Arithmetic Structures in Spectral Models of Gravity

Matilde Marcolli

MAT1314HS Winter 2019, University of Toronto T 12-2 and W 12 BA6180

References:

- Farzad Fathizadeh, Matilde Marcolli, *Periods and motives in the spectral action of Robertson-Walker spacetimes*, arXiv:1611.01815
- Wentao Fan, Farzad Fathizadeh, Matilde Marcolli, *Spectral Action for Bianchi type-IX cosmological models*, arXiv:1506.06779, J. High Energy Phys. (2015) 85, 28 pp.
- Wentao Fan, Farzad Fathizadeh, Matilde Marcolli, *Modular* forms in the spectral action of Bianchi IX gravitational instantons, arXiv:1511.05321

Spectral action models of gravity (modified gravity)

- Spectral triple: (A, H, D)
 - lacktriangledown unital associative algebra ${\cal A}$
 - $oldsymbol{2}$ represented as bounded operators on a Hilbert space ${\cal H}$
 - **3** Dirac operator: self-adjoint $D^* = D$ with compact resolvent, with bounded commutators [D, a]
- prototype: $(C^{\infty}(M), L^2(M, S), \not \! D_M)$
- extends to non smooth objects (fractals) and noncommutative (NC tori, quantum groups, NC deformations, etc.)
- Spectral action (Chamseddine–Connes)

$$\mathcal{S}_{ST}(\Lambda) = \operatorname{Tr}(f(D/\Lambda)) = \sum_{\lambda \in \operatorname{Spec}(D)} \operatorname{\mathsf{Mult}}(\lambda) f(\lambda/\Lambda)$$

f =smooth approximation to cutoff

Robertson-Walker spacetime

- Topologically $S^3 \times \mathbb{R}$
- Metric (Euclidean)

$$ds^2 = dt^2 + a(t)^2 d\sigma^2$$

scaling factor a(t), round metric $d\sigma^2$ on S^3

• Hopf coordinates on S^3

$$x = (t, \eta, \phi_1, \phi_2) \mapsto (t, \sin \eta \cos \phi_1, \sin \eta \sin \phi_2, \cos \eta \cos \phi_1, \cos \eta \sin \phi_2),$$

$$0 < \eta < \frac{\pi}{2}, \qquad 0 < \phi_1 < 2\pi, \qquad 0 < \phi_2 < 2\pi.$$

Robertson-Walker metric in Hopf coordinates

$$ds^{2} = dt^{2} + a(t)^{2} (d\eta^{2} + \sin^{2}(\eta) d\phi_{1}^{2} + \cos^{2}(\eta) d\phi_{2}^{2})$$

Dirac operator

$$D = \sum_{a,\mu} \gamma^a dx^{\mu} (\theta_a) \frac{\partial}{\partial x^{\mu}} + \frac{1}{4} \sum_{a,b,c} \gamma^c \omega^b_{ac} \gamma^a \gamma^b$$

with $\omega_{\rm a}^{\it b} = \sum_{\it c} \omega_{\it ac}^{\it b} \theta^{\it c}$

ullet matrices γ^a Clifford action of θ^a on spin bundle:

$$(\gamma^a)^2 = -I$$

 $\gamma^a \gamma^b + \gamma^b \gamma^a = 0$ for $a \neq b$

Pseudodifferential symbol of square D^2 of Dirac operator:

$$\begin{split} \sigma_{D^2}(x,\xi) &= p_2(x,\xi) + p_1(x,\xi) + p_0(x,\xi), \\ p_2(x,\xi) &= q_1(x,\xi) \, q_1(x,\xi) = \left(\sum g^{\mu\nu} \xi_{\mu} \xi_{\nu}\right) I_{4\times 4} \\ &= \left(\xi_1^2 + \frac{\xi_2^2}{a(t)^2} + \frac{\csc^2(\eta) \xi_3^2}{a(t)^2} + \frac{\sec^2(\eta) \xi_4^2}{a(t)^2}\right) I_{4\times 4}, \\ p_1(x,\xi) &= q_0(x,\xi) \, q_1(x,\xi) + q_1(x,\xi) \, q_0(x,\xi) + \sum_{j=1}^4 -i \frac{\partial q_1}{\partial \xi_j}(x,\xi) \, \frac{\partial q_1}{\partial x_j}(x,\xi), \\ p_0(x,\xi) &= q_0(x,\xi) \, q_0(x,\xi) + \sum_{j=1}^4 -i \frac{\partial q_1}{\partial \xi_j}(x,\xi) \, \frac{\partial q_0}{\partial x_j}(x,\xi). \end{split}$$

Parametrix Method and another method to compute coefficients

ullet D^2 order 2 elliptic differential operator: exists a parametrix R_λ with

$$\sigma(R_{\lambda}) \sim \sum_{j=0}^{\infty} r_j(x, \xi, \lambda)$$

• $r_i(x, \xi, \lambda)$ pseudodifferential symbol order -2 - j

$$r_j(x, t\xi, t^2\lambda) = t^{-2-j}r_j(x, \xi, \lambda)$$

- R_{λ} approximates $(D^2 \lambda)^{-1}$ with $\sigma((D^2 \lambda)R_{\lambda}) \sim 1$
- recursive equation:

$$\sigma((D^2-\lambda)R_\lambda)\sim ((p_2(x,\xi)-\lambda)+p_1(x,\xi)+p_0(x,\xi))\circ\left(\sum_{j=0}^\infty r_j(x,\xi,\lambda)\right)\sim 1$$

