANATOLE KATOK

PREFACE

These notes combine an analysis of what the author considers (admittedly
subjectively) as the most important trends and developments related to the no-
tion of entropy, with information of more “historical” nature including allusions
to certain episodes and discussion of attitudes and contributions of various par-
ticipants. I directly participated in many of those developments for the last forty
three or forty four years of the fifty-year period under discussion and on numer-
ous occasions was fairly close to the center of action. Thus, there is also an ele-
ment of personal recollections with all attendant peculiarities of this genre.

These notes are meant as “easy reading” for a mathematically sophisticated
reader familiar with most of the concepts which appear in the text. I recommend
the book [59] as a source of background reading and the survey [44] (both writ-
ten jointly with Boris Hasselblatt) as a reference source for virtually all necessary
definitions and (hopefully) illuminating discussions.

The origin of these notes lies in my talk at the dynamical systems branch of
the huge conference held in Moscow in June of 2003 on the occasion of Kol-
mogorov’s one hundredth anniversary. The title of the talk was “The first half
century of entropy: the most glorious number in dynamics”. At that time not quite
half a century had elapsed after the Kolmogorov discovery, although one could
arguably include some of the “pre-history” into the counting. Now this ambigu-
ity has disappeared, and I dedicate this article to the fiftieth anniversary of the
discovery of entropy in ergodic theory by Andrei Nikolaevich Kolmogorov.

There is a number of published recollections and historical notes related in
various ways to our subject. I used some information from these sources with
references, although this plays a secondary role to personal recollections and
analysis based on the knowledge of the subject and its historical development.
Naturally I took all necessary care not to contradict any source of this kind. I do
recommend the account by M. Smorodinsky [140] which addresses some of the
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546 ANATOLE KATOK

same themes as the first half of this paper and contains more systematic defini-
tions and formulations as well as some complementary insights.

I also used information and insights provided by colleagues who participated
in various developments described in this paper, namely, Benjamin Weiss, Don
Ornstein, Roy Adler, and Jean-Paul Thouvenot. Some of the facts and interpreta-
tions I learned from them came as a surprise to me, and this certainly helped to
enrich and correct the overall picture. Benjamin Weiss read several drafts of this
paper and made a number of valuable comments. I am also thankful to Gregory
Margulis for comments of critical nature which led me to formulate some of my
opinions and comments with greater care and clarity.

Note on references. This paper is not meant as a bibliographical survey, and de-
spite the considerable size of the bibliography, a comprehensive or systematic
listing of references was not a goal. Some important papers may have been
missed if they are not directly related to the main lines of our narrative. Some-
times key references are listed after the titles of subsections (and on one occa-
sion, a section).

INTRODUCTION: KOLMOGOROV’S CONTRIBUTION TO DYNAMICS: 1953–1959
[75, 76, 77, 78, 79]

Andrei Nikolaevich Kolmogorov arguably has made the most profound im-
pact on the shaping and development of mathematical theory of dynamical sys-
tems since Henri Poincaré.

Two cardinal branches of modern dynamics are concerned with stability
of motion over long (in fact, infinite) intervals of time, and with complicated
(“stochastic” or “chaotic”) behavior in deterministic systems, respectively. Kol-
mogorov’s contributions to both areas are seminal and, in fact, have determined
the main trends of development for at least half a century.

In the area of stability Kolmogorov discovered (about 1953) the persistence of
many (but not all!) quasiperiodic motions for a broad class of completely in-
tegrable Hamiltonian systems [76, 77]. The major branch of modern dynamics
and analysis that grew out of Kolmogorov’s discovery is usually referred to as
the KAM (Kolmogorov–Arnol’d–Moser) theory. For brief historical accounts of
the development of this area see [96] and [45], for a well-motivated introduc-
tion and overview, see [87]. The plenary talk at the International Congress of
Mathematicians in Amsterdam [77] not only contained a sketch of Kolmogorov’s
great theorem but also an outline of a very broad program for studying long-
term behavior of classical dynamical systems, both stable and ergodic, far ahead
of its time. The only other paper by Kolmogorov in this area was an earlier note
[75] which contained both preliminary steps for KAM and the discovery of an
exotic ergodic behavior associated with abnormally fast approximation of irra-
tional numbers by rationals.

The second great contribution of Kolmogorov to modern dynamics was the
discovery of the concept of entropy for a measure-preserving transformation, to-
gether with the attendant property of completely positive entropy (K -property)
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[78, 79]. It is the development of this concept and its great impact not only in
dynamics but also in certain areas of geometry and number theory that is traced
and discussed in this paper.

To summarize, the total length of Kolmogorov’s pertinent published work is
under 35 pages. There are repetitions (a part of the Amsterdam talk [77] follows
[75] and [76]), and errors (in the main definition in [78], so [79] is essentially a
correction of that error; also in [75] mixing is mentioned where it is in fact im-
possible, the correct property being weak mixing), and some of the predictions
of [77] were not borne out, such as the likelihood of a great difference between
ergodic properties of real-analytic and C∞ dynamical systems.

Andrei Nikolaevich Kolmogorov

One should add for the sake of balance that some of Kolmogorov’s ideas in
other directions did not appear in his published work but were instead devel-
oped by his students. A well-known example is the construction of a measure-
preserving transformation with simple continuous spectrum by I.V. Girsanov
[34] based on the theory of Gaussian processes. But even allowing for that, the
magnitude and persistence of the impact of Kolmogorov’s work on the subse-
quent development of dynamics is amazing given the modest size of the pub-
lished output and the deficiencies mentioned above.1 A very great role in both
principal cases (KAM and entropy) was played by the work of students and other
mathematicians related to Kolmogorov which broadened, developed, and am-
plified Kolmogorov’s original insights. In the case of entropy, the key role was

1In 1985 Kolmogorov published another corrected version [80] of his original note on entropy
[78]. While this event has a purely historical interest it indicates that Kolmogorov valued his con-
tribution very highly and wanted to be on record for having corrected the annoying error. He says:
"This paper, which has been prepared specially for the jubilee edition of the Proceedings of the
Steklov Institute, is a rewritten version of our note with the same title in which there was an er-
roneous Theorem 2; in the present version the statement and proof of that theorem have been
completely changed.”
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played by Sinai, Rokhlin, Pinsker and Abramov, whose work during the period
from 1958 till 1962 brought entropy to the center stage in ergodic theory and de-
veloped the first layer of the core theory, which remains the foundation of the
subject to this day.

In the rest of the paper we will discuss the principal developments related to
the notion of entropy in various areas of dynamics. We try to combine a brief his-
torical account with explanations of certain concepts and ideas as we see them
today. Due to size limitations we reduce technical details to a bare minimum
and stress motivations and implications rather than (even sketches of) proofs. It
goes without saying that we do not aspire to provide a comprehensive treatment
of either historical or conceptual aspects of the subject. The balance between
the two changes from one section to another, with a general tendency to shift to-
ward more explanations and fewer historical comments as we progress to more
recent developments.

1. EARLY HISTORY OF ENTROPY

From its origins as a fundamental—albeit, rather vague—notion in statistical me-
chanics, the concept of entropy became the centerpiece of mathematical theory of
information created by Claude Shannon; Kolmogorov, in a masterful stroke, real-
ized its invariant nature. In few short years, ergodic theory was revolutionized.

a. Prehistory: 18...–1956. 2

Thermodynamics. The word entropy, amalgamated from the Greek words
energy and tropos (meaning “turning point”), was introduced in an 1864 work
of Rudolph Clausius, who defined the change in entropy of a body as heat trans-
fer divided by temperature, and he postulated that overall entropy does not de-
crease (the second law of thermodynamics). Clausius was motivated by an ear-
lier work of Sadi Carnot on an ideal engine in which the entropy (how Clausius
understood it) would be constant, see [97].

While entropy in this form proved quite useful, it did not acquire intuitive
meaning until James Maxwell and Ludwig Boltzmann worked out an atomistic
theory of heat based on probability, i.e., statistical mechanics, the “mechanical
theory of heat”. A central object in this endeavor was the distribution function
on the phase space of one of the gas particles, which measured, for a given state
of the gas as a whole (what physicists call a microstate) the distribution of states
of individual particles; this distribution is also called a macrostate. Integrating
this density gives 1 by definition, but Boltzmann derived a partial differential
equation for it that yielded a few standard conserved quantities: Total mass is
the particle mass integrated against this density; total momentum is the particle
momentum integrated against it; total energy is kinetic energy of a particle inte-
grated against this density; and entropy turns out to be the logarithm of this den-
sity integrated against the density itself, i.e., an integral of the form −k

∫

f log f .

2This section was mostly written by Boris Hasselblatt.
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It turns out to be natural to quantize this kind of system by partitioning the
phase space (for a single particle) into finitely many cells (e.g., by dividing the
single-particle energy into finitely many possible levels); then we can use a prob-
ability vector with entries pi to list the proportion of particles that are in each of
these partition elements. Boltzmann’s description of entropy was that it is the
degree of uncertainty about the state of the system that remains if we are given
only the pi , (i.e., the distribution or macrostate), and that this is properly mea-
sured by the logarithm of the number of states (microstates) that realize this dis-
tribution. For n particles, this number is (

∏

i (npi )!)/n!. Stirling’s formula gives
the continuum limit of entropy as

lim
n→∞

∏

i (npi )!
n ·n!

=
∑

i

pi log pi .

In particular, the most probable states can be found by maximizing
∑

i pi log pi

(discrete Maxwell–Boltzmann law) [21, Lemma 2.3]. See [33] for more details.
Further development and clarification of the notion of entropy in statistical

mechanics lie outside of the scope of this article.

Information theory [128, 71]. Shannon considered finite alphabets whose sym-
bols have known probabilities pi and, looking for a function to measure the un-
certainty in choosing a symbol from among these, determined that, up to scale,
∑

i pi log pi is the only continuous function of the pi that increases in n when
(p1, . . . , pn)= (1/n, . . . ,1/n) and behaves naturally with respect to making succes-
sive choices. It is the weighted average of the logarithmic size of elements and in
particular it is additive for the join of independent distributions. One can argue
that entropy expresses the amount of information carried by the distribution.

Accordingly, the entropy of a finite or countable measurable partition ξ of a
probability space is given by

H (ξ) := Hµ(ξ) :=−
∑

C∈ξ

µ(C ) logµ(C ) ≥ 0,

where 0log 0 := 0. For countable ξ, the entropy may be either finite or infinite.
In the presence of a stationary random process with finitely many states (or

in Shannon’s language, an information source), probabilities of symbols are af-
fected by preceding symbols, and the effect on the probability distribution of
longer words (or the itineraries of points with respect to a partition) is captured
by joint information. Thus, elementary events may be considered as measur-
able subsets in the space of realizations of a stationary random process, and they
form a partition which one may denote as ξ.

As time progresses, the total amount of information per unit of time may only
decrease. Shannon took the asymptotic amount of information per unit of time
to be the entropy of an information source. We will explain this more formally
shortly. A human language, for example, has lower entropy than an independent
identically distributed (i.i.d.) process with the same alphabet (which should also
include a symbol for the empty space between words) because the probabili-
ties of different letters differ (which is accounted for already by the entropy of
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the partition) and further, because the choice of each new subsequent letter is
significantly restricted by the choice of previous letters.

The seminal work of Shannon became the basis of mathematical information
theory. Its relationship to the theory of stationary random processes became ap-
parent to probabilists. In 1956, A. Ja. Khinchin [71] gave a very elegant, rigorous
treatment of information theory with the entropy of a stationary random pro-
cess as a centerpiece. Fully aware of the equivalence between a stationary ran-
dom process with finite state space and a measure-preserving transformation,
T , with a finite partition, ξ, Khinchin developed the basic calculus of entropy,
which in retrospect looks like a contemporary introduction to the subject of en-
tropy in ergodic theory.

We define the joint partition by

ξT
−n :=

n
∨

i=1
T 1−i (ξ),

where ξ∨η := {C ∩D C ∈ ξ, D ∈ η}. Now

h(T,ξ) := hµ(T,ξ) := lim
n→∞

H (ξT
−n)

n

is called the metric entropy of the transformation T relative to the partition ξ. (It
is easy to see that the limit exists.)

Via conditional entropies

H (ξ | η) :=−
∑

D∈η

µ(D)
∑

C∈ξ

µ(C |D) logµ(C | D),

where µ(A | B ) :=µ(A∩B )/µ(B ), the entropy of a finite state random process (or,
equivalently, the entropy of a measure-preserving transformation with respect to
a given finite partition) can equivalently be defined as the average amount of in-
formation obtained on one step given complete knowledge of the past (meaning
the sequence of partition elements to which preimages of a given point belong),
i.e.,

h(T,ξ)= H (ξ | ξT
−∞).

At this stage entropy provides a parameter that describes the complexity of
the stationary random process with finitely many states, symbols, or letters in a
finite alphabet. Recall that given a measure-preserving transformation, T, of a
probability space, (X ,µ), one produces such a process by fixing a finite partition
ξ of X , identifying its elements with the letters of an alphabet of card(ξ) symbols
and coding the transformation via this partition. The entropy of the random
process thus obtained is usually denoted by h(T,ξ).

b. Kolmogorov’s discovery [78, 79].

