Noncommutative Geometry and Arithmetic

Matilde Marcolli

ICM 2010 - Mathematical Physics Section

Bibliography (partial)

- G. Cornelissen, M. Marcolli, Quantum Statistical Mechanics, L-series, and anabelian geometry, preprint.
- M. Marcolli, Solvmanifolds and noncommutative tori with real multiplication, Communications in Number Theory and Physics, Volume 2, No. 2 (2008) 423-479.
- Yu.I. Manin, M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry, Selecta Mathematica (N.S.) Vol. 8 N. 3 (2002) 475-520.
- A. Connes, M. Marcolli, N. Ramachandran, KMS states and complex multiplication, Selecta Mathematica (N.S.) Vol. 11 (2005) N.3-4, 325-347.
- A. Connes, M. Marcolli, Quantum statistical mechanics of \mathbb{Q}-lattices, in "Frontiers in Number Theory, Physics and Geometry, I" pp.269-350, Springer Verlag, 2006.

The geometry of imaginary quadratic fields
Elliptic curves
$E_{q}(\mathbb{C})=\mathbb{C}^{*} / q^{\mathbb{Z}}=\mathbb{C}^{2} /(\mathbb{Z}+\tau \mathbb{Z})$
Complex multiplication $\operatorname{End}\left(E_{\tau, \mathbb{K}}\right)=\mathbb{Z}+f O_{\mathbb{K}}$
$\mathbb{K}=\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{-d})$, ring of integers $O_{\mathbb{K}}, f \geq 1$ integer
(conductor)
Abelian extensions of imaginary quadratic fields (torsion points)

$$
\mathbb{K}^{a b}=\mathbb{K}\left(t\left(E_{\tau, \mathbb{K}, \mathrm{tors}}\right), j\left(E_{\tau, \mathbb{K}}\right)\right)
$$

$t=$ coordinate on quotient $E_{\tau} / \operatorname{Aut}\left(E_{\tau}\right) \simeq \mathbb{P}^{1}$
$j\left(E_{\tau, \mathbb{K}}\right) j$-invariant

The moduli space viewpoint
Elliptic curves E_{τ} up to isomorphism
modular curve $X_{\Gamma}(\mathbb{C})=\mathbb{H} / \Gamma$, upper half plane $\bmod \operatorname{PSL}_{2}(\mathbb{Z})$

+ level structure: $X_{G}(\mathbb{C})=\mathbb{H} / G$, finite index $G \subset \Gamma$
complex multiplication case $\tau \in \mathbb{H}$ CM points, in some
$\mathbb{K}=\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{-d})$
F field of modular functions on the tower

$$
\operatorname{Sh}\left(\mathrm{GL}_{2}, \mathbb{H}^{ \pm}\right)=\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times \mathbb{H}^{ \pm}
$$

abelian extensions of imaginary quadratic fields:

$$
\mathbb{K}^{a b}=\mathbb{K}\left(f(\tau), f \in F, \tau \in \mathrm{CM} \text { points of } X_{\Gamma}\right)
$$

values of modular functions at CM points
Galois action $\operatorname{Gal}\left(\mathbb{K}^{a b} / \mathbb{K}\right)$ induced by $\operatorname{Aut}(F)=\mathbb{Q}^{*} \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}, f}\right)$

Case of \mathbb{Q} : Kronecker-Weber

$$
\mathbb{Q}^{a b}=\mathbb{Q}\left(\mathbb{G}_{m, \text { tors }}\right),
$$

torsion points of multiplicative group \mathbb{G}_{m}, roots of unity, cyclotomic extensions tower

$$
\operatorname{Sh}\left(\mathrm{GL}_{1}, \pm 1\right)=\mathrm{GL}_{1}(\mathbb{Q}) \backslash \mathrm{GL}_{1}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times\{ \pm 1\}
$$

Observation the multiplicative group $\mathbb{C}^{*}=\mathbb{G}_{m}(\mathbb{C})$ is a degenerate elliptic curve

$$
q \rightarrow e^{2 \pi i \theta}, \quad \theta \in \mathbb{P}^{1}(\mathbb{Q}) \subset \mathbb{P}^{1}(\mathbb{R})=\partial \mathbb{H}
$$

Other possible degenerations of $E_{q}(\mathbb{C})=\mathbb{C}^{*} / q^{\mathbb{Z}}$ when $q \rightarrow e^{2 \pi i \theta}$ with $\theta \in \mathbb{R} \backslash \mathbb{Q}$???
No longer within algebraic geometry but noncommutative geometry Quotients in NCG are replaced by crossed product algebras!