• solution for R_{λ} constructed recursively:

$$r_0(x,\xi,\lambda) = (p_2(x,\xi) - \lambda)^{-1}$$

$$r_n(x,\xi,\lambda) = -\sum \frac{1}{\alpha!} \partial_{\xi}^{\alpha} r_j(x,\xi,\lambda) D_x^{\alpha} p_k(x,\xi) r_0(x,\xi,\lambda),$$

summation over all $\alpha \in \mathbb{Z}^4_{\geq 0}, j \in \{0, 1, \dots, n-1\}, k \in \{0, 1, 2\},$ with $|\alpha| + j + 2 - k = n$

Seeley-deWitt coefficients and Parametrix Method

$$a_{2n}(x,D^2) = \frac{(2\pi)^{-m}}{2\pi i} \int \int_{\gamma} e^{-\lambda} \operatorname{tr} \left(r_{2n}(x,\xi,\lambda) \right) d\lambda d^m \xi$$

• odd j coefficients vanish: $r_i(x, \xi, \lambda)$ odd function of ξ

A different method: Wodzicki residue

- Wodzicki residue: unique trace functional on algebra of pseudodifferential operators on smooth sections of vector bundle over smooth manifold
- ullet classical pseudodifferential operator P_σ of order $d\in\mathbb{Z}$ local symbol

$$\sigma(x,\xi) \sim \sum_{j=0}^{\infty} \sigma_{d-j}(x,\xi) \qquad (\xi \to \infty),$$

 σ_{d-j} positively homogeneous order d-j in ξ

• Residue:

$$\operatorname{Res}(P_{\sigma}) = \int_{S^*M} \operatorname{Tr}\left(\sigma_{-m}(x,\xi)\right) d^{m-1}\xi d^m x,$$

$$S^*M = \{(x, \xi) \in T^*M; ||\xi||_{g} = 1\}$$
 cosphere bundle

• spectral formulation of residue: pseudodifferential operator P_{σ} , Laplacian Δ

$$P_{\sigma} \mapsto \mathrm{Res}_{s=0} \mathrm{Tr}(P_{\sigma} \Delta^{-s})$$

same up to a constant $c_m = 2^{m+1}\pi^m$

• Mellin transform (for simplicity $Ker(\Delta) = 0$):

$$\operatorname{Tr}(\Delta^{-s}) = \frac{1}{\Gamma(s)} \int_0^\infty \operatorname{Tr}(e^{-t\Delta}) t^s \frac{dt}{t}$$

heat kernel expansion

$$\operatorname{Tr}(e^{-t\Delta}) = t^{-m/2} \sum_{n=0}^{N} a_{2n} t^n + O(t^{-m/2+N+1})$$

• find for any non-negative integer $n \le m/2 - 1$:

$$\operatorname{Res}_{s=m/2-n}\operatorname{Tr}(\Delta^{-s})=\frac{a_{2n}(\Delta)}{\Gamma(m/2-n)},$$

• in particular

$$\operatorname{Res}_{s=1}\operatorname{Tr}(\Delta^{-s})=a_{m-2}(\Delta)$$

• in terms of Wodzicki residue:

$$a_{m-2}(\Delta) = rac{1}{c_m} \mathsf{Res}(\Delta^{-1}) = rac{1}{2^{m+1}\pi^m} \mathsf{Res}(\Delta^{-1})$$

applied to $\Delta = D^2$

• coefficient $a_2(D^2)$

$$a_2(D^2) = \frac{1}{c_4} \text{Res}(D^{-2}) = \frac{1}{32\pi^4} \int_{S^*M} \text{Tr}\left(\sigma_{-4}(D^{-2})\right) d^3\xi d^4x$$

• for other coefficients, introduce an auxiliary product space for correct counting of dimensions: use flat r-dimensional torus $\mathbb{T}^r = (\mathbb{R}/\mathbb{Z})^r$

$$\Delta = D^2 \otimes 1 + 1 \otimes \Delta_{\mathbb{T}^r},$$

 $\Delta_{\mathbb{T}^r}$ flat Laplacian on \mathbb{T}^r

$$a_{2+r}(D^2) = \frac{1}{2^5 \pi^{4+r/2}} \text{Res}(\Delta^{-1})$$

because Künneth formula gives

$$a_{2+r}((x,x'),\Delta) = a_{2+r}(x,D^2)a_0(x',\mathbb{T}^r) = 2^{-r}\pi^{-r/2}a_{2+r}(x,D^2)$$

with volume term only non-zero heat coefficient for flat metric

obtain for higher order coefficients

$$a_{2+r}(D^2) = rac{1}{2^5 \pi^{4+r/2}} \int \operatorname{Tr}\left(\sigma_{-4-r}(\Delta^{-1})\right) d^{3+r} \xi d^4 x.$$

• writing $\sigma(\Delta^{-1}) \sim \sum_{j=-2}^{-\infty} \sigma_j(x,\xi)$ inductively

$$\sigma_{-2}(x,\xi) = p'_{2}(x,\xi)^{-1},
\sigma_{-2-n}(x,\xi) = -\sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} \sigma_{j}(x,\xi) D_{x}^{\alpha} p_{k}(x,\xi) \sigma_{-2}(x,\xi) \qquad (n>0),$$

summation over all multi-indices non-negative integers α , -2-n < j < -2, 0 < k < 2, with $|\alpha|-j-k=n$