Kolmogorov entropy. Naturally, the same transformation can be coded by many
different partitions, and entropies of the corresponding random processes may
differ. To give a trivial (and extreme) example, consider any process with a par-
tition where one element has measure one (full measure) and the others have
measure zero. Obviously, the entropy of such a process is equal to zero and all

JOURNAL OF MODERN DYNAMICS VOLUME 1, NO. 4 (2007), 545–596



ENTROPY IN DYNAMICS: 1958–2007 551

the information contained in the original process is lost; in less extreme cases,
there may be a partial loss of information, e.g., for an independent uniformly
distributed random process with four states and with the partition accounting
for the parity of the state at moment zero.

Kolmogorov realized that this can be used to define a quantity that describes
the intrinsic complexity of a measure-preserving transformation. To see how,
we say that a measurable partition ξ with finite entropy is a generator for a
measure-preserving transformation T if the set of partitions subordinate to
some

∨n
i=−n T −i (ξ) is dense in the set of finite-entropy partitions endowed with

the Rokhlin metric

dR (ξ,η) := H (ξ | η)+H (η | ξ).

The key observation here is the inequality

|h(T,ξ)−h(T,η)| ≤ dR (ξ,η).

Kolmogorov noted that all generators for a measure-preserving transformation
T have the same entropy and defined the entropy of T to be this common value
if T has a generator and ∞ otherwise. The latter choice may be defensible, but
has as a consequence that the entropy of the identity is infinite. Sinai found
a natural way to make this notion better-behaved by observing that generators
maximize entropy relative to a partition among all partitions with finite entropy
and by defining the entropy of a measure-preserving transformation T (or metric
entropy) as sup{h(T,ξ) H (ξ)<∞}.

K -systems. The property called K -property3, also introduced by Kolmogorov in
1958, is an isomorphism invariant version of earlier regularity notions for ran-
dom processes: present becomes asymptotically independent of all sufficiently
long past. This notion is quite natural in the context of stationary random pro-
cesses where various versions of regularity had been studied for several decades
and were one of the focal points of Kolmogorov’s own work in probability.4 A
fundamental observation is that K -property is equivalent to completely positive
entropy:

h(T,ξ)> 0 for any partition ξ with H (ξ)> 0.

and thus is inherited by any stationary random process associated with a K -
system. [121, 124]

3Kolmogorov’s original motivation was as an abbreviation for “quasiregular,” which begins
with “K” in Russian, but it was quickly interpreted as the first letter of the name “Kolmogorov”
and is still sometimes called the “Kolmogorov property.”

4A version of this notion for stationary processes with continuous distribution appears in N.
Wiener’s 1958 monograph [143]. Among other things, it contains an incorrect proof that such a
process is isomorphic (using ergodic theory language) to a sequence of independent identically
distributed random variables, i.e., to a Bernoulli process; even though this statement is repeated
in Grenander’s review in Math. Reviews, it does not seem to have been noticed by the ergodic
theory community at the time, and Wiener’s work had no influence on development of ergodic
theory. However, Wiener’s proof of existence of a Bernoulli factor in his setting is correct.
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c. Development of the basic theory: 1958–1962 [123, 124]. In the short period
following the discovery of Kolmogorov, a group of brilliant mathematicians in
Moscow realized the potential of his seminal insight and quickly developed the
basic machinery which forms the core of the theory of entropy and K -systems.
This group included V.A. Rokhlin, then in his early forties, for whom this was the
second very productive period of work in ergodic theory after 1947–1950; the in-
formation theorist, M.S. Pinsker, who was in his early thirties; Rokhlin’s student
L.M. Abramov; and Kolmogorov’s student, Ja.G. Sinai, in his mid-twenties, whose
name will appear in this survey many times. Sinai’s definition of entropy [130],
mentioned above, has become standard.5 Rokhlin’s lectures [124], published in
1967 but written several years earlier, present this layer of the theory in a defini-
tive form and serve as the model for most later textbooks and monographs.

We do not know to what extent Kolmogorov anticipated these developments.
A measure-preserving transformation, S, is called a factor of a measure-

preserving transformation, T , if S is isomorphic to the restriction of T to an in-
variant σ-algebra. One can interchangeably speak about invariant partitions,
invariant sub σ-algebras and factors of a measure-preserving transformation.
Thus, characterization of K -systems as systems with completely positive entropy
implies that any nontrivial factor of a K -system is a K -system.

The π-partition is the crudest partition (minimal σ-algebra) which refines ev-
ery partition with zero entropy. It can also be characterized as the algebra of
events which are completely determined by infinite past, however remote. This
is the essence of zero entropy: a system with zero entropy is fully deterministic
from the probabilistic or information-theory viewpoint. Complete knowledge of
the arbitrary remote past, i.e., the partition

(1) ξT
−∞ =

−N
∨

n=−∞
T n(ξ),

for any N , however large, fully determines the present and the future, i.e., the
partition

ξT :=
∞
∨

n=−∞
T n(ξ).

An arbitrary system with positive entropy is then represented as the skew prod-
uct over its largest zero entropy factor, determined by the π-partition. Thus, it
has a canonical, deterministic component; to what extent one can find a com-
plementary random, K , or Bernoulli, component was an early question which
stimulated a lot of development.

For K -systems, the situation is opposite that of zero entropy systems: knowl-
edge or arbitrary remote past gives no information about the present or future,
i.e., theσ-algebra of the partition (1) as N →∞ converges to the trivialσ-algebra.

The short note by Pinsker [121], where the π-partition was introduced, is one
of the most important pieces of work from this early period. Pinsker also proved

5Metric (Kolmogorov) entropy is sometimes called Kolmogorov–Sinai entropy, especially in
physics literature.
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that in any system, any K -factor (if it exists) is independent from the π-partition
and hence from any zero entropy factor. Using the notion introduced by H. Fursten-
berg several years later [32], one can reformulate this as saying that any K -system
is disjoint from any system with zero entropy. Pinsker did not know at the time
whether any ergodic positive entropy system has a K -factor (this follows from
Sinai’s weak isomorphism theorem proved several years later Section 2c), but
based on his independence result, he formulated a bold conjecture (later known
as Pinsker Conjecture) that every positive entropy system is a direct product of a
zero entropy and a K -system.

Realization of the importance of the Kolmogorov discovery and the great im-
pact it made on the field is attested by appearance within a couple of years of in-
fluential surveys by Rokhlin [123], and P.R. Halmos [43] centered around entropy
and its impact. The list of open problems inspired by Kolmogorov’s work in dy-
namics (not only on entropy) by S.V. Fomin [30] appeared as an appendix to the
Russian translation of [42], the only textbook on ergodic theory in circulation at
the time. One of Fomin’s problems was whether the spectrum and entropy deter-
mine the isomorphism class of an ergodic measure-preserving transformation;
it was quickly answered in the negative by Roy Adler [2].

d. Entropy and local behavior: early insights. It was noticed very early in the
development of the entropy theory that entropy is related to the local or, in the
case of smooth systems, infinitesimal, exponential rates of divergence of orbits
and is somehow capturing the sum total of those rates in all directions. Thus
entropy, whose genesis was in probability theory and information theory, found
its way into classical dynamics. According to Sinai [138, 139], there was for a
short time a misconception among the young people mentioned above that en-
tropy of classical systems must always be equal to zero, which was dispelled by
Kolmogorov. He pointed out that the linear hyperbolic map of a torus, an obvi-
ous example of a discrete time classical system (a volume-preserving diffeomor-
phism of a compact manifold) has positive entropy.

The formula for entropy with respect to Lebesgue measure for the automor-
phism FA of the torus Tk = Rk /Zk determined by an k ×k matrix A with integer
entries and determinant of absolute value one,

FA x = Ax (mod 1) for x ∈Rk /Zk ,

(2) h(FA) =
∑

λ∈SpA

(log |λ|)+,

(where each eigenvalue appears according to its multiplicity and x+ =
x+|x|

2 )
became the prototype for entropy calculations for increasingly more general
classes of smooth dynamical systems. The ultimate outcome is the formula by
Ya.B. Pesin in the classical volume-preserving case and the further generaliza-
tion by F. Ledrappier and L.-S. Young for arbitrary Borel probability invariant
measures for smooth systems. This story belongs to a later part of this survey,
Section 4, and now we mention only the earliest development in that direction.
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The 1965 result by then 21-year old A.G. Kushnirenko [81] established a fun-
damental fact: entropy for a classical dynamical system is finite. Kushnirenko
did it by estimating entropy of a partition by using an isoperimetric inequality
and showing that the growth of the total boundary area of iterates of a partition
into elements with piecewise smooth boundaries can be estimated through the
Lipschtiz constant of the map in question and dimension of the manifold.

e. Three big classes. Thus the world of dynamics has been divided by entropy
into three distinct parts:

• Zero-entropy or fully deterministic systems. Classical systems of that kind
are characterized by subexponential growth of orbit complexity with time.

• Finite positive entropy systems include all finite state stationary ran-
dom processes such as independent ones (Bernoulli shifts) or finite state
Markov chains and classical systems with exponential growth of orbit com-
plexity.

• Infinite entropy includes many important classes of stationary random
processes, such as Wiener or Gaussian, with absolutely continuous spectral
measure, and various infinite-dimensional dynamical systems, which ap-
pear for example in certain models of fluid mechanics or statistical physics.

This trichotomy alone already justifies calling entropy the most important nu-
merical quantity in dynamics.

From this point on several parallel lines of development clearly emerge, and
we will treat those in succession, starting with internal developments in ergodic
theory.

2. ISOMORPHISM PROBLEM: FROM KOLMOGOROV’S WORK THROUGH THE

SEVENTIES

Kolmogorov entropy provides a precise instrument for complete classification of
Bernoulli shifts, Markov chains, and many other natural classes of systems but
fails do to do so for K -systems. As a by-product, a powerful new theory was de-
veloped which considers a weaker notion of equivalence related to time change in
flows.

a. Two isomorphism problems of Kolmogorov. Kolmogorov’s stated motiva-
tion for the introduction of entropy was to provide a new isomorphism invariant
for measure-preserving transformations and flows—more specifically, to split
the classes of transformations and flows with countable Lebesgue spectrum into
continuum nonisomorphic classes.

In particular, Bernoulli shifts (independent stationary random processes) with
different entropies (such as (1/2,1/2) and (1/3,1/3,1/3)) are not isomorphic.

Two new central problems were formulated:

Are Bernoulli shifts with the same entropy isomorphic?

Are K -systems with the same entropy isomorphic?
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The short answers turned out to be “yes” in the first case and “no” in the
second, but more informative answers would roughly be “YES, and many oth-
ers too”, and “NO, and classification is about as hopeless as for all (measure-
preserving) transformations.”

b. Early special cases of isomorphism. [93, 13] 6

Meshalkin examples. The first class of examples of nontrivial coding (this is
what finding an isomorphism amounts to) was found by L.D. Meshalkin a
few months after Kolmogorov asked his question. It can be illustrated by the
simplest example of Bernoulli shifts with distributions (1/4,1/4,1/4,1/4) and
(1/2,1/8,1/8,1/8,1,8), both with entropy 2log 2. The method was known inter-
nally as “re-gluing,” which gives some indication of its nature.

Finitary codes and finitary isomorphism. Meshalkin and Blum–Hansen codes
provide the earliest examples of what later became known as “finitary codes,”
which produce informationally and geometrically more satisfying constructions
for isomorphism between different Bernoulli shifts than the Ornstein method.
The 1967 work by Adler and Weiss [5], which achieved considerable fame for
several reasons, belongs to the same line of development. It was later shown
that finitary codes exist for all Bernoulli shifts as well as for transitive Markov
chains with equal entropy [69, 70]. This concept and the accompanying notion
of “finitary isomorphism” between stationary random processes is natural from
the information theory viewpoint. It can be explained as follows.

Any isomorphism or coding between stationary processes with finite or
countable sets of states associates to a realization x = (xn)n∈Z of one process the
realization (yn(x))n∈Z of the other. The coding is called finitary if for almost every
x, the value y0(x) depends only on a finite segment of x, whose length however
depend on x.7 The same has to be true for the inverse.

However, this is not an isomorphism invariant. In other words, the same
measure-preserving transformation T may have two generating partitions, ξ and
ζ, such that stationary random processes (T,ξ) and (T,ζ) are not finitarily iso-
morphic, i.e., one cannot be obtained from the other by a finitary code. For this
reason, this line of development, while of great importance for symbolic dynam-
ics, turned out to be conceptually less relevant for ergodic theory and its appli-
cations to classical dynamics than Ornstein’s work discussed below.

c. Sinai’s weak isomorphism theorem [132]. Sinai came very close to proving
isomorphism of Bernoulli shifts with the same entropy. Moreover, he showed
that in a natural sense, Bernoulli shifts are the simplest ergodic transformations
with a given entropy.

6D. Kazhdan and J. Bernstein around 1965, both around age twenty at the time, found more
cases of isomorphisms that cover those by Meshalkin, Blum–Hansen and much more, but this
work remained unpublished.

7If the length is bounded, the code is called finite. This is a very restrictive notion in the context
of ergodic theory.
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Sinai proved that for any ergodic transformation, T , and any Bernoulli shift,
B with entropy h(T ), there is a factor of T isomorphic to B . Hence any two
Bernoulli shifts with equal entropy are weakly isomorphic: each is isomorphic
to a factor of the other.

This, of course, gives insight into the problem of splitting of ergodic positive
entropy transformations into deterministic and stochastic parts, as mentioned
above: Every ergodic positive entropy transformation has not only the canonical
maximal zero entropy factor but also has lots of Bernoulli (and hence K ) factors
of maximal entropy. Since those factors are independent of the π-factor, this
can be viewed as strong evidence in favor of Pinsker’s conjecture or an even a
stronger statement; it looked as though the only thing left to show was that a
Sinai factor and the Pinsker factor generate the whole σ-algebra. This turned
out to be an illusion on two counts, as we shall soon see.

d. Ornstein’s proof of isomorphism [100, 101, 102].