Other number fields? Real quadratic fields? Hilbert's 12th problem (explicit class field theory)
Manin's program: Noncommutative tori and real multiplication
Goal: find a geometric analog of CM elliptic curves for real quadratic fields $\mathbb{Q}(\sqrt{d})$
Noncommutative tori $\mathcal{A}_{\theta}=C\left(S^{1}\right) \rtimes_{\theta} \mathbb{Z}$ irrational rotation Two unitaries with $V U=e^{2 \pi i \theta} U V$ Twisted group C^{*}-algebra $C^{*}\left(\mathbb{Z}^{2}, \sigma\right)$

$$
\sigma_{\theta}\left((n, m),\left(n^{\prime}, m^{\prime}\right)\right)=\exp \left(-2 \pi i\left(\xi_{1} n m^{\prime}+\xi_{2} m n^{\prime}\right)\right), \quad \theta=\xi_{2}-\xi_{1}
$$

Real multiplication when $\theta \in \mathbb{Q}(\sqrt{d})$ non-trivial self Morita equivalences of the NC torus

Geometric idea: noncommutative geometry describes bad quotients $X=$ nice geometric object (smooth manifold, variety, etc)
$\sim=$ equivalence relation
In general quotient $Y=X / \sim$ no longer nice
Functions $C(Y)=\{f \in C(X) \mid \sim$ invariant $\}$ too small
(for instance $C(Y)=\mathbb{C}$)
Better algebra of functions $C(\mathcal{R})$ functions on $\mathcal{R} \subset X \times X$ graph of the equivalence relation

$$
f_{1} \star f_{2}(x, y)=\sum_{x \sim z \sim y} f_{1}(x, z) f_{2}(z, y)
$$

convolution product: associative, non-commutative Algebra of function on the "noncommutative space" $Y=X / \sim$ Leaves identification explicit: groupoid (cf stacks in alg geom)

Real quadratic fields candidate generators for abelian extensions Stark numbers: lattices $L \subset \mathbb{K}=\mathbb{Q}(\sqrt{d})$, family of L-functions

$$
S_{0}\left(L, \ell_{0}\right)=\exp \left(\left.\frac{d}{d s} \zeta\left(L, \ell_{0}, s\right)\right|_{s=0}\right)
$$

Prototype example: Shimizu L-function

$$
L(\Lambda, s)=\sum_{\mu \in(\Lambda \backslash\{0\}) / V} \frac{\operatorname{sign}(N(\mu))}{|N(\mu)|^{s}}
$$

$\Lambda=\iota(L) \subset \mathbb{R}^{2}$ lattice from two embeddings of $L \subset \mathbb{K}$ in \mathbb{R},

$$
V=\left\{u \in O_{\mathbb{K}}^{*} \mid u L \subset L, \iota(u) \in\left(\mathbb{R}_{+}^{*}\right)^{2}\right\}=\epsilon^{\mathbb{Z}}
$$

units, and $N(\mu)=\mu \mu^{\prime}$ norm
\Rightarrow in terms of geometry of NC tori with real multiplication?
$\mathbb{T}_{\theta} / \operatorname{Aut}\left(\mathbb{T}_{\theta}\right)$ analog of $E_{\mathbb{K}} / \operatorname{Aut}\left(E_{\mathbb{K}}\right)$ for NC tori?
(hint from Atiyah-Donnelly-Singer proof of Hirzebruch conjecture)
Solvmanifold $X_{\epsilon}=\mathbb{R}^{2} \rtimes_{\epsilon} \mathbb{R} / S(\Lambda, V)$

$$
\pi_{1}\left(X_{\epsilon}\right)=S(\Lambda, V)=\mathbb{Z}^{2} \rtimes_{\varphi_{\epsilon}} \mathbb{Z}=\Lambda \rtimes_{\epsilon} V
$$

$T^{2} \rightarrow X_{\epsilon} \rightarrow S^{1}$ fibration (mapping torus)
Commutative homotopy quotient model (Baum-Connes) of NC space $\mathbb{T}_{\theta} / \operatorname{Aut}\left(\mathbb{T}_{\theta}\right)$ given by

$$
\begin{gathered}
\mathcal{A}_{\theta} \rtimes V \cong C^{*}\left(\mathbb{Z}^{2} \rtimes_{\varphi_{\epsilon}} \mathbb{Z}, \tilde{\sigma}_{\theta}\right) \\
\tilde{\sigma}_{\theta}\left((n, m, k),\left(n^{\prime}, m^{\prime}, k^{\prime}\right)\right)=\sigma_{\theta}\left((n, m),\left(n^{\prime}, m^{\prime}\right) \varphi_{\epsilon}^{k}\right)
\end{gathered}
$$

Isospectral deformation of X_{ϵ} to NC space: all fiber T^{2} become NC tori \mathbb{T}_{θ}, spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ (NC Riemannian manifold) fiberwise Dirac operator on RM noncommutative torus

$$
\begin{gathered}
D_{\theta, \theta^{\prime}}=\left(\begin{array}{cc}
0 & \delta_{\theta^{\prime}}-i \delta_{\theta} \\
\delta_{\theta^{\prime}}+i \delta_{\theta} & 0
\end{array}\right) \\
\delta_{\theta} \psi_{n, m}=(n+m \theta) \psi_{n, m}, \quad \text { and } \quad \delta_{\theta^{\prime}} \psi_{n, m}=\left(n+m \theta^{\prime}\right) \psi_{n, m}
\end{gathered}
$$

Eta function \Rightarrow Shimizu L-function
Wick rotation of a Lorentzian geometry (Lorentzian spectral triple) $N(\lambda)=\lambda_{1} \lambda_{2}=(n+m \theta)\left(n+m \theta^{\prime}\right)$ modes of wave operator $\square_{\lambda}=N(\lambda)$, Lorentzian Dirac operator $\mathcal{D}_{\mathbb{K}, \lambda}^{2}=\square_{\lambda}$

The noncommutative boundary of modular curves
NC tori are degenerations of elliptic curves at the irrational points $\tau \rightarrow \theta$ of the boundary