The a2 term

• 1-density (unit cotangent sphere bundle integral)

$$\mathsf{wres}_{\mathsf{x}} P_{\sigma} = \left(\int_{|\xi|=1} \operatorname{tr} \left(\sigma_{-m}(\mathsf{x}, \xi) \right) |\sigma_{\xi, \, m-1}| \right) |d\mathsf{x}^0 \wedge d\mathsf{x}^1 \wedge \dots \wedge d\mathsf{x}^{m-1}|$$

ullet Wodzicki residue of Ψ DO P_{σ}

$$\operatorname{\mathsf{Res}}\left(P_{\sigma}\right) = \int_{M} \operatorname{\mathsf{wres}}_{\mathsf{x}} P_{\sigma}$$

• $a_2(D^2)$ coefficient, with $(D^2)^{-1}$ parametrix

$$a_2 = \frac{1}{2^5 \, \pi^4} \, \mathrm{Res} \left((D^2)^{-1} \right),$$

• dimension of manifold is 4: need term $\sigma_{-4}(x,\xi)$ homogeneous order -4 in expansion of symbol of $(D^2)^{-1}$

- computer calculation of $\operatorname{tr}(\sigma_{-4}(x,\xi))$ takes a couple of pages to write out (sum of fractions involving trigonometric functions and powers of ξ_i , scaling factor a(t) and derivative)
- important properties of resulting expression:
 - each term with an odd power of ξ_j in numerator will integrate to 0 in integration of 1-density
 - numerical coefficients of all terms in integrand are rational numbers
 - treat scaling factor a(t) and derivative a'(t), a''(t) as affine variables $\alpha, \alpha_1, \alpha_2$ (integration without performing time integration)
 - there is a natural change of coordinates replacing trigonometric functions by polynomials: rational function

change of coordinates

$$u_0 = \sin^2(\eta),$$
 $u_1 = \xi_1,$ $u_2 = \xi_2,$ $u_3 = \csc(\eta) \, \xi_3,$ $u_4 = \sec(\eta) \, \xi_4,$

Then have

$$\begin{split} \xi_1^2 + \frac{\xi_2^2}{\mathsf{a}(\mathsf{t})^2} + \frac{\xi_3^2 \csc^2(\eta)}{\mathsf{a}(\mathsf{t})^2} + \frac{\xi_4^2 \sec^2(\eta)}{\mathsf{a}(\mathsf{t})^2} &= u_1^2 + \frac{1}{\mathsf{a}(\mathsf{t})^2} (u_2^2 + u_3^2 + u_4^2), \\ \cot^2(\eta) &= \frac{1-u_0}{u_0}, \\ \csc^2(\eta) &= \frac{1}{u_0}, \\ \sec^2(\eta) &= \frac{1}{1-u_0}, \\ \cot(\eta) \cot(2\eta) &= \frac{\cot^2(\eta)}{2} - \frac{1}{2}, \\ \csc^2(2\eta) &= \frac{1}{4} \csc^2(\eta) \sec^2(\eta), \\ \tan^2(\eta) &= \sec^2(\eta) - 1, \\ \tan(\eta) \cot(2\eta) &= \frac{1}{2} - \frac{\tan^2(\eta)}{2}, \\ \cot^2(2\eta) &= \frac{\tan^2(\eta)}{8} + \frac{\cot^2(\eta)}{8} + \frac{1}{8} \csc^2(\eta) \sec^2(\eta) - \frac{3}{4}. \end{split}$$

Also exponents of the variables ξ_i are even positive integers

a_2 -term as a period integral $C \cdot \int_{A_4} \Omega^{\alpha}_{(\alpha_1,\alpha_2)}$ with $C \in \mathbb{Q}[(2\pi i)^{-1}]$

• Algebraic differential form

$$\Omega = f \widetilde{\sigma}_3$$
,

in affine coordinates $(u_0,u_1,u_2,u_3,u_4)\in \mathbb{A}^5$, $\alpha\in \mathbb{G}_m$, and $(\alpha_1,\alpha_2)\in \mathbb{A}^2$

• functions $f(u_0, u_1, u_2, u_3, u_4, \alpha, \alpha_1, \alpha_2) = f_{(\alpha_1, \alpha_2)}(u_0, u_1, u_2, u_3, u_4, \alpha)$ \mathbb{Q} -linear combinations of rational functions

$$\frac{P(u_0, u_1, u_2, u_3, u_4, \alpha, \alpha_1, \alpha_2)}{\alpha^{2r} u_0^k (1 - u_0)^m (u_1^2 + \alpha^{-2} (u_2^2 + u_3^2 + u_4^2))^{\ell}}$$

where

$$P(u_0, u_1, u_2, u_3, u_4, \alpha, \alpha_1, \alpha_2) = P_{(\alpha_1, \alpha_2)}(u_0, u_1, u_2, u_3, u_4, \alpha)$$

polynomials in $\mathbb{Q}[u_0, u_1, u_2, u_3, u_4, \alpha, \alpha_1, \alpha_2]$ with r, k, m and ℓ non-negative integers

• algebraic differential form $\widetilde{\sigma}_3 = \widetilde{\sigma}_3(u_0, u_1, u_2, u_3, u_4)$ $\frac{1}{2}(u_1 du_0 du_2 du_3 du_4 - u_2 du_0 du_1 du_3 du_4 + u_3 du_0 du_1 du_2 du_4 - u_4 du_0 du_1 du_2 du_3)$