From Kolmogorov problem to Ornstein solution. Kolmogorov’s isomorphism
problem for Bernoulli shifts has a fairly short history, a mere dozen of years, but
is it full of drama. During this period the Russian (primarily Moscow)8 school
of ergodic theory enjoyed the world domination. It should be mentioned that
in Moscow, ergodic theory was not treated as a separate discipline but rather
as one of the streams within dynamics. As a result, the agenda was amazingly
broad and other directions in dynamics figured prominently—such as hyper-
bolic dynamics and its interface with celestial mechanics, smooth ergodic the-
ory (including applications of entropy), interface with statistical mechanics, and
attempts to find fruitful applications to number theory. Sinai’s talk at the 1962
Stockholm ICM Congress [133] and the 1967 issue of Uspehi, based on the work-
ings of the 1965 Humsan school [1], are representative both of this position and
of the agenda. Still, the isomorphism problem was never far from the surface.
I remember vividly an episode from about 1966 when an information theorist
from St. Petersburg, R. Zaidman, claimed that he had a solution to the isomor-
phism problem for Bernoulli shifts. He came to Moscow more than once and
attempted to present his solution at the (then) main ergodic theory/dynamics
seminar. He did not get very far, although at the time the feeling of many lis-
teners, shared by the author, was that he did make substantial progress in the
direction of what is now called the Keane–Smorodinsky finitary isomorphism
theorem. This feeling strengthened after Ornstein’s solution appeared.

The announcement of Ornstein’s solution in 1969 came as a shock to Moscow.
The "philosophy" of Ornstein’s approach was not absorbed quickly, and the ef-
forts shifted even more than before from “pure” ergodic theory to interface with

8Rokhlin who moved to Leningrad (now St. Petersburg) in 1960 left ergodic theory shortly after-
ward for pursuits in topology and algebraic geometry; however several outstanding young math-
ematicians working in the area appeared in Leningrad during this period. A. M. Vershik is the
most prominent of those; he was to have a long and illustrious career spanning several areas of
mathematics.
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other disciplines, primarily smooth dynamics and statistical mechanics. Lead-
ership in the development of pure ergodic theory passed to Ornstein, Hillel
Furstenberg, and their “schools”.9

According to Ornstein, his interest in the isomorphism problem was sparked
during his visit to Courant Institute by Jürgen Moser’s enthusiasm for the re-
cently appeared Adler–Weiss work, in which isomorphism of ergodic automor-
phisms of the two-dimensional torus with equal entropy was proved. We men-
tioned this work already and will come back to it in Section 3b. Then, Ornstein
learned about Sinai’s weak isomorphism theorem and started to work on the iso-
morphism problem.

Features of the Ornstein solution. Ornstein’s solution, which we do not try to
sketch here (see e.g., [142] for a fairly concise and readable account), was based
on a complete departure from the previous philosophy grounded in probabil-
ity and coding theory. Instead it made full use of plasticity of the structure of a
measure-preserving transformation free of connections with any particular class
of generating partitions.

Don Ornstein, 1970

It is interesting to point out that the starting point of Ornstein’s consideration
was the fundamental, but quite simple, “Rokhlin Lemma,” which states that ev-
ery aperiodic measure-preserving transformation cyclically permutes N disjoint
sets with an arbitrarily small error independent of N . In the Ornstein construc-
tion, the entropy serves as the controlling parameter, which dictates the number

9It is interesting to point out that at that time the author (and probably everyone at Moscow)
grossly underestimated, almost ignored, Furstenberg’s pioneering disjointness paper [32].
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of “names” which can be put into a correspondence between two stationary ran-
dom processes.

Very weak Bernoulli processes [103]. This flexible approach allowed Ornstein
to do something immeasurably more important than proving isomorphism of
Bernoulli shifts or mixing Markov chains with the same entropy. He found a veri-
fiable, necessary and sufficient condition, called very weak Bernoulli for a station-
ary random process to appear as the process generated by a measurable partition
for a Bernoulli shift. Thus if a measure-preserving transformation has a gener-
ating partition which determines a very weak Bernoulli process, it is isomorphic
to any Bernoulli shift with the same entropy.

Quickly, many natural classes of systems of probabilistic, algebraic, and geo-
metric origin were proven to possess very weak Bernoulli generating partitions
and, hence, to be isomorphic to Bernoulli shifts. As an early example, let us
mention the work of Yitzhak Katznelson [68], where he shows that an arbi-
trary ergodic (not only hyperbolic) automorphism of a torus in any dimen-
sion is Bernoulli—a big step forward from the Adler–Weiss work for the two-
dimensional torus which motivated Ornstein.

Another instance which demonstrates the power of Ornstein’s work and the
revolutionary changes it produced in ergodic theory is the solution of the square
root problem. One should keep in mind that before Ornstein, the question of
whether a particular Bernoulli shift, such as (1/2, 1/2), has a square root was in-
tractable. Of course, certain Bernoulli shifts e.g., (1/4, 1/4, 1/4, 1/4) are squares
of others and the isomorphism theorem for Bernoulli shifts then implies imme-
diately that any Bernoulli shift with entropy 2log 2 has a square root. But this
does not work for many other values of entropy. Furthermore, since no Bernoulli
shift embeds into a flow in a natural way, the isomorphism theorem per se is
useless in answering the question of embedding any particular Bernoulli shift
into a flow. A positive solution of this problem, which is amazing from the pre-
Ornstein viewpoint, is the subject of a separate paper [103] whose principal im-
portance is that in it the very weak Bernoulli property is introduced. This paper
contains a rather artificial construction of a “Bernoulli flow”. But starting from
the Ornstein–Weiss paper on geodesic flows [112], a pattern was established by
finding very weak Bernoulli partitions in naturally appearing classes of maps,
including those which are parts of flows.

e. Development of the Ornstein theory. Beyond checking the very weak
Bernoulli property for various classes of naturally appearing and specially con-
structed transformations, the work of Ornstein and his collaborators and follow-
ers included two strands.

(i) Extension of the isomorphism results and accompanying criteria of
finitely-determined and very weak Bernoulli form the basic case of measure-
preserving transformations to flows [107], “relative” situation [141], actions of
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increasingly general classes of groups crowned by the Ornstein–Weiss isomor-
phism theory for actions of amenable groups [114]. Here, entropy, properly ex-
tended to the case of group actions, plays, as before, the role of a single control-
ling parameter in the otherwise very fluid situation. It should be remembered
that for measure-preserving actions of finitely generated groups other than fi-
nite extensions of Z, entropy is defined in such a way that in positive-entropy
actions, many individual elements must have infinite entropy.

(ii) Development of various constructions showing existence or compatibil-
ity of various, often exotic, properties; here a “zoo” of non-Bernoulli K -systems
constitutes the central exhibit. As it turned out, the gap between Bernoulli and
K -systems is huge [110]. Those K -systems are extensions of their maximal en-
tropy Bernoulli factors, with no additional entropy generated in the fibers. Not
only are there many nonisomorphic K -systems with the same entropy, but also
K -property can be achieved in unexpected ways, e.g., by changing time in any er-
godic positive entropy flow [111], or inducing (taking the first return map) of any
ergodic positive entropy transformation on a certain set [113]. The trend here
was from “made-to-order” artificial constructions toward showing that some
natural systems exhibit exotic properties. An excellent illustration is the proof of
Kalikow [47] that the extension of a Bernoulli shift with two symbols, call them
1 and −1, by moving along orbits of another Bernoulli shift forward or backward
according to the value of the zero coordinate in the base is K but not Bernoulli.
Soon afterward, Rudolph [125] found a classical K but not Bernoulli systems with
similar behavior.

Ornstein also disproved the Pinsker Conjecture by another ingenuous coun-
terexample [108].

To summarize, the burst of creative activity in 1970–73 following Ornstein’s
proof of isomorphism of equal entropy Bernoulli shifts, revolutionized ergodic
theory once more and can be compared in its impact with the 1958–62 period
discussed above which followed the introduction of entropy by Kolmogorov. An
important difference is that during this period Ornstein, although ably assisted
by collaborators, played the role which can be compared with the combined
roles of Kolmogorov (the original breakthrough), Sinai (the principal mover) and
Rokhlin (another important mover and the key expositor) during the earlier pe-
riod. Ornstein’s role in disseminating the new theory and establishing the stan-
dards of expositions is attested by the surveys [104, 105] and the monograph
[109].

f. Kakutani (monotone) equivalence [52, 53, 28, 113]. The Ornstein isomor-
phism theory turned out to possess a very interesting “cousin,” which, in cer-
tain aspects at least, has surpassed the original in importance and applicabil-
ity. Again we will not attempt to sketch the proofs but formulate the problem,
outline the results, and explain the sources of parallelism with the isomorphism
problem and the Ornstein theory.
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The starting point is a natural equivalence relation between ergodic systems,
weaker than the isomorphism. It has two dual forms. For continuous time sys-
tems, this is a time (or velocity) change, a well-known concept in the theory
of ordinary differential equations when the vector field defining a flow (a one-
parameter group of transformations) is multiplied by nonvanishing scalar func-
tion ρ. Any invariant measure for the old flow multiplied by the density ρ−1

is invariant for the new flow. Equivalently, one may represent any measure-
preserving flow as a special flow or flow under a function (often called the roof
function) over a measure-preserving transformation. Then flows are equivalent
if they are isomorphic to special flows over the same transformation.

Discrete time systems are equivalent if they appear as sections of the same
flow. Equivalently, one allows for taking an induced transformation (the first
return map) on a set of positive measure and the inverse operation, which is
the discrete equivalent of building the flow under a function.

Both of these equivalence relations are most commonly called Kakutani
equivalence, although the author who considered it in [52, 53] prefers a descrip-
tive name monotone equivalence.

Notice that entropy is not an invariant of the monotone equivalence; how-
ever, the three big classes mentioned above—zero, positive finite, and infinite
entropy—are invariant.10

At the basis of Ornstein isomorphism theory lies the concept of d̄-distance
between stationary random processes, see e.g., [142]. It measures how well the
different “n-names” which appear in those processes can be matched as n →∞.
The n-name with respect to a partition ξ is simply an element of the partition
∨n−1

i=0 T n(ξ). For the distance between two n-names, one takes the natural Ham-
ming distance i.e., the proportion of places where the names differ. For the pur-
poses of the monotone equivalence theory, Hamming distance is replaced by
a weaker Kakutani distance, which can be defined as the normalized minimal
number of elementary operations needed to produce one name from the other.
An elementary operation consists of removing a symbol and placing another
symbol in any other place. 11 After that replacement, one can follow the prin-
cipal steps of the Ornstein constructions essentially verbatim and obtain neces-
sary and sufficient conditions for a stationary random process to appear from
a measure-preserving transformation monotone equivalent to a Bernoulli shift
with finite or infinite entropy. Such transformations are usually called loosely
Bernoulli.

There is, however, a remarkable difference which is responsible for the great
importance of the monotone equivalence theory for zero entropy transforma-
tions. The zero entropy case of both the Ornstein theory and the monotone
equivalence theory correspond to processes for which most names are simply

10A natural modification which amounts to fixing the average of the roof function or consider-
ing transformations which induce isomorphic transformations on sets of equal measure produces
a stronger relation of even Kakutani equivalence which preserves the numerical value of entropy.

11If replacement is allowed only at the same place one naturally obtains the Hamming
distance.
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Jack Feldman, the author, and Don Ornstein, 1981

very close to each other in the corresponding metric. In the case of Hamming
metric, this is only possible for the trivial transformation acting on the one-point
space, or, equivalently, to the Bernoulli shift with zero entropy. Thus, it has no
bearing on the study of zero entropy transformations on the standard Lebesgue
space. However, in the case of the Kakutani metric, such a situation is possible
and it defines a particular class of monotone equivalent transformations called
standard or, sometimes, loosely Kronecker. It is represented, for example, by the
dyadic adding machine or by any irrational rotation of the circle.

A key point in the early development of the theory was construction of a non-
standard zero entropy transformation by Feldman [28].

Standard transformations are naturally the simplest transformations of
Lebesgue space from the point of view of monotone equivalence: every
measure-preserving transformation is equivalent to a transformation which has
a given standard transformations as a factor. Notice that any zero entropy factor
of a loosely Bernoulli transformation is standard.

Monotone equivalence is a useful source of counterexamples in the isomor-
phism theory. For example, if one constructs a K -automorphism T which is
monotone equivalent to a transformation with a nonstandard zero entropy fac-
tor, then T is not loosely Bernoulli and hence not Bernoulli. This observation
was used in the earliest construction of a classical system which is K but not
Bernoulli [56].
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3. TOPOLOGICAL ENTROPY, VARIATIONAL PRINCIPLE, SYMBOLIC DYNAMICS:
1963–1975

Topological entropy is a precise numerical measure of global exponential com-
plexity in the orbit structure of a topological dynamical system. In a variety of sit-
uations, topological entropy is equal to the exponential growth rate for the num-
ber of periodic orbits in a dynamical system and, furthermore, it fully determines
a more precise multiplicative asymptotic for that quantity. It has many impor-
tant cousins which come from considering weighted orbit averages. Invariant
measures capturing statistically the full complexity (plain or weighted) are often
unique and possess nice statistical properties.

a. Definition of topological entropy and comparison with Kolmogorov en-
tropy [3, 38, 22, 36]. The spectacular success of entropy in ergodic theory led to
the development of a topological counterpart of entropy. One could hope that
this concept would revolutionize topological dynamics in a similar way. This was
borne out if not for arbitrary topological dynamical systems on compact spaces
then at least for broad classes of systems especially important for applications to
classical mechanics and statistical physics.

The original 1963 definition12 imitated Shannon’s development, replacing
partitions by covers and, for lack of a notion of size, replacing weighted aver-
age of logarithmic size by the maximum of such expressions for a given number
of elements.

Let A be an open cover of a compact space X . Then, C (A) (as in “cover”)
denotes the minimal cardinality of a subcover, Φ−1(A) := {Φ−1(A) A ∈A} and

htop(Φ) := sup
A

lim
n→∞

1
n

logC (
n−1
∨

i=0
Φ

−i (A))

where the supremum is taken over all open covers.13

Nowadays, an equivalent approach due to Rufus Bowen is more popular. De-
fine

(3) dΦ
t (x, y)= max

0≤τ<t
d (Φτ(x),Φτ(y)),

measuring the distance between the orbit segments Ot (x) = {Φτ(x) 0 ≤ τ < t }
and Ot (y). Denote by C (Φ,ε, t ) the minimal number of ε-balls with respect to dΦ

t
that cover the whole space. We define the topological entropy by

(4) h(Φ) :=htop(Φ) := lim
ε→0

lim
t→∞

1
t

logC (Φ,ε, t ) = lim
ε→0

lim
t→∞

1
t

logC (Φ,ε, t ).

12The paper [3] appeared in 1965 but was submitted for publication in the fall of 1963; in
fact, R. Adler lectured about topological entropy as early as spring of 1963 (B. Weiss, private
communication).

13This is a great convenience of compactness. This definition is independent of a choice of
metric. But in various partial extensions to noncompact spaces this straightforward approach
does not work whereas various definitions using a metric can be extended.
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It is not hard to show that these two expressions coincide and are independent
of the metric.

Note that (changing ε by a factor of 2) one also obtains topological entropy in
the same manner from the maximal number S(Φ,ε, t ) of points in X with pair-
wise dΦ

t -distances at least ε. We call such a set of points (t ,ε)-separated. Such
points generate the maximal number of orbit segments of length t that are dis-
tinguishable with precision ε. Thus, entropy represents the exponential growth
rate of the number of orbit segments distinguishable with arbitrarily fine but fi-
nite precision, and describes in a crude but suggestive way the total exponential
complexity of the orbit structure with a single number.

To compare topological and measure-theoretic entropy nowadays, one de-
fines analogously C (Φ,ε, t ,δ) to be the minimal number of ε-balls with respect
to dΦ

t whose union has measure at least 1−δ. If Φ is ergodic and δ ∈ (0,1) then
[55]

(5) hµ(Φ) = lim
ε→0

lim
t→∞

1
t

log S(Φ,ε, t ,δ)= lim
ε→0

lim
t→∞

1
t

log S(Φ,ε, t ,δ),

i.e., in the case of an ergodic measure-preserving transformation, its metric en-
tropy can be characterized as the exponential growth rate for the number of
statistically significant distinguishable orbit segments. Note that this is clearly
never more than the topological entropy. However, historically it took some time
to realize this relation, see Section 3e.

While in comparison with Kolmogorov entropy the notion of topological en-
tropy lacks “structural depth” and in particular is not accompanied by proper
equivalents of the notions of K -systems and π-partition,14 this is compensated
by its fundamental connections with metric (Kolmogorov) entropy via varia-
tional principle and the construction of measures capturing the global complex-
ity for broad classes of dynamical systems. One should also mention an impor-
tant line of development which provides a partial analogy with the Ornstein the-
ory for almost topological conjugacy for topological Markov chains [4].

b. Parry measure and Adler–Weiss partitions. [116, 5, 6] The first step in this di-
rection was made by William Parry.15 For the leading class of topological Markov
chains, Parry constructed a unique measure whose entropy turned out to be
equal to the topological entropy and which is characterized by this property.

Let A = {ai j } be a transitive N ×N matrix with 0-1 entries (transitivity means
that some power of A has only positive entries) and consider the associated topo-
logical Markov chain σA , i.e., the restriction of the shift transformation in the
space of double-infinite sequences from N symbols numbered, say {1, . . . , N }, to
the subset ΩA of those sequences {ωn}n∈Z for which aωnωn+1 = 1 for all n.

14As a matter of record, one should point out that much later two topological counterparts of
K -property were suggested by F. Blanchard [12] and a partial analogy between the measurable and
topological cases was developed to a greater degree [35].

15Parry’s note appeared before [3], but Parry must have been familiar with the notion of topo-
logical entropy at the time.
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Let q = (q1, . . . , qN ) and v = (v1, . . . , vN ) be positive eigenvectors of A and AT ,
respectively (those are unique up to a scalar), such that

∑N
i=1 qi vi = 1, and set p =

(p1, . . . , pN ) := (q1v1, . . . , qN vN ) and πi j = ai j vi /λv j . Then,
∑N

i=1πi j = 1 for all j
and πi j > 0 whenever ai j = 1, so the matrix Π = {πi j }i , j=1,...,N is also transitive.
Then, the Parry measure defined by

µΠ({ω ∈ΩA ωi =αi , i =−m, . . . ,m}) =
(

m−1
∏

i=−m

παiαi+1

)

pαm

is invariant under σA , and its entropy is equal to htop(σA).16

Adler and Weiss realized that hyperbolic automorphisms of two-dimensional
torus can be represented as “almost” topological Markov chains by taking pieces
of the stable (contracting) and unstable (expanding) eigenlines at the origin and
extending them until the whole torus gets divided in several parallelograms.17

The Markov property is self-evident from that construction which became an
icon for hyperbolic dynamics. By taking an iterate of this partition and taking a
finer partition into connected components of the intersection, one guarantees
that this partition is a topological generator and hence can be used to code the
map without essential loss of information.18

Adler and Weiss show that automorphisms with the same entropy with respect
to Lebesgue measure are isomorphic as measure-preserving transformations.
This relies on the observation that the Parry measure in the topological Markov
chain (symbolic) representation corresponds to the Lebesgue measure on the
torus. Notice that both are unique maximal entropy measures. Thus, for hyper-
bolic automorphisms of a two-dimensional torus it was shown (before Ornstein’s
work on isomorphism of Bernoulli shifts as we explained in Section 2dd) that en-
tropy is the complete invariant of metric isomorphism. Notice that equality of
entropies is equivalent to conjugacy of corresponding matrices C or Q but not
necessarily over Z. It is also equivalent to equality of topological entropies, since
for an automorphism of a torus, the latter is equal to the metric entropy with
respect to Lebesgue measure.

16According to Adler, Shannon had a concept equivalent to the topological entropy for topo-
logical Markov chains and more general sofic systems under the name of channel capacity of dis-
crete noiseless channels. Furthermore, he proves the result about existence and uniqueness of
measure of maximal entropy equivalent to that of Parry. However, this remained unnoticed by the
dynamics community until well after Parry’s work.

17Ken Berg in his 1967 thesis [9] arrived at the same construction. According to Adler, Berg did
it before Adler and Weiss.

18The picture of the Adler–Weiss partition for the automorphism determined by the matrix
(

2 1
1 1

)

has become one of the most widely recognized icons of modern dynamics. It appears in

innumerable articles and texts; in particular, its plane unfolding can be found on the cover of the
hardcover edition of [59] and the much more picturesque multicolored rendering on the surface
of a bagel standing up on the cover of its paperback edition; see also a slanted version of the latter
at the dust jacket of [20].
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William Parry and Roy Adler, 1968

c. General Markov partitions [136, 15, 16]. The Adler–Weiss construction os-
tensibly depends on two-dimensionality of the system: it uses the fact that
boundaries of partition elements consist of pieces of single stable and unstable
manifolds. This is indeed necessary if elements of a partition with Markov prop-
erties are domains with piecewise smooth boundaries. This geometric structure
is, however, not at all necessary in order for a Markov partition to be a useful
tool for the study of dynamics of a smooth system. This was realized by Sinai
who came up with a construction which is quite natural dynamically but, in gen-
eral, even for automorphisms of a torus of dimension greater than two, produces
Markov partitions whose elements have boundaries of fractal nature.

Finally, it was Bowen—the rising superstar of dynamics in the late 1960s and
1970s, whose meteoric rise and sudden early death gave this period a dramatic
quality—who gave the theory of Markov partitions both proper generality (for
locally maximal hyperbolic sets) and its elegant ultimate form based on system-
atic use of shadowing and free of unnecessary geometric allusions thus avoiding
difficulties and pitfalls of Sinai’s original more geometric approach.

d. Topological entropy and growth of periodic orbits. For a discrete time dy-
namical system f : X → X one defines Pn( f ) as the number of fixed points for
f n ; for a flow Φ let Pt (Φ) be the number of periodic orbits of period ≤ t .
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Bowen’s definition of topological entropy as the exponential growth rate of
number of separated orbit segments indicates that it may be a connected with
the exponential growth rates of the number of periodic orbits, i.e.,

limsup
n→∞

log Pn( f )
n

and limsup
n→∞

log Pt (Φ)
t

.

or the corresponding limits if they exist. In two model cases, automorphisms
of an n-dimensional torus from Section 1d 19 and transitive topological Markov
chains from Section 3b, a simple calculation gives correspondingly

(6) Pn(FA) = |det(An − Id)|

and

(7) Pn(σA) = tr An .

Thus,

(8) lim
n→∞

log Pn(FA)
n

=
∑

λ∈SpA

(log |λ|)+

and

(9) lim
n→∞

log Pn(σA)
n

= logλA
max,

where the first expression coincides with the right-hand side of (2) and in the
second, λA

max is the unique eigenvalue of maximal absolute value. In the torus
case, the entropy with respect to Lebesgue measure coincides with the topolog-
ical entropy and for the topological Markov chain logλA

max is the common value
of the entropy with respect of Parry measure and topological entropy. Formu-
las (8) and (9) are prototypes for the expressions of the exponential growth rate
of periodic orbits for larger classes of systems where those rates exist and coin-
cide with topological entropy. Notice that both the exact expressions (7) and (6)
(in the case when A has no eigenvalues of absolute value one) allow to obtain
an exponential above estimate of the error terms Pn(σA)− expnht op (σA) and
Pn(FA)−expnht op (FA) correspondingly.

Existence and statistics of closed geodesics on Riemannian manifolds and
closed orbits for various special classes of Hamiltonian systems are problems of
great interest not only for dynamics but also for various branches of analysis, ge-
ometry, and even number theory. The problem of existence of closed geodesics
is one of the central problems in Riemannian geometry. It was noticed long be-
fore Kolmogorov’s work on entropy that negative curvature leads to exponential
growth of the number of closed geodesics; moreover, as early as 1961, H. Hu-
ber [46] found the multiplicative asymptotic with an error term estimate for the
number of closed geodesics on a compact surface of constant negative curvature
−k2.20 The exponent is k which in this case coincides with topological entropy.

19With the assumption that no eigenvalue of A is a root of unity which is equivalent to periodic
points being isolated.

20The case of surfaces of constant negative curvature, both compact and especially noncom-
pact but of finite volume, such as the modular surface, is of particular interest to number theory.

JOURNAL OF MODERN DYNAMICS VOLUME 1, NO. 4 (2007), 545–596



ENTROPY IN DYNAMICS: 1958–2007 567

The method is based on the use of the Selberg trace formula and is hence re-
stricted to the symmetric spaces. Margulis’ principal motivation in his seminal
Ph.D. thesis work [92], which at the time was published only partially [90, 91],
was proving a similar multiplicative asymptotic for manifolds of variable nega-
tive curvature.

e. The variational principle for entropy [38, 22, 36]. It was noticed right after
the introduction of topological entropy that in many topological or smooth sys-
tems, topological entropy coincides with entropy with respect to an invariant
measure, either natural, like Lebesgue measure for an automorphism of a torus,
or Haar measure for an automorphism of a general compact abelian group, or
specially constructed, as the Parry measure for a transitive topological Markov
chain (see Section 3b above). This naturally brings up a question about relation-
ships between the topological entropy of a continuous transformation on a com-
pact metrizable space and metric entropies of this transformation with respect
to various Borel probability invariant measures. Of course, with the definitions
of topological and metric entropy described in Section 3a the inequality

hµ( f ) ≤ ht op ( f )

for any ergodic (probability Borel) f -invariant measure µ is obvious. Those defi-
nitions are however of later vintage; in particular, the one for metric entropy only
appeared in my 1980 paper [55]. With original definitions using partitions and
coverings, the inequality was established by L. Goodwyn and published in 1969.
Relatively quickly it was shown that the inequality was sharp; in other words
that there are invariant measure with entropies arbitrarily close to the topologi-
cal entropy. The very substantial paper by E.I. Dinaburg which relied on an extra
(unnecessary, as it turned out) assumption came a year earlier than a short and
elegant note by T.N.T. Goodman, which established the variational principle for
entropy in full generality for continuous maps of compact Hausdoff spaces:

ht op ( f ) = suphµ( f )

where supremum is taken all Borel probability f -invariant measures (or, equiv-
alently only over ergodic ones).