- forms $\Omega^{\alpha}=\Omega^{\alpha}_{(\alpha_1,\alpha_2)}$ restricting to fixed value of $\alpha\in\mathbb{A}^1\smallsetminus\{0\}$: two parameter family
- defined on the complement in \mathbb{A}^5 of union of two affine hyperplanes $H_0=\{u_0=0\}$ and $H_1=\{u_0=1\}$ and hypersurface \widehat{CZ}_{α} defined by vanishing of the quadratic form

$$Q_{\alpha,2} = u_1^2 + \alpha^{-2}(u_2^2 + u_3^2 + u_4^2)$$

ullet Q-semialgebraic set: subset S of some \mathbb{R}^n

$$S = \{(x_1, \dots, x_n) \in \mathbb{R}^n : P(x_1, \dots, x_n) \ge 0\},\$$

for some polynomial $P \in \mathbb{Q}[x_1,\ldots,x_n]$, and complements, intersections, unions

• domain of integration Q-semialgebraic set

$$A_4 = \left\{ (u_0, u_1, u_2, u_3, u_4) \in \mathbb{A}^5(\mathbb{R}) : \begin{array}{l} u_1^2 + u_2^2 + u_0 u_3^2 + (1 - u_0) u_4^2 = 1, \\ 0 < u_i < 1, \text{ for } i = 0, 1, 2 \\ 0 < u_i < 1, \text{ for } i = 0, 1, 2 \end{array} \right\}$$

a₄-term and Wodzicki Residue

$$a_4 = rac{1}{2^5 \, \pi^5} {\sf Res}(\Delta_4^{-1})$$

need $\operatorname{tr}(\sigma_{-6}(\Delta_4^{-1}))$ of order -6 in expansion of symbol of Δ_4^{-1}

 \bullet general recursive procedure with auxiliary flat tori T^r

$$\Delta_{r+2} = D^2 \otimes 1 + 1 \otimes \Delta_{\mathbb{T}^r}$$

$$\sigma_{-2}(\Delta_{r+2}^{-1}) = \left(p_2(x,\xi_1,\xi_2,\xi_3,\xi_4) + (\xi_5^2 + \dots + \xi_{4+r}^2)I_{4\times 4}\right)^{-1}$$

then recursively $\sigma_{-2-n}(\Delta_{r+2}^{-1})$ given by

$$- \left(\sum_{\substack{0 \leq j < n, 0 \leq k \leq 2\\ \alpha \in \mathbb{Z}_{\geq 0}^{4} \\ -2 - j - |\alpha| + k = -n}} \frac{(-i)^{|\alpha|}}{\alpha!} \left(\partial_{\xi}^{\alpha} \sigma_{-2 - j}(\Delta_{r+2}^{-1}) \right) \left(\partial_{x}^{\alpha} p_{k} \right) \right) \sigma_{-2}(\Delta_{r+2}^{-1}).$$

a₄-term as a period integral $C \cdot \int_{A_6} \Omega^{\alpha}_{(\alpha_1,\alpha_2,\alpha_3,\alpha_4)}$

• algebraic differential form

$$\Omega = f \,\widetilde{\sigma}_5,$$

in affine coordinates $(u_0, u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{A}^7$, $\alpha \in \mathbb{G}_m$, and $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{A}^4$

• functions $f_{(\alpha_1,\alpha_2,\alpha_3,\alpha_4)}(u_0,u_1,u_2,u_3,u_4,u_5,u_6,\alpha)$ Q-linear combinations of rational functions

$$\frac{P(u_0, u_1, u_2, u_3, u_4, u_5, u_6, \alpha, \alpha_1, \alpha_2, \alpha_3, \alpha_4)}{\alpha^{2r} u_0^k (1 - u_0)^m (u_1^2 + \alpha^{-2} (u_2^2 + u_3^2 + u_4^2) + u_5^2 + u_6^2)^{\ell}}$$

where

$$P(u_0, u_1, u_2, u_3, u_4, u_5, u_6, \alpha, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$$

polynomials in $\mathbb{Q}[u_0, u_1, u_2, u_3, u_4, u_5, u_6\alpha, \alpha_1, \alpha_2, \alpha_3, \alpha_4]$ where r, k, m and ℓ non-negative integers

ullet algebraic form $\widetilde{\sigma}_5=\widetilde{\sigma}_5(u_0,u_1,u_2,u_3,u_4,u_5,u_6)$

$$\widetilde{\sigma}_{5} = \frac{1}{2} \Big(u_{1} du_{0} du_{2} du_{3} du_{4} du_{5} du_{6} - u_{2} du_{0} du_{1} du_{3} du_{4} du_{5} du_{6}
+ u_{3} du_{0} du_{1} du_{2} du_{4} du_{5} du_{6} - u_{4} du_{0} du_{1} du_{2} du_{3} du_{5} du_{6}
+ u_{5} du_{0} du_{1} du_{2} du_{3} du_{4} du_{6} - u_{6} du_{0} du_{1} du_{2} du_{3} du_{4} du_{5} \Big).$$

- forms $\Omega^{\alpha}=\Omega^{\alpha}_{(\alpha_1,\alpha_2,\alpha_3,\alpha_4)}$ restricting to a fixed $\alpha\in\mathbb{A}^1\smallsetminus\{0\}$: four-parameter family
- ullet domain of definition complement in \mathbb{A}^7 of the union of the affine hyperplanes $H_0=\{u_0=0\}$ and $H_1=\{u_0=1\}$ and the hypersurface \widehat{CZ}_{α} defined by the vanishing of the quadratic form

$$Q_{\alpha,4} = u_1^2 + \alpha^{-2}(u_2^2 + u_3^2 + u_4^2) + u_5^2 + u_6^2$$

domain of integration Q-semialgebraic set

$$A_6 = \left\{ (u_0, \dots, u_6) \in \mathbb{A}^7(\mathbb{R}) : \begin{array}{l} u_1^2 + u_2^2 + u_0 u_3^2 + (1 - u_0) u_4^2 + u_5^2 + u_6^2 = 1 \\ 0 < u_i < 1, \quad i = 0, 1, 2, 5, 6 \end{array} \right\}$$

• the change of variables used here

$$u_0 = \sin^2(\eta), \qquad u_1 = \xi_1, \qquad u_2 = \xi_2$$
 $u_3 = \csc(\eta) \, \xi_3, \qquad u_4 = \sec(\eta) \, \xi_4, \qquad u_5 = \xi_5, \qquad u_6 = \xi_6$

higher order terms a_{2n}

$$a_{2n} = \frac{1}{2^5 \, \pi^{3+n}} \mathsf{Res}(\Delta_{2n}^{-1})$$

using auxiliary flat tori T^{2n-2}

$$\Delta_{2n} = D^2 \otimes 1 + 1 \otimes \Delta_{\mathbb{T}^{2n-2}}$$

need term σ_{-2n-2} homogeneous of order -2n-2 in expansion of pseudodifferential symbol of parametrix Δ_{2n}^{-1}

ullet recursive argument for structure of term σ_{-2n-2}

• term $tr(\sigma_{-2n-2})$ given by

$$\sum_{j=1}^{M_n} c_{j,2n} \, u_0^{\beta_{0,1,j}/2} \, (1-u_0)^{\beta_{0,2,j}/2} \, \frac{u_1^{\beta_{1,j}} \, u_2^{\beta_{2,j}} \cdots \, u_{2n+2}^{\beta_{2n+2,j}}}{Q_{\alpha,2n}^{\rho_{j,2n}}} \, \alpha^{k_{0,j}} \, \alpha_1^{k_{1,j}} \, \cdots \, \alpha_{2n}^{k_{2n,j}},$$

where

$$\alpha = a(t), \qquad \alpha_1 = a'(t), \qquad \alpha_2 = a''(t), \qquad \dots \qquad \alpha_{2n} = a^{2n}(t),$$

$$Q_{\alpha,2n} = u_1^2 + \frac{1}{\alpha^2}(u_2^2 + u_3^2 + u_4^2) + u_5^2 + \dots + u_{2n+2}^2,$$

$$c_{j,2n} \in \mathbb{Q}, \quad \beta_{0,1,j}, \beta_{0,2,j}, k_{0,j} \in \mathbb{Z}, \quad \beta_{1,j}, \dots, \beta_{2n+2,j}, \rho_{j,2n}, k_{1,j}, \dots, k_{2n,j} \in \mathbb{Z}_{\geq 0}.$$

using change of coordinates

$$u_0 = \sin^2(\eta),$$
 $u_3 = \csc(\eta) \, \xi_3,$ $u_4 = \sec(\eta) \, \xi_4$ $u_j = \xi_j,$ $j = 1, 2, 5, 6, \dots, 2n + 2$

a_{2n} -terms as period integrals $C \cdot \int_{A_{2n}} \Omega^{\alpha}_{\alpha_1,...,\alpha_{2n}}$

• algebraic differential form

$$\Omega^{\alpha}_{\alpha_1,\ldots,\alpha_{2n}}(u_0,u_1,\ldots,u_{2n+2})$$

domain of definition complement

$$\mathbb{A}^{2n+3} \smallsetminus (\widehat{\mathit{CZ}}_{\alpha,2n} \cup \mathit{H}_0 \cup \mathit{H}_1)$$

with hyperplanes $H_0 = \{u_0 = 0\}$ and $H_1 = \{u_0 = 1\}$ and $\tilde{CZ}_{\alpha,2n}$ the hypersurface defined by the vanishing of the quadric

$$Q_{\alpha,2n} = u_1^2 + \frac{1}{\alpha^2}(u_2^2 + u_3^2 + u_4^2) + u_5^2 + \dots + u_{2n+2}^2$$

• \mathbb{Q} -semialgebraic set A_{2n+2}

$$A_{2n+2} = \left\{ (u_0, \dots, u_{2n+2}) \in \mathbb{A}^{2n+3}(\mathbb{R}) \ : \quad \begin{array}{ll} u_1^2 + u_2^2 + u_0 u_3^2 + (1-u_0) u_4^2 + \sum_{i=5}^{2n+2} u_i^2 = 1 \\ 0 < u_i < 1, \quad i = 0, 1, 2, 5, 6, \dots, 2n+2 \end{array} \right\}$$

Periods and Motives

- Main Idea: can constrain the type of numbers that can occur as periods $\int_{\sigma} \omega$ on a given algebraic variety X on the basis of information about the *motive* $\mathfrak{m}(X)$ of X
- Motives (Grothendieck) are a universal cohomology theory for algebraic varieties (morphisms: equivalence classes of algebraic cycles in the product)
 - pure motives: smooth projective varieties
 - mixed motives: more general varieties (quasi-projective, singular...)