The variational principle can be interpreted as a quantitative version of the
classical Krylov–Bogolyubov Theorem [44], which asserts existence of at least
one Borel probability invariant measure for any continuous map of a Hausdorff
compact. In retrospect, proofs of both facts are fairly simple and somewhat
similar: one constructs an almost invariant measure by putting a normalized δ-
measure on a long orbit segment (in the case of Krylov–Bogolyubov Theorem), or
on a maximal number of separated orbit segments (in the case of the Variational
Principle), and takes a weak-∗ limit point as the orbit length tends to infinity. In
the case of the Variational Principle, a simple convexity argument asserts that
entropy of the limit measure is sufficiently large. The reason one in general can-
not guarantee that the entropy is equal to the topological entropy is the need to
take a limit in the degree of separation. However, if the map is expansive, i.e.,
if any two different semiorbits (orbits in the case of a homeomorphism) diverge
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to a fixed distance, the argument does produce a measure of maximal entropy
which, however, may still not be unique. For details see e.g., [59].

f. Maximal entropy measures for hyperbolic and symbolic systems. [135, 91,
17]. To guarantee uniqueness of a maximal entropy measure, one needs to add
some extra assumptions to expansivity. Two essential classes of positive entropy
systems for which this happens are transitive topological Markov chains, dis-
cussed in Section 3b, and restrictions of smooth systems (diffeomorphisms and
flows) to basic (transitive locally maximal) hyperbolic sets.

There are three different constructions of this unique measure due to Sinai,
Margulis, and Bowen. Each of these constructions shows a different facet of the
picture and engendered its own set of fruitful generalizations and developments.

Yakov Grigorievich Sinai, 1976

Sinai’s construction goes through a Markov partition for which one can then
refer to the Parry measure and needs only a small argument to show that no
maximal entropy measure is lost due to the nonuniqueness of the correspon-
dence with a Markov chain on a “small” set. However, Sinai had in mind a deeper
connection with lattice models in statistical mechanics, which inspired his next
great contribution [137] discussed below in Section 3g.

Margulis’ motivation was to find a precise asymptotic for the growth rate of
closed geodesics on a compact manifold of negative sectional curvature (see
Section 3d) and his work was seminal for the whole range of applications of dy-
namical ideas (and entropy in particular) to Riemannian geometry. However ge-
ometrically inspired, his construction has a clear meaning in the phase space
language for Anosov systems. First conditionals on stable and unstable mani-
folds are constructed as pullbacks of the asymptotic distribution of volume in the
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expanding direction of time (positive for unstable and negative for stable man-
ifolds), and the global measure is obtained as the product of those conditionals
with the time parameter along the orbits. It does not work for more general hy-
perbolic sets, since either stable or unstable manifolds or both are not contained
in the set and hence most of the volume escapes any control.

Bowen gave an elegant axiomatic treatment of the subject using minimal es-
sential tools. Conceptually he constructed the desired measure as the asymp-
totic distribution of periodic orbits in a system where orbit segments can be
concatenated and closed more or less at will. The latter property is formally ex-
pressed as specification [59]. Let (X ,d ) be a compact metric space and f : X → X
an expansive homeomorphism with the specification property. Then there is ex-
actly one f -invariant Borel probability measure with hµ( f ) = htop( f ). It is called
the Bowen measure of f and is given by

(10) µ= lim
n→∞

1
Pn( f )

∑

x∈Fix f n

δx ,

where δx denotes the probability measure with support {x}.
All three constructions allow one to show that for the corresponding classes

of systems the exponential growth rate for the number of periodic orbits defined
in Section 3d exists and coincides with the topological entropy generalizing (8)
and (9).

In fact, they give more precise asymptotic for Pn( f ) and Pt (Φ) than exponen-
tial.

Sinai’s construction based on Markov partitions and the use of Parry measure
is applicable to topologically mixing locally maximal hyperbolic sets for diffeo-
morphisms and provides for such a set Λ for a diffeomorphism f an exponential
estimate of the error term

Pn( f Λ)−expnht op ( f Λ),

see e.g., [59, Theorem 20.1.6].
Margulis’ construction works for topologically mixing Anosov flows. It gives

the multiplicative asymptotic

(11) lim
t→∞

Pt (Φ)t ht op (Φ)

exp t ht op (Φ)
= 1.

Bowen’s construction for expansive homeomorphisms with specification
property gives somewhat weaker multiplicative bounds

0 < c1 ≤ liminf
n→∞

Pn( f )
expnht op ( f )

≤ limsup
n→∞

Pn( f )
expnht op( f )

≤ c2.

It can be extended to the continuous time case.

g. Pressure, Gibbs measures and equilibrium states [137, 18, 16]. Bowen’s con-
struction (10) makes considering weighted averages of δ-measures on periodic
orbits quite natural. However, originally, a construction based on weighted dis-
tribution was introduced by Sinai and was motivated by the construction of
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Gibbs states in statistical mechanics. Technically, it was performed through
the construction of Markov partitions and reduction to the case of topological
Markov chains. For a specific way of weighting this already appeared in [135],
where measures serving as asymptotic forward and backward limit of absolutely
continuous distributions were constructed for Anosov systems. In full generality,
this approach was developed in [137], the paper which firmly established “ther-
modynamical formalism” as one of the cornerstones of modern dynamics.

The basic construction of these special measures, called equilibrium states (as
opposed to more subtle estimates), works in the setting suggested by Bowen.

First one defines a weighted version of topological entropy. Let X be a com-
pact metric space, f : X → X a homeomorphism, and ϕ a continuous function,
sometimes called the potential. For x ∈ X , and a natural number, n, define
Snϕ(x) :=

∑n−1
i=0 ϕ( f i (x)). For ε> 0, let

S( f ,ϕ,ε,n) := sup
{

∑

x∈E

expSnϕ(x) E ⊂ X is (n,ε)-separated
}

,(12)

C ( f ,ϕ,ε,n) := inf
{

∑

x∈E

expSnϕ(x) X =
⋃

x∈E

B f (x,ε,n)
}

.(13)

These expressions are sometimes called statistical sums. Then,

P(ϕ) := P( f ,ϕ) := lim
ε→0

lim
n→∞

1
n

logC ( f ,ϕ,ε,n)

is called the topological pressure of f with respect to ϕ, and, for an f -invariant
Borel probability measure, µ, the pressure of µ is defined as

Pµ(ϕ) :=Pµ( f ,ϕ) := hµ( f )+
∫

ϕdµ.

The variational principle for pressure asserts that

P(ϕ) = sup{Pµ(ϕ)}.

where, as in the case of topological entropy, the supremum is taken over the set
of all Borel probability invariant measures which is convenient to denote M( f ).

A measure µ ∈M( f ) is called an equilibrium state for ϕ if

Pµ( f ,ϕ) =P( f ,ϕ).

Obviously, a maximal entropy measure is an equilibrium state for the function
ϕ= 0

Existence and uniqueness of an equilibrium state µϕ is established under the
same conditions on f as for the maximal entropy measure (expansiveness and
specification) for a class of potentials with reasonable behavior. The construc-
tion is a direct generalization of (10):

µϕ = lim
n→∞

1
P( f ,ϕ,n)

∑

x∈Fix f n

expSnϕ(x)δx ,

where of course P( f ,ϕ,n) is the statistical sum counted over all point of period
n rather than over a separated set.
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The following condition for coincidence of equilibrium states, which is obvi-
ously sufficient, turned out also to be necessary in this setting

µϕ =µψ iff for any x ∈ Fix f n Snϕ(x) = Snψ(x)+cn for some c ∈R.

Basic properties of equilibrium state such as mixing can be established in this
generality. The original application of the equilibrium state concept in [137] was
in the context of a transitive Anosov system (a diffeomorphism or a flow) and a
Hölder potential. In this case, the unique equilibrium state exists and is in fact
a Bernoulli measure. It also possesses important noninvariant properties, such
as the central limit theorem, and under additional assumptions, the exponential
decay of correlations. This extends to basic hyperbolic sets and Hölder poten-
tials.

4. ENTROPY AND NONUNIFORM HYPERBOLICITY: 1975–2002

Entropy in smooth systems comes exclusively from infinitesimal exponential speed
of orbit separation; it is fully determined by those in classical systems and is de-
scribed by additional geometric dimension-like quantities in the general case.
Nonuniform hyperbolicity also provides the setting where entropy gives the lower
bound on the exponential growth rate of the number of periodic orbits. Any
(nonuniformly) hyperbolic measure can be approximated in various senses by
uniformly hyperbolic sets; their topological entropies approximate the entropy
of the measure. In the low-dimensional situations this connection is universal.

a. Entropy in uniformly hyperbolic setting. It was noticed fairly early in the
development of entropy theory that formula (2) expressing entropy with respect
to invariant volume as the total exponential rate of expansion in all possible di-
rections holds in the setting when this expansion rate is not constant in space.
Namely, let for a volume-preserving Anosov diffeomorphism f : M → M J u be
the expansion coefficient of the volume in the direction of the unstable (expand-
ing) distribution. Then,

(14) hvol ( f ) =
∫

M
J u d (vol ).

A similar statement is mentioned without elaboration already in Sinai’s 1962
Stockholm ICM talk [133] and is proved in [134]; applications to nonalgebraic
examples require a proof of absolute continuity of stable and unstable foliations
[7, 8].

b. Lyapunov characteristic exponents, Pesin entropy formula and Pesin the-
ory [117, 118]. There is a gap between the rather crude Kushnirenko above es-
timate of entropy for general smooth systems and exact formula (14). It was
probably Sinai who conjectured that the latter formula could be generalized if
properly defined exponential rates of infinitesimal growth were used. The ques-
tion was posed already by the fall of 1965, since it was discussed during the
memorable Humsan school [1]. The answer comes from the theory of Lyapunov
characteristic exponents and the Oseledet’s Multiplicative ergodic theorem [115]
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which establishes existence of those exponents in a smooth system almost every-
where with respect to any invariant measure. In fact, it seems that desire to find
a general formula for entropy was the principal motivation behind Oseledet’s
work. Thus, the formula eventually proved by Pesin for an arbitrary C 1+ε, ε > 0
diffeomorphism f of a compact m-dimensional manifold M preserving an ab-
solutely continuous measure µ takes the form

(15) hµ( f )=
∫

M

m
∑

i=1
(χi )+dµ.

Here each Lyapunov exponent χi is counted as many times as it appears, i.e.,
with multiplicity, so that one can always assume that there are exactly m (not
necessarily different) Lyapunov exponents. If the measure µ is ergodic, the ex-
ponents are constant almost everywhere and hence integration can be omitted.
But it is also useful to represent the entropy as the average rate of infinitesimal
expansion. For that, one defines almost everywhere the unstable distribution,
E u

f
, as the sum of the distributions corresponding to positive Lyapunov expo-

nents and the unstable Jacobian, J u , as the expansion coefficient of the volume
in the direction of E u

f
. Then, formula (15) takes the form of (14).

The story of the proof of this formula is quite interesting. An early attempt
was made in 1965 during the Humsan school even before a complete proof of
the multiplicative ergodic theorem existed. In 1968, about the same time Os-
eledet’s’ work appeared in print, Margulis found a proof of the "≤” inequality in
(15), i.e., the above estimate for the entropy which thus improved on the Kush-
nirenko estimate. Although Margulis never published his proof, it was known in
the Moscow dynamical community and his authorship was acknowledged, see
[118, Section 1.6] for this and other comments about the early history of the en-
tropy formula.

It was also an article of faith, at least within the Moscow dynamics commu-
nity, that any proof of the below estimate should follow the uniformly hyper-
bolic model. Namely, integrability of the unstable distribution in a proper sense
(allowing for existence only almost everywhere and discontinuities) should be
established first; then the crucial property of absolute continuity of conditional
measures on those “foliations” proved (again properly adapted). After that, the
entropy inequality can be established by constructing an increasing partition
whose typical elements are open subsets of the unstable manifolds, and look-
ing into exponential rate of volume contraction in the negative direction of time
along those manifolds.

This program was brilliantly realized by Pesin in the mid-seventies and, some-
what similarly to the Ornstein proof of isomorphism for Bernoulli shifts, this
work achieved much more than establishing the entropy formula. Thus, it is
quite justifiable to speak not only of the “Pesin entropy formula” (15) but also
about the “Pesin theory”. First, Pesin characterized the π-partition as the mea-
surable hull of the partitions into either global stable or global unstable mani-
folds, thus showing in particular that those measurable hulls coincide. The most
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important part of Pesin’s work deals with the case when exponents do not vanish
(such measure are often called hyperbolic measures). He proves that the sys-
tem has at most countably many ergodic components with respect to an abso-
lutely continuous hyperbolic measure and that on those components the sys-
tem is Bernoulli up to a finite permutation. In particular, weak mixing, mix-
ing, K , and Bernoulli properties are all equivalent.21 This established the par-
adigm of nonuniform hyperbolicity which is in principle capable of reconciling
coexistence of large but nowhere dense sets of invariant tori established by Kol-
mogorov with “chaotic” or “stochastic” behavior on sets of positive measure. It
also gives an accurate picture of what this latter type of behavior should look
like. This picture is amply supported by a vast body of sophisticated numerical
experimentation. A nonuniformly hyperbolic behavior has been established in
a variety of situations, some artificial, some model-like, some quite natural and
even robust. Still, establishing rigorously the coexistence of a nonuniformly hy-
perbolic behavior on a positive measure set with KAM behavior remains a com-
pletely intractable problem.