in applications to physics one typically deals with mixed motives

Motives of algebraic varieties (Grothendieck) Universal cohomology theory for algebraic varieties (with realizations)

• Pure motives: smooth projective varieties with correspondences

$$\mathsf{Hom}((X,p,m),(Y,q,n)) = q \mathsf{Corr}_{/\sim,\mathbb{Q}}^{m-n}(X,Y) \, p$$

Algebraic cycles mod equivalence (rational, homological, numerical), composition

$$\operatorname{Corr}(X, Y) \times \operatorname{Corr}(Y, Z) \to \operatorname{Corr}(X, Z)$$

 $(\pi_{X,Z})_*(\pi_{X,Y}^*(\alpha) \bullet \pi_{Y,Z}^*(\beta))$

intersection product in $X \times Y \times Z$; with projectors $p^2 = p$ and $q^2 = q$ and Tate twists $\mathbb{Q}(m)$ with $\mathbb{Q}(1) = \mathbb{L}^{-1}$

Numerical pure motives: $\mathcal{M}_{num,\mathbb{Q}}(k)$ semi-simple abelian category (Jannsen)

• <u>Mixed motives</u>: varieties that are possibly singular or not projective (much more complicated theory!) Triangulated category \mathcal{DM} (Voevodsky , Levine, Hanamura)

$$\mathfrak{m}(Y) o \mathfrak{m}(X) o \mathfrak{m}(X \setminus Y) o \mathfrak{m}(Y)[1]$$

$$\mathfrak{m}(X \times \mathbb{A}^1) = \mathfrak{m}(X)(-1)[2]$$

- <u>Mixed Tate motives</u> $\mathcal{DMT} \subset \mathcal{DM}$ generated by the $\mathbb{Q}(m)$ Over a number field: t-structure, abelian category of mixed Tate motives (vanishing result, M.Levine)
- ullet Periods: $\int_{\sigma} \omega$ integrals of algebraic differential forms ω on a cycle σ defined by algebraic equations in an algebraic variety

Mixed Motives and Mixed Tate Motives

 \bullet there is a triangulated $\otimes\text{-category}~\mathcal{DM}$ of mixed motives (Voevodsky , Levine, Hanamura)

$$\mathfrak{m}(U\cap V) o \mathfrak{m}(U) \oplus \mathfrak{m}(V) o \mathfrak{m}(X) o \mathfrak{m}(U\cap V)$$
[1] Mayer-Vietoris
$$\mathfrak{m}(Y) o \mathfrak{m}(X) o \mathfrak{m}(X \smallsetminus Y) o \mathfrak{m}(Y)$$
[1] Gysin
$$\mathfrak{m}(X \times \mathbb{A}^1) = \mathfrak{m}(X)(-1)$$
[2] homotopy
$$\mathfrak{m}(X)^\vee = \mathfrak{m}^c(X)(-d)[-2d] \quad \text{duality}$$

- Mixed Tate motives: triangulated \otimes -subcateory $\mathcal{DMT} \subset \mathcal{DM}$ generated by the Tate objects $\mathbb{Q}(m)$ $\mathbb{Q}(1)$ formal inverse of Lefschetz motive $\mathbb{L} = h^2(\mathbb{P}^1)$
- Method: to show $\mathfrak{m}(X)$ mixed Tate realize it in terms of distinguished triangles where two out of three terms are mixed Tate \Rightarrow third one also is (or one is and one is not, then third also not)
- Over a number field: t-structure, abelian category of mixed Tate motives (vanishing result, M.Levine)

Motives and the Grothendieck ring of varieties

- Usually difficult to determine explicitly the motive of $\mathfrak{m}(X)$ in the triangulated category of *mixed motives*
- Simpler invariant (universal Euler characteristic for motives): class $[X_{\Gamma}]$ in the Grothendieck ring of varieties $K_0(\mathcal{V})$
 - \bullet generators [X] isomorphism classes

•
$$[X] = [X \setminus Y] + [Y]$$
 for $Y \subset X$ closed

$$\bullet \ [X] \cdot [Y] = [X \times Y]$$

Tate motives: $\mathbb{Z}[\mathbb{L}, \mathbb{L}^{-1}] \subset \mathcal{K}_0(\mathcal{M})$ (\mathcal{K}_0 group of category of pure motives: virtual motives)

Universal Euler characteristics:

Any additive invariant of varieties: $\chi(X) = \chi(Y)$ if $X \cong Y$

$$\chi(X) = \chi(Y) + \chi(X \setminus Y), \quad Y \subset X$$
$$\chi(X \times Y) = \chi(X)\chi(Y)$$

values in a commutative ring $\ensuremath{\mathcal{R}}$ is same thing as a ring homomorphism

$$\chi: \mathcal{K}_0(\mathcal{V}) \to \mathcal{R}$$

Examples:

- Topological Euler characteristic
- Couting points over finite fields
- Gillet–Soulé motivic $\chi_{mot}(X)$:

$$\chi_{mot}: \mathcal{K}_0(\mathcal{V})[\mathbb{L}^{-1}] \to \mathcal{K}_0(\mathcal{M}), \quad \chi_{mot}(X) = [(X, id, 0)]$$

for X smooth projective; complex $\chi_{mot}(X) = W^{\cdot}(X)$

Mixed Motives associated to spectral action coefficients as periods

$$\mathfrak{m}(\mathbb{A}^{2n+3} \smallsetminus (\widehat{\mathit{CZ}}_{\alpha,2n} \cup \mathit{H}_0 \cup \mathit{H}_1), \Sigma)$$

divisor Σ containing boundary of domain of integration A_{2n}

- motives of quadrics (Rost, Vishik)
 - ullet hyperbolic form $\mathbb{H}:=\langle 1,-1
 angle$
 - $Q = d \cdot \mathbb{H}$ of dimension 2d

$$\mathfrak{m}(Z_{d\mathbb{H}}) = \mathbb{Z}(d-1)[2d-2] \oplus \mathbb{Z}(d-1)[2d-2] \oplus \bigoplus_{i=0,\dots,d-2,d,\dots,2d-2} \mathbb{Z}(i)[2i]$$

• $Q = d \cdot \mathbb{H} \perp \langle 1 \rangle$ in dimension 2d + 1

$$\mathfrak{m}(Z_{d\mathbb{H}\perp\langle 1\rangle}) = \bigoplus_{i=0,\ldots,2d-1} \mathbb{Z}(i)[2i]$$

• if \exists quadratic field extension \mathbb{K} where Q hyperbolic

$$\mathfrak{m}(Z_Q) = \left\{ \begin{array}{ll} \mathfrak{m}_1 \oplus \mathfrak{m}_1(1)[2] & m = 2 \mod 4 \\ \mathfrak{m}_1 \oplus \mathcal{R}_{Q,\mathbb{K}} \oplus \mathfrak{m}_1(1)[2] & m = 0 \mod 4 \end{array} \right.$$

involving forms of Tate motives

• quadratic field extension $\mathbb{Q}(\sqrt{-1})$, assuming $\alpha \in \mathbb{Q}^*$

$$Q_{\alpha,2} = u_1^2 + \alpha^{-2}(u_2^2 + u_3^2 + u_4^2)$$

change of variables

$$X = u_1 + \frac{i}{\alpha}u_2, \ Y = u_1 - \frac{i}{\alpha}u_2, \ Z = \frac{i}{\alpha}(u_3 + iu_4), \ W = \frac{i}{\alpha}(u_3 - iu_4)$$

identification of Z_{α} with the Segre quadric

$$\{XY - ZW = 0\} \simeq \mathbb{P}^1 \times \mathbb{P}^1$$

• similar for a_{2n} -term case

$$Q_{\alpha,2n} = u_1^2 + \frac{1}{\alpha^2}(u_2^2 + u_3^2 + u_4^2) + u_5^2 + u_6^2 + \dots + u_{2n+1}^2 + u_{2n+2}^2$$

inductively: change of coordinates

$$X = u_{2n+1} + iu_{2n+2}, \quad Y = u_{2n+1} - iu_{2n+2}$$

puts $Q_{\alpha,2n}$ in the form

$$Q_{\alpha,2n}=Q_{\alpha,2n-2}(u_1,\ldots,u_{2n})+XY.$$

classes in the Grothendieck ring

ullet $Z_{lpha,2n}$ quadric in \mathbb{P}^{2n+1} determined by $Q_{lpha,2n}$

$$[\mathbb{P}^{2n+1} \setminus Z_{\alpha,2n}] = \mathbb{L}^{2n+1} - \mathbb{L}^n$$
$$[\mathbb{A}^{2n+3} \setminus \widehat{CZ}_{\alpha,2n}] = \mathbb{L}^{2n+3} - \mathbb{L}^{2n+2} - \mathbb{L}^{n+2} + \mathbb{L}^{n+1}$$
$$[\mathbb{A}^{2n+3} \setminus (\widehat{CZ}_{\alpha,2n} \cup H_0 \cup H_1)] = \mathbb{L}^{2n+3} - 3\mathbb{L}^{2n+2} + 2\mathbb{L}^{2n+1} - \mathbb{L}^{n+2} + 3\mathbb{L}^{n+1} - 2\mathbb{L}^n$$

based on an inductive argument using identities

3
$$[CZ] = \mathbb{L}[Z] + 1$$

$$(\widehat{CZ} \cup H \cup H')] = \mathbb{L}^{N+1} - 2\mathbb{L}^N - (\mathbb{L} - 2)(\mathbb{L} - 1)[Z] - (\mathbb{L} - 2).$$

with $Z \subset \mathbb{P}^{N-1}$, $\hat{Z} \subset \mathbb{A}^N$ affine cone, CZ projective cone in \mathbb{P}^N , H and H' affine hyperplanes with $H \cap H' = \emptyset$, intersections $\widehat{CZ} \cap H$ and $\widehat{CZ} \cap H'$ sections \widehat{Z} of cone

Mixed Tate

• mixed motive (over field $\mathbb{Q}(\sqrt{-1})$)

$$\mathfrak{m}(\mathbb{A}^{2n+3} \smallsetminus (\widehat{\mathit{CZ}}_{\alpha,2n} \cup \mathit{H}_0 \cup \mathit{H}_1), \Sigma)$$

is mixed Tate

ullet over $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$ quadratic form

$$Q_{\alpha,2n}|_{\mathbb{Q}(\sqrt{-1})}=(n+1)\cdot\mathbb{H},$$

so motive

$$\mathfrak{m}(Z_{\alpha,2n}|_{\mathbb{K}}) = \mathbb{Z}(n)[2n] \oplus \mathbb{Z}(n)[2n] \oplus \bigoplus_{i=0,\dots,n-1,n+1,\dots 2n} \mathbb{Z}(i)[2i]$$

• rest of the argument shown in example of a2 for simplicity

• $\mathfrak{m}(\mathbb{P}^3 \setminus Z_\alpha)$ is mixed Tate

$$\mathfrak{m}(\mathbb{P}^3 \smallsetminus Z_\alpha) \to \mathfrak{m}(\mathbb{P}^3) \to \mathfrak{m}(Z_\alpha)(1)[2] \to \mathfrak{m}(\mathbb{P}^3 \smallsetminus Z_\alpha)[1]$$

Gysin distinguished triangle of the closed codim one embedding $Z_{lpha}\hookrightarrow \mathbb{P}^3$

• projective cone CZ_{α} in \mathbb{P}^4 : homotopy invariance for \mathbb{A}^1 -fibration $\mathbb{P}^4 \smallsetminus CZ_{\alpha} \to \mathbb{P}^3 \smallsetminus Z_{\alpha}$

$$\mathfrak{m}_c^j(\mathbb{P}^4 \smallsetminus \mathit{CZ}_\alpha) = \mathfrak{m}_c^{j-2}(\mathbb{P}^3 \smallsetminus \mathit{Z}_\alpha)(-1)$$

motive $\mathfrak{m}(\mathbb{P}^4 \setminus \mathit{CZ}_{\alpha})$ also mixed Tate

• motive $\mathfrak{m}(\mathbb{A}^5 \smallsetminus \widehat{CZ}_{\alpha})$ mixed Tate: \mathbb{P}^1 -bundle \mathcal{P} compactification of \mathbb{G}_m -bundle

$$\mathcal{T} = \mathbb{A}^5 \setminus \widehat{CZ}_{\alpha} \to X = \mathbb{P}^4 \setminus CZ_{\alpha}$$

and Gysin distinguished triangle

$$\mathfrak{m}(\mathcal{T}) o \mathfrak{m}(\mathcal{P}) o \mathfrak{m}_c(\mathcal{P} \smallsetminus \mathcal{T})^*(1)[2] o \mathfrak{m}(\mathcal{T})[1]$$

 $\mathfrak{m}_c(\mathcal{P} \setminus \mathcal{T})$ mixed Tate since $\mathcal{P} \setminus \mathcal{T}$ two copies of X, so $\mathfrak{m}(\mathcal{T})$ mixed Tate

• union $\widehat{CZ}_{\alpha} \cup H_0 \cup H_1$ is mixed Tate: motives $\mathfrak{m}(\mathbb{A}^5 \setminus (H_0 \cup H_1))$ and $\mathfrak{m}(\mathbb{A}^5 \setminus \widehat{CZ}_{\alpha})$ and motive of intersection $\mathfrak{m}(\widehat{CZ}_{\alpha} \cap (H_0 \cup H_1))$ are mixed Tate

$$\mathfrak{m}(U\cap V) \to \mathfrak{m}(U) \oplus \mathfrak{m}(V) \to \mathfrak{m}(U\cup V) \to \mathfrak{m}(U\cap V)[1]$$

Mayer-Vietoris distinguished triangle with $U=\mathbb{A}^5 \setminus \widehat{CZ}_{\alpha}$ and $V=\mathbb{A}^5 \setminus (H_0 \cup H_1)$

- $\mathfrak{m}(\mathbb{A}^5 \setminus \widehat{CZ}_{\alpha})$ mixed Tate by previous
- $\mathfrak{m}(\mathbb{A}^5 \setminus (H_0 \cup H_1))$ also mixed Tate since $\mathfrak{m}(H_0 \cup H_1)$ is
- $\mathfrak{m}(\widehat{CZ}_{\alpha} \cap (H_0 \cup H_1))$ mixed Tate because intersection $\widehat{CZ}_{\alpha} \cap (H_0 \cup H_1)$ two sections of the cone and $\mathfrak{m}(\widehat{Z}_{\alpha})$ Tate
- then also $\mathfrak{m}(\mathbb{A}^5 \smallsetminus (\widehat{CZ}_{\alpha} \cap (H_0 \cup H_1))$ mixed Tate
- \bullet divisor Σ in \mathbb{A}^5 is a union of coordinate hyperplanes and their translates: mixed Tate
- $\mathfrak{m}(\mathbb{A}^5 \setminus (\widehat{CZ}_{\alpha} \cap (H_0 \cup H_1), \Sigma)$ also mixed Tate: distinguished triangle with $\mathfrak{m}(\mathbb{A}^5 \setminus (\widehat{CZ}_{\alpha} \cap (H_0 \cup H_1))$ and $\mathfrak{m}(\Sigma)$

Conclusions:

- known since some time that in Quantum Field Theory the Feynman integrals in perturbative expansion are periods of motives
- expect algebro-geometric structures of this kind to occur elsewhere in physics
- spectral action coefficients for sufficiently nice (regular) spacetimes like Robertson-Walker or Bianchi IX find that indeed coefficients of the asymptotic expansion are also periods of motives
- in QFT only smaller Feynman diagrams (up to 8 loops for scalar field theory) give mixed Tate motives
- for spectral action of Robertson-Walker (or Bianchi IX) all the coefficients are mixed Tate periods