Yasha Pesin, 1986

The story of the entropy formula has an interesting twist. Approximately si-
multaneously with Pesin, a more senior Moscow mathematician, V. M. Million-
shchikov, claimed a proof of the entropy formula and published several notes to
this end. Those papers contain lots of gaps and inconsistencies and their author
refused to present his work at the seminar run at the time by D.V. Anosov and the
author. His claim has not been recognized to this day. Since Millionshchikov’s
approach did not include construction of stable manifolds—not to speak of ab-
solute continuity—no serious attempt was made in Moscow at the time to try to
see whether there were valuable ideas in his papers. Several years later, Ricardo

21The classification for flows is similar; instead of a finite permutation, one must allow for a
constant time suspension; but the last statement holds.
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Mañé found another correct proof of the Pesin entropy formula [89] which did
not use construction of invariant manifolds or absolute continuity. In private
conversations, Mañé asserted that essential ideas of his proof came from his at-
tempts to understand Millionshchikov’s arguments and to follow his approach22.

c. Entropy estimates for arbitrary measures [127, 67]. A version of the original
Margulis argument for the above entropy estimate was applied by David Ruelle
to an arbitrary invariant measure for a C 1 diffeomorphism23. Thus, nonuniform
partial hyperbolicity (existence of some positive and some negative Lyapunov
exponents) is the only source of positive entropy and hence by the variational
principle also of positive topological entropy in smooth systems.

In low dimensions (two for maps and three for flows), partial hyperbolicity be-
comes full since, due to the symmetry of entropy with respect to time inversion,
one needs at least one positive and one negative exponent. Thus, any diffeo-
morphism of a surface or a flow on a three-dimensional manifold with positive
topological entropy must have an invariant measure (which, without loss of gen-
erality, may be assumed ergodic) with nonvanishing Lyapunov exponents.

d. Entropy, periodic points and horseshoes [55]. Unlike absolutely continuous
measures, arbitrary measures considered by the Pesin theory i.e., measures with
nonvanishing Lyapunov exponents, may of course have complicated or even
pathological intrinsic properties. However, presence of such a measure creates
rich topological orbit structure. In particular, the exponential growth rate for the
number of periodic orbits is estimated from below by the entropy with respect
to any invariant measure with nonvanishing Lyapunov exponents and hence by
the argument form Section 4c in the low-dimensional cases (two for maps and
three for flows) by the topological entropy of the system.

Furthermore, any such measure µ is accompanied by a bevy of invariant hy-
perbolic sets with rich orbit structure. First, the entropy of the restriction of the
system to such a set Λ can be made arbitrarily close to the entropy with respect
to µ. Second, in the discrete time case, the restriction of a certain power of the
system to Λ is topologically conjugate to a transitive topological Markov chain,
and in the continuous time case, to a special flow over a transitive topological
Markov chain. [58, 61].

Again, in the low-dimensional cases, entropy with respect to a measure with
nonvanishing exponents can be replaced by the topological entropy with a strik-
ing conclusion: this single magic number is responsible for producing very spe-
cific complex but well-organized behavior in an arbitrary smooth system.

A remarkable corollary is lower semicontinuity of topological entropy in these
low-dimensional situations. This holds already in any C 1+ε topology. As we shall
see soon, in the C∞ topology this improves to actual continuity.

22Mañé never claimed that Millionshchikov had a proof of the entropy formula.
23Notice that below entropy estimate essentially relies on the Hölder-continuity of the deriva-

tives; C 1 situation is quite pathological in that respect.
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e. Entropy, dimension and converse to the Pesin formula [83, 84]. Looking at
the general Ruelle entropy inequality [127] and comparing it with the Pesin en-
tropy formula for absolutely continuous invariant measures, one may naturally
ask what is responsible for the “entropy defect” i.e., the difference between the
sum of positive exponents and the entropy. Since entropy in a smooth system
appears only from hyperbolic behavior, it seems natural to look for the answer
to the structure of conditional measures on stable and unstable manifolds. In-
deed, in one extreme case, where there is no entropy at all, those conditional
measures are atomic24 and at the opposite extreme, with no defect, the condi-
tional measures are absolutely continuous; in particular, their supports have full
dimension.

The first half of the 1980s was the time when this theme was fully developed.
An early observation that some sort of dimension-like characteristics of the con-
ditional measures (in other words, their “thickness”) should be responsible for
entropy defect appears in the work of Lai-Sang Young [146]. Next, François
Ledrappier proved the crucial inverse to the Pesin entropy formula. Namely, he
characterized measures with nonvanishing exponents for which entropy is equal
to the (integral of) the sum of positive exponents (absolutely continuous condi-
tionals on unstable manifolds), or the negative to the sum of the negative ex-
ponents (absolutely continuous conditionals on stable manifolds), or both. The
last class consists of precisely absolutely continuous hyperbolic measures [82].

The crowning achievement in this line of development was the definitive
Ledrappier–Young formula which expressed the entropy of a diffeomorphism
with respect to an arbitrary ergodic invariant measure as a weighted sum of pos-
itive Lyapunov exponents with coefficients ranging between zero and one which
represent rather complicated, but purely geometric (nondynamical) dimension-
like quantities. This result has become the foundation for a more detailed study
of structure of invariant measures for smooth systems; in particular, it is used in
a crucial way in the work on measure rigidity for actions of higher-rank abelian
groups discussed in Section 6.

A note on terminology is in order. The original work of Pesin splits into two
parts: the theory of stable and unstable manifolds apply to arbitrary Borel prob-
ability invariant measures, but the entropy formula and structural theory only to
absolutely continuous ones. Structural conclusions in the general case first ap-
peared in [55] in the form of a closing lemma, existence of horseshoes and such,
i.e., certain structures external to an original hyperbolic measure. The study of
intrinsic structure of arbitrary hyperbolic measures originated in [146]. Never-
theless, nowadays the term “Pesin theory” is often—and quite justifiably—used
as a synonym to the general study of nonuniformly hyperbolic behavior.

24This simple observation is also a starting point in the entropy rigidity theory for actions of
higher-rank abelian groups discussed below in Section 6.
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f. Entropy and volume growth [144, 98, 99]. While entropy with respect to an
absolutely continuous invariant measure is measured by the maximal exponen-
tial rate of asymptotic infinitesimal volume growth, as in (14) and (15), topolog-
ical entropy is related to the maximal exponential rate of global volume growth
of embedded submanifolds. One expects that the optimal choice should corre-
spond to unstable manifolds for the maximal entropy measure if such a measure
exists. In fact, the below estimate (there is at least as much volume growth as
there is entropy) follows from a proper application of Pesin theory in the broad
sense. This was accomplished by Sheldon Newhouse. The crucial breakthrough
was Yosif Yomdin’s work which used methods and insights from real algebraic
geometry and interpolation theory [145], where he showed that volume growth
indeed generates entropy but only for C∞ systems. For a map f of finite regu-
larity C r , as was pointed out by Margulis previously to the work of Yomdin and
Newhouse, another “entropy defect” may appear which is proportional to ‖D f ‖0

r .
Newhouse derived two important conclusions from Yomdin’s estimates:

(i) upper semicontinuity of the topological entropy in C∞ topology (and hence
continuity for low-dimensional cases), and

(ii) existence of maximal entropy measures for an arbitrary C∞ diffeomorphisms
of a compact surface and an arbitrary C∞ flow on a compact three-dimensional
manifold.

One motivation for the work of Yomdin was an “entropy conjecture” formu-
lated by Michael Shub more than a decade earlier [129]. It makes a very plausible
assertion that the topological entropy of a diffeomorphism is estimated from be-
low by an even more global complexity invariant: the logarithm of the spectral
radius of the mapping induced on the sum of real homology groups25. Since the
homology growth can be estimated from above by the maximal volume growth
of smooth simplexes, Yomdin’s result implies Shub’s conjecture for C∞ diffeo-
morphisms. On the other hand, existence of the entropy defect shows that this
method fails in finite regularity. The strongest and most natural C 1 form of the
Shub entropy conjecture is still open (and remains one of the remaining entropy
mysteries), the only significant advance in its direction still being the 1977 work
by Michal Misiurewicz and Feliks Przytycki [94]26.

g. Growth of closed geodesics on manifolds of nonpositive curvature [72, 73,
74, 40]. There are certain classes of nonuniformly hyperbolic systems where the
source of nonuniformity (or rather nonhyperbolicity) is sufficiently well local-
ized and many features of uniformly hyperbolic behavior are present. The case

25This was shown to be false in general for homeomorphisms and is or course meaningless for
flows since their elements are homotopic to identity.

26For certain manifolds, the assertion of the Shub entropy conjecture holds even for contin-
uous maps, as was shown for example for tori by MIsiurewicz and Przytycki in another paper at
about the same time. This is, however, more a statement about topology of the manifolds in ques-
tion that about dynamics.
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which received most attention is also of considerable interest in Riemannian ge-
ometry: geodesic flows on manifolds of nonpositive (but not strictly negative)
sectional curvature.

There is an important dichotomy for compact manifolds of nonpositive cur-
vature. If there is enough zero curvature around, the manifold splits as a Rie-
mannian product (up to a finite cover), or is completely rigid, i.e., is a symmetric
space. This remarkable development inspired some of the work discussed in
Section 6, but it is not directly related to entropy, so we will not discuss it here.

An alternative case (not too much zero curvature; geometric rank one in tech-
nical language)27 was studied by Pesin [119] before the alternative was proved.
Ergodic theory of geodesic flows on Riemannian manifolds of geometric rank
one was an important test case for Pesin theory.

The main achievement in the quoted work of Gerhard Knieper was a con-
struction of a maximal entropy measure using convexity properties of geodesics
on manifolds of nonpositive curvature and showing for the all-important geo-
metric rank one case that his measure is nonuniformly hyperbolic. Furthermore,
Knieper showed that the restriction of the flow to the “nonhyperbolic” part of the
phase space has topological entropy strictly smaller than that of the whole flow.
After that, uniqueness of measure with maximal entropy follows similarly to the
case of negative curvature (i.e., uniformly hyperbolic).

While Knieper did not quite get the multiplicative asymptotic (11) for the
growth of the number of closed geodesics28, this was completed by R. Gunesch
in his Ph.D. thesis (still not published); Gunesch also used an important result
by M. Babillot who showed that the Knieper measure is mixing.

Now we switch gears and in two remaining sections discuss how entropy ap-
pears in the very popular and fruitful field called “rigidity”. This is a common
name for a diverse variety of phenomena appearing across dynamics, geometry,
group theory, and other areas of mathematics. We will describe two different
aspects: one when entropy appears as a critical parameter in certain infinite-
dimensional variational problems, and the other, where it guarantees sufficient
complexity of behavior which leads to rigidity.

5. ENTROPY AS A SOURCE OF RIGIDITY; 1982–1995

In classical systems, coincidence of the topological and volume entropies may lead
to infinite-codimension phenomena, such as presence of an invariant rigid geo-
metric structure; this opens a rich area of interplay between dynamics, geometry,
and algebra.

27“Not too much zero curvature” should be understood in dynamical sense: along some
geodesics in any two-dimensional direction, zero curvature does not persist. In fact, there
are examples of geometric rank-one metrics where sectional curvature vanishes at some two-
dimensional direction at any point.

28Some of the nonhyperbolic closed geodesics may appear in continuous families where all
geodesics have the same length; naturally, in the counting each such family counts as a single
geodesic.
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a. Comparing global and statistical complexity. The variational principle for
entropy provides a general framework in which one can ask how far a particular
invariant measure is from capturing the maximal dynamical complexity of the
system. This is evidently an interesting question if the measure in question has
certain special significance; an absolutely continuous invariant measure, if there
is one, is obviously a candidate for such consideration; for dissipative systems,
SRB measures may play a similar role. Furthermore, there are classes of sys-
tems where an invariant volume (an invariant measure given by smooth positive
density in local coordinate systems) exists by structural reasons. Two principal
examples are restrictions of Hamiltonian systems of classical mechanics to non-
critical constant energy surfaces, and geodesic flows on compact Riemannian
manifolds29.

The general question for such systems is when the Kolmogorov entropy with
respect to the invariant volume coincides with the topological entropy, or, equiv-
alently, when the volume is a (and usually “the”) maximal entropy measure? Let
us call this the entropy rigidity problem. The situation is quite different for the
discrete and continuous time systems. Since these questions make sense pri-
marily for systems with uniform hyperbolic behavior, i.e., Anosov diffeomor-
phisms and Anosov flows, which are structurally stable, topological entropy in
the discrete time case is locally constant in appropriate spaces of dynamical
systems. For the continuous time case, structural stability does not guarantee
conjugacy of flows but only existence of a homeomorphism between the orbit
foliations. To explain the specifics, we consider two simplest low-dimensional
situations where the entropy rigidity problem has been solved early on.

b. Entropy rigidity on the two-dimensional torus. Every Anosov diffeomor-
phism f of a torus in any dimension has hyperbolic “linear part”30 and is topo-
logically conjugate to the hyperbolic automorphism FA to which it is homotopic.
Notice that for an automorphism, the metric and topological entropies coincide
(see Section 3d). Since both numbers are invariant under smooth conjugacy, the
entropy rigidity problem for Anosov automorphisms of a torus can be specified
as follows:

Under what conditions

(16) hvol ( f ) = ht op ( f )

implies that f is smoothly conjugate to an automorphism?

For volume-preserving Anosov diffeomorphisms of the k-dimensional torus,
the answer is: “always” for k = 2, and “not always” for k ≥ 3.

Counterexamples in higher dimension are not particularly interesting; the
easiest way to construct such an example is to consider a perturbation of a hy-
perbolic automorphism which preserves either stable or unstable foliation (one

29The latter class can be included into the former by passing to the cotangent bundle via the
Legendre transform.

30I.e., the induced action on the first homology group has no eigenvalues of absolute value
one.
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needs to pick one which has dimension ≥ 2), preserves volume and changes ei-
genvalues at some periodic point.

Proof for k = 2 starts from the observation that (16) implies that the conjugacy
is volume-preserving (this is true in any dimension). In particular, it takes con-
ditional measures on stable and unstable manifolds for the automorphism into
corresponding conditional measures for f . Both families of conditional mea-
sures are defined up to a scalar and are given by smooth densities which depend
continuously on the leaves. Hence the conjugacy is smooth along stable and
unstable foliations and is C 1 globally. Sobolev inequalities then imply that the
conjugacy has higher regularity, e.g., C∞ if f is C∞.

In higher dimension, interesting problems still appear if one asks about
entropy rigidity for more narrow classes of diffeomorphisms than volume-
preserving ones, for example symplectic.

c. Conformal estimates and entropy rigidity for surfaces [57]. A totally differ-
ent and much more interesting picture appears for a special class of Anosov flows
on three-dimensional manifolds, namely, geodesic flows on surfaces of negative
curvature.

Let us consider a Riemannian metric σ on a compact surface M of genus
g ≥ 2; E = 2−2g its Euler characteristic, and v the total area. By the Koebe reg-
ularization theorem, there is a unique metric σ0 of constant negative curvature
with the same total area conformally equivalent to σ, i.e., σ = ϕσ0 where ϕ is
a scalar function. Since the areas are equal one has

∫

M ϕd vol = 1 and hence
ρ :=

∫

M (ϕ)1/2d vol ≥ 1 with the strict inequality for any nonconstant ϕ. Then,

(17) ht op ≥ ρ

(

−2πE

v

)1/2

.

Let λ be the Liouville measure in the unit tangent bundle SM ; λ is invariant
under the geodesic flow. If σ is a metric without focal points (e.g., of negative or
nonpositive curvature) then also,

(18) hλ ≤ ρ−1
(

−2πE

v

)1/2

.

Inequality (17) immediately implies that metrics of constant negative curva-
ture 2g−2

v strictly minimize the topological entropy of the geodesic flow among
all (not only negatively curved) metric on a surface of genus g ≥ 2 with the given
total area v .

Similarly, (18) implies that metrics of constant negative curvature 2g−2
v strictly

maximize the entropy of the geodesic flow with respect to the Liouville measure
among all metric on a surface of genus g ≥ 2 with the given total area v and with
no focal points (in particular, among all metrics of nonpositive curvature).

In particular, this solves the entropy rigidity problem for metrics with no focal
points on surfaces of genus greater than one:

(19) ht op =hλ ⇔ constant curvature.
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d. Entropy rigidity for locally symmetric spaces [10, 11]. The entropy rigidity
for surfaces (19) naturally suggests a higher-dimensional generalization. The
model Riemannian manifolds of negative curvature where two entropies coin-
cide are locally symmetric spaces of noncompact type and real rank one. The
converse has been known for about twenty five years as “Katok entropy conjec-
ture”:31

For a negatively curved metric on a compact manifold

ht op = hλ ⇔ locallysymmetricspace.

Arguments for conformally equivalent metrics extend to arbitrary dimension,
but the main problem is that conformal equivalence to symmetric metric is a
specific two-dimensional phenomenon. Even if a symmetric metric exists on
M , it is not true any more that any other metric is conformally equivalent to a
symmetric one.

More than ten years after the conjecture had been formulated, a major ad-
vance was made by Gérard Besson, Gilles Courtois, and Sylvestre Gallot. They
proved that on a compact manifold which carries a locally symmetric metric any
such metric strictly minimizes ht op for the geodesic flow among metrics of fixed
volume. Their proof heavily relies on extremal properties of harmonic maps.

At about the same time, Livio Flaminio [29] showed that already in the next
lowest-dimensional case after surfaces, there is no analog of (18). Namely, there
are arbitrarily small perturbations of a constant negative curvature metric on
certain compact three-dimensional manifolds which have variable curvature,
preserve the total volume and increase the metric entropy with respect to the Li-
ouville measure. In those examples, however, the topological entropy increases
even more than the metric one. Flaminio’s proof involves calculating the leading
quadratic term in the expression for the metric entropy in a small neighborhood
of a metric of constant curvature and using representation theory for SO(3,1) to
demonstrate that this quadratic form is not negative definite. Flaminio shows
that nevertheless locally in a neighborhood of a constant negative curvature the
metric Liouville entropy remains smaller than the topological entropy.

6. RIGIDITY OF POSITIVE ENTROPY MEASURES FOR HIGHER-RANK ABELIAN

ACTIONS; 1990–2006

For smooth commuting maps and flows with hyperbolic behavior, a panoply of
rigidity properties appears in contrast with the classical dynamics; entropy is a
dominant actor again. Individual maps are Bernoulli and hence have huge cen-
tralizers by the Ornstein theory, but the measurable structure of the actions is com-
pletely rigid: the hard whole is built from soft elements.

31Not called that way by its author of course, but the name has been added in particular to
distinguish it from the older “Shub entropy conjecture”, see Section 4f.
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a. Contrast between rank one and higher rank. While the notion of entropy
and principal blocks of the abstract ergodic theory including the Ornstein iso-
morphism theory and, somewhat surprisingly, even the Kakutani equivalence
theory (which from the first glance depends on the notion of order in Z or R)
extend from maps and flows to actions of general abelian groups such as Zk and
Rk , the relationships between ergodic theory and finite-dimensional dynamics
for actions of such groups changes dramatically. In the classical cases, the most
natural abstract models such as Bernoulli maps and corresponding flows pro-
vide also models for ergodic behavior of classical systems. For essentially all
other finitely generated discrete and connected locally compact groups, this is
not the case anymore.

The explanation for this contrast is quite simple. We restrict ourselves to the
case of discrete groups to avoid some purely technical complications. Entropy
measures the growth of number of essential distinct names with respect to a
partition against the size of a growing collection of finite sets which exhausts
the group. For the group Z, the collection in question is comprised of segments
[−n,n]. For other groups, say for Zk , one needs to use collections of sets, such
as parallelepipeds, with the number of elements growing faster than its diame-
ter. However for a smooth system, the total number of essential names will still
grow only exponentially with respect to any natural norm on the group. For ex-
ample, if one consider the collection of squares in Z2 with the side n in order to
have positive entropy the number of essential names should grow no slower that
expcn2 for some constant c > 0, while for a smooth action it can grow no faster
than expcn. This disparity forces the entropy of any smooth action to vanish.
See [66] for a more detailed explanation.

However, there are smooth actions of higher-rank abelian groups or semi-
groups where individual elements have positive entropy and hence exhibit a
certain degree of hyperbolicity. We first list representative examples and men-
tion results about rigidity of measures for which some elements have positive
entropy, and then describe some essential elements of the structure and certain
features used in the proofs.

b. Basic examples.

Furstenberg’s ×2,×3 action [32]. Consider the action of the semigroup Z2
+ on the

circle generated by two expanding endomorphisms:

E2 : S1 → S1 x .→ 2x, (mod 1),

E3 : S1 → S1 x .→ 3x, (mod 1).

Aside from Lebesgue measure, there are infinitely many atomic ergodic invari-
ant measures supported by orbits of rational numbers whose denominators are
relatively prime to 2 and 3. Furstenberg asked whether those are the only er-
godic invariant measures for the action generated by E2 and E3. Notice that for
an action with a singles generator, there is an enormous variety of invariant mea-
sures, whereas if one consider action by multiplications by all natural numbers
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or even by all squares or all cubes, the only invariant measures are Lebesgue and
the δ-measure at 0.

Furstenberg’s question stimulated a lot of developments and it is not an-
swered to this day. Moreover, we consider it as one of the most difficult or “re-
sistant” open problems in dynamics, since essentially new methods seem to be
needed for its solution. It is even unclear which answer to expect.

A significant advance was made by Dan Rudolph more than twenty years after
the question had been posed [126]. Rudolph proved that if at least one (and
hence any non-identity) element of the action has positive entropy with respect
to an ergodic invariant measure, then the measure is Lebesgue32. In this way,
entropy made a reappearance in the context of higher-rank smooth actions.

Commuting toral automorphisms [64, 48]. An invertible example which is in
essence very similar to the previous one is the action generated by two com-
muting hyperbolic automorphisms of the three-dimensional torus.

Let A,B ∈ SL(3,Z), AB = B A, Ak = B l ⇒ k = l = 0, A,B hyperbolic. The Z2

action is generated by automorphisms of the torus T3 =R3/Z3:

FA : x .→ Ax, (mod 1),

FB : x .→ B x, (mod 1).

Shortly after Rudolph’s paper appeared, I suggested to consider invariant mea-
sures for this action in an attempt to find a more geometric proof of Rudolph’s
theorem. This was successful and resulted in our work with Ralf Spatzier [64]33

in which not only rigidity of positive entropy measure for a broad class of actions
of Zk , k ≥ 2 by automorphisms of a torus is proved, but also many noninvertible
cases (including naturally actions by expanding endomorphisms of the circle)
are covered.

In order to see a similarity between the action on the three-dimensional torus
and the multiplications by 2 and by 3, we pass to the natural extension for the
latter action. The natural extension is the invertible action on the space of all
“pasts” for the original noninvertible action. The phase space for this natural
extension of the ×2,×3 action is a solenoid, the dual group to the discrete group
Z(1/2,1/3). It is locally modeled on the product of R with the groups of 2-adic
and 3-adic numbers. Thus, while topologically the solenoid is one-dimensional,
there are three “directions” there: one real and two non-Archimedean. They play
the role very similar to that of three common eigendirections for A and B in the
toral case.

Weyl chamber flow (WCF)[25, 27]. Let M = SL(n,R)/Γ, n ≥ 3,Γ a lattice in
SL(n,R), D the group of positive diagonal matrices which is isomorphic to Rn−1.
The action of D on M by left translations is called the Weyl chamber flow. This

32A couple of years earlier, Russel Lyons [88] proved a somewhat weaker result using a method
based on harmonic analysis.

33Which appeared only in 1996 but was submitted already in 1992.
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example (assume for simplicity n = 3) stands in the same relation to the previ-
ous one as the geodesic flow on a surface of constant negative curvature to a
hyperbolic automorphism of a torus. This is an Anosov or normally hyperbolic
action, i.e., there are elements which are partially hyperbolic diffeomorphisms
whose neutral foliation is the orbit foliation. For Weyl chamber flows, the notion
of rigidity of positive entropy measure has to be somewhat modified. For certain
lattices Γ there are closed subgroups of SL(n,R) which project to the factor space
as closed sets. On some of those invariant sets, the Weyl chamber flow may be-
come essentially a rank one action. Those examples were found by Mary Rees in
the early 1980s. So in the description of positive entropy invariant measures, one
needs to allow first for Haar measures on some closed subgroups whose projec-
tions to the homogeneous space are closed, and second, for invariant measures
supported on the projections of the subgroups in Rees-type examples.

c. Lyapunov exponents and Weyl chambers for actions of Zk
+,Zk , and Rk [48].

Let α be such an action, µ an α-invariant ergodic measure; by passing to the
natural extension and/or suspension can always reduce the situation to the case
of Rk , which has certain advantages in visualization of “time”—although it adds
extra directions in space.

Lyapunov exponents for an Rk action with respect to an ergodic invariant mea-
sure are linear functionals χi ∈ (Rk )∗.

Lyapunov hyperplanes are the kernels of nonzero Lyapunov exponents .
Weyl chambers are connected components of Rk 0

⋃

i Kerχi . Elements of the
action which do not belong to any of the Lyapunov hyperplanes are called reg-
ular. Thus, Weyl chambers are connected components of the set of all regular
elements.

The measure is called hyperbolic is all Lyapunov exponents other than k com-
ing from the orbit directions are nonzero.

For the algebraic examples discussed in Section 6b, Lyapunov exponents are
obviously independent of the measure. For k = 2, Lyapunov hyperplanes be-
come lines and Weyl chambers sectors in the plane. The iconic picture which
appears for both examples in Section 6b.2 and in Section 6b.3 is of three differ-
ent Lyapunov lines dividing the plane into six Weyl chambers. However, in the
former case, there are only three Lyapunov exponents χ1, χ2, χ3, and the only re-
lation among them is χ1 +χ2 +χ3 = 0, corresponding to the preservation of vol-
ume. In the latter case, there are three pairs of exponents, each pair consisting of
two exponents of opposite sign, and thus corresponding to the same Lyapunov
line.

In order to incorporate the case of ×2, ×3 action to this scheme, one considers
the non-Archimedean Lyapunov exponents for the natural extension in addition
to the single real exponent. Since the multiplication by 2 is an isometry in the
3-adic norm and vice versa, the Lyapunov lines in this case are the two axis and
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the line x log 2+ y log3 = 0, which does not intersect the first quadrant, the only
one “visible” if one considers the original noninvertible action34.

Weyl chambers can be characterized as the loci of element of the action for
which the stable and unstable distributions and their integral foliations are the
same35. Maximal, nontrivial intersections of stable distributions and foliations
correspond to half-spaces on each side of a Lyapunov hyperplane; they are called
coarse Lyapunov distributions (foliations); in all our examples, those are one-
dimensional, and coarse Lyapunov distributions coincide with the Lyapunov dis-
tributions which appear in the Multiplicative Ergodic theorem for higher-rank
actions. While Lyapunov distributions are not always uniquely integrable, the
coarse Lyapunov distributions are. On the torus, of course, all Lyapunov distri-
butions are integrable and they commute, but for the Weyl chamber flows, there
are nontrivial commutation relations between the pairs of distributions corre-
sponding to the exponents of the opposite sign. This noncommutativity turns
out to be a saving grace, both in the measure rigidity and in the differentiable
rigidity theory for Weyl chamber flows.

The main source of rigidity is the combination of global recurrence and local
isometry for action along the singular directions, i.e., for elements of the action
in the Lyapunov hyperplanes. This is true for measure rigidity, which we discuss
now, as well as differentiable rigidity, which we barely mention, since it is not ex-
plicitly related to entropy. Global recurrence may mean, depending on the con-
text, topological transitivity or some sort of ergodicity. The other property means
that within the leaves of the corresponding Lyapunov foliation, the action is iso-
metric, as in our algebraic examples, or nearly so, as for small perturbations in
the local differentiable rigidity theory or for actions with Cartan homotopy data
in [50, 62]. Then a geometric structure along the leaves of a Lyapunov foliation
is carried over to the whole space or its substantial part due to recurrence. In the
differentiable rigidity theory, the geometric structures in question are flat affine
structures or, more generally, the structures with finite-dimensional automor-
phisms group coming from the “nonstationary normal forms theory” [41]. In
the measure rigidity, those are conditional measure induced on the leaves of the
foliations and it is here where entropy makes its entrance.

d. Entropy function. Entropy function for an Rk action α is defined on Rk by

h(t)=: hµ(t) =: hµ(α(t)).

It has the following properties:

1. h(λt)= |λ| ·h(t) for any scalar λ;
2. h(t+s) ≤h(t)+h(s);
3. h is linear in each Weyl chamber.

34See [64] for a general treatment of noninvertible actions on tori and actions on solenoids
along these lines.

35In the general case, one should understand the terms “distributions” and “foliations” in the
sense of Pesin theory, i.e., as families of subspaces and smooth submanifolds defined almost ev-
erywhere; in our algebraic examples, those objects are, of course, smooth and homogeneous
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The Ledrappier–Young entropy formula [84], discussed in Section 4e, is used
in an essential way in the proofs of (2) and (3).

e. Conditional measures. Positivity of metric entropy for an ergodic transfor-
mation is equivalent to continuity (nonatomicity) of conditional measures on
stable and unstable manifolds. The basic argument, which is sufficient to prove
entropy rigidity for both the action by automorphisms of T3 and the natural ex-
tension of the ×2, ×3 action, is showing that those conditional measures must
be invariant under almost every translation and hence Lebesgue. The argument
uses as a basic tool the well-known Luzin theorem from real analysis and also a
“π-partition trick”, which is based on the fact that π-partitions can be calculated
either from the infinite past or from the infinite future.

For Weyl chamber flows, this argument is not sufficient primarily because not
every pair of Lyapunov distributions belong to the stable distribution of an ele-
ment. There are two more methods which are known as the “high entropy” [25]
and the “low entropy” [27]36 methods; they both use special character of com-
mutation relations between various Lyapunov distributions.

f. Isomorphism rigidity [60]. One of the striking consequences of measure
rigidity justifying the expression “the hard whole built from soft elements” is a
very special character of measurable isomorphisms between actions. For exam-
ple, any isomorphism between two actions by hyperbolic automorphisms of T3

(and for much more general “genuinely higher-rank” actions by hyperbolic au-
tomorphisms of a torus) is algebraic i.e., coincides almost everywhere with an
affine map. A remarkable corollary is that the entropy function is not a full iso-
morphism invariant here, since equivalence of entropy functions only implies
conjugacy over Q but not over Z. Any two actions on T3 isomorphic over Q are
finite factors of each other, but if the class number of the corresponding cubic
algebraic number field (which is obtained by adding eigenvalues of A and B to
the rationals) is greater than one, there are examples not isomorphic over Z and
hence not isomorphic metrically. Furthermore, the centralizer of the action in
the group of measure-preserving transformation coincides with the algebraic
centralizer and is in fact a finite extension of the action itself. Factors and join-
ings are similarly rigid [49].

All this stands in a dramatic contract with the case of a single automorphism.
Being a Bernoulli map, it has a huge centralizer which actually defies description
and an enormous variety of factors and self-joinings. Also, automorphisms of
tori with the same entropy are isomorphic, but the entropy in dimension greater
than two does not even determine the conjugacy class over Q, or, equivalently,
over C. And of course, isomorphisms between two automorphisms with the
same entropy are incredibly diverse.

g. Applications [86, 27]. Measure rigidity for higher-rank actions found appli-
cations in several areas of mathematics beyond ergodic theory or dynamics. The

36This method was developed by E. Lindenstrauss earlier in a different context
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first spectacular application was Elon Lindenstrauss’s work on arithmetic quan-
tum chaos [85, 86], a breakthrough in the area which for along time resisted ef-
forts of several outstanding mathematicians working by methods from classical
analysis and number theory.

Another application is a partial solution of the Littlewood conjecture on mul-
tiplicative Diophantine approximations [27]. It follows from the measure rigid-
ity for the Weyl chamber flow on the noncompact but finite volume symmetric
space SL(3,R)/SL(3,Z). In this case, one can show that the only invariant ergodic
positive entropy measure is Lebesgue. This implies, via arguments related to the
variational principle and to the connection between entropy and Hausdorff di-
mension, that the set of bounded orbits has zero Hausdorff dimension.

Littlewood, around 1930, conjectured the following property of multiplicative
Diophantine approximation. For every u, v ∈R,

(20) liminf
n→∞

n〈nu〉〈nv〉 = 0,

where 〈w〉= minn∈Z |w −n| is the distance of w ∈R to the nearest integer.
The corollary of measure rigidity described above implies the following partial

result toward Littlewood’s conjecture:
Let

Ξ=
{

(u, v)∈R2 : liminf
n→∞

n〈nu〉〈nv〉 > 0
}

.

Then the Hausdorff dimension dimH Ξ = 0. In fact, Ξ is a countable union of
compact sets with box dimension zero.

h. Measure rigidity beyond uniform hyperbolicity [50, 62, 51]. So far, we dis-
cussed measure rigidity for algebraic actions. It might look as a natural next step
to consider uniformly hyperbolic, nonalgebraic actions. However, another as-
pect of higher-rank rigidity, the differentiable rigidity, indicates that those ob-
jects should be essentially algebraic, so not much would be gained. On the other
hand, some of the key features of the algebraic situation in a properly modi-
fied way appear in a very general context where indeed nontrivial behavior is
possible. So far, the case of actions of the highest possible rank has been con-
sidered: Zk actions of k + 1-dimensional manifolds for k ≥ 2. The actions on
T3 from Section 6b are the simplest, nontrivial models; they and their higher-
dimensional counterparts are called linear Cartan actions.

Now we consider a Zk action on Tk+1 such that the induced action on the first
homology coincides with a linear Cartan action; we will say that such an action
has Cartan homotopy data. It turns out that such an action α has a uniquely de-
fined invariant measure µ, called large, which is absolutely continuous such that
the action α is metrically isomorphic to the corresponding linear Cartan action
α0 with Lebesgue measure. Furthermore, the restriction of this isomorphism to
a compact (noninvariant in general) set of arbitrarily large measure µ (and hence
of positive Lebesgue measure) is smooth in the sense of Whitney. This is a rather
remarkable case of existence of an invariant geometric structure determined by
a purely homotopy information.
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Furthermore, if one considers Zk actions on an arbitrary (m+1)-dimensional
compact manifold with an invariant measure for which the Lyapunov hyper-
planes are in general position37, then assuming that at least one element of the
action has positive entropy, we deduce that the measure µ is absolutely contin-
uous.

7. EPILOGUE: SOME (MOSTLY OLD) OPEN PROBLEMS

Questions related to entropy inspired and continue to inspire new advances in er-
godic theory, topological and differentiable dynamics, and related areas of math-
ematics. Open problems listed here, one for each section, mostly old and well-
known, some mentioned in passing in the text, still remain major challenges. A
serious advance toward the solution of any of these problems would require fresh
new insights and will almost surely stimulate more progress.

a. Entropy for the standard map. The following family of area-preserving maps
fλ of the cylinder C = S1 ×R:

fλ(x, y) = (x + y, y +λsin2π(x + y)).

is often called standard.

PROBLEM 7.1. Is the metric entropy harea ( fλ) positive
(i) for small λ, or
(ii) for any λ (assuming y is periodic too)?

A positive answer would imply existence of ergodic components of positive
measure by Pesin theory.

This seems to be the only major problem related to entropy which originated
in the sixties (in fact, this one has been known since an early part of that decade)
which is still open. It also looks extremely difficult, especially part (i), due to the
existence of invariant curves by the Moser Invariant Curve Theorem [95]. Invari-
ant circles divide the cylinder into annular domains of instability with positive
topological entropy and complex orbits of various kinds. But the boundaries
of those domains are not smooth KAM-type circles but some degenerate ones,
most likely not even C 1, although they are always graphs of Lipschitz functions
S1 → R. If, as expected, ergodic components come close to these circles, esti-
mates needed to establish nonuniform hyperbolicity become hardly imaginable.

For large values of λ, Moser circles disappear, but those around elliptic points
remain. For part (ii) there is a hope, based on parameter exclusion techniques pi-
oneered by Michael Jakobson, that for some parameter values, all elliptic points
can be eliminated and estimates carried out almost everywhere.

37For k = 2, this simply means that Lyapunov lines are different
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b. Weak Pinsker property. After Pinsker’s conjecture was disproved by Orn-
stein, Thouvenot suggested a similar property which he calls the weak Pinsker
property:

(WP) A measure-preserving transformation T is the direct product of a Bernoulli
shift and a transformation with arbitrarily small entropy.

PROBLEM 7.2. Does any ergodic measure-preserving transformation T satisfy the
weak Pinsker property?

To the best of our knowledge, this is the only major structural open problem
related to the basic properties of entropy and the Ornstein isomorphism theory.
Thouvenot thinks that the weak Pinsker property does not always hold and that
there is a certain invariant which he calls the “entropy production rate” whose
vanishing characterizes systems with (WP).

c. Shub entropy conjecture for C 1 maps. Let f be a C 1 diffeomorphism (or,
more generally, a C 1 map) of a compact differentiable manifold M to itself;

f∗ :
n
∑

i=1
H (m,R) →

n
∑

i=1
H (m,R)

the induced map of the homology with real coefficients.

PROBLEM 7.3. Is it true that ht op ( f ) ≥ log s( f∗), where s is the spectral radius (the
maximal absolute value of an eigenvalue)?

A positive answer is known as the (C 1) Shub entropy conjecture. Although
for C∞ maps a positive answer follows from the work of Yomdin discussed in
Section 4f, Yomdin’s volume estimate fails in finite smoothness. My survey [54]
from ten years before the work of Yomdin, which appeared in English translation
just before Yomdin’s work, still accurately reflects the state of the subject beyond
C∞.

d. Growth of periodic orbits for surface diffeomorphisms. As was mentioned
in Section 3d, we proved in [55] that for a C 1+ε diffeomorphism f of a compact
surface

limsup
n→∞

log Pn( f )
n

≥ ht op ( f ),

i.e., the exponential growth rate of the number of periodic orbits is estimated
from below by topological entropy. Notice that this remains true if one considers
only hyperbolic periodic orbits.

PROBLEM 7.4. Is it true that

limsup
n→∞

Pn( f )
expnht op ( f )

≥ c > 0

for any (i) C 1+ε or (ii) C∞ diffeomorphism f of a compact surface?
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The answer, at least in the C∞ case, is likely to be positive so we dare to call
this a conjecture. On the other hand, Jerome Buzzi thinks that in finite regularity
the answer may be negative.

A possible strategy for (i) would be to construct an infinite Markov partition
which captures full topological entropy and use results of B.M. Gurevich and
others for asymptotics of periodic orbit growth for certain infinite topological
Markov chains.

For (ii) there is another approach based on existence of a maximal entropy
measure discussed in Section 4f. A hopeful development in the last few years is
the theory of symbolic extensions and entropy structure by M. Boyle, T. Dow-
narowicz, Newhouse and others [19, 24], as well as detailed analysis of maximal
entropy measures in low dimension by Buzzi. It is based on a much weaker but
much more general construction than that of Markov partitions, called principal
symbolic extensions.

e. Entropy rigidity conjecture. This was already discussed in Section 5d. We
just repeat the question.

PROBLEM 7.5. Suppose that for a Riemannian metric of negative sectional cur-
vature on a compact manifold, topological entropy of the geodesic flow coincides
with the entropy with respect to the smooth (Liouville) measure. Does this imply
that the metric is locally symmetric?

As we already mentioned, a presumed positive answer is known as the “Ka-
tok entropy conjecture”. It stimulated a remarkable cycle of papers by Besson,
Courtois and Gallot and lots of other interesting work.

f. Values of entropy forZk actions. This is inspired by results discussed in Section 6h.
Let k ≥ 2, αbe a C 1+ε, ε> 0 action of Zk on a k+1-dimensional manifold, µ an er-
godic al pha-invariant measure with no proportional Lyapunov exponents, and
at least one element of α has positive entropy. According to [51], such a measure
is absolutely continuous.

PROBLEM 7.6. What are possible values of entropy for elements of an action α as
above?

We conjecture that the entropy values are algebraic integers of degree at most
k + 1 as in actions with Cartan homotopy data [50] on torus and other known
examples on a variety of different manifolds [62]

This is the only recent problem on our list; it was formulated at the 2006 Ober-
wolfach conference in geometric group theory, hyperbolic dynamics and sym-
plectic geometry. All other problems have been known for more than twenty
years.
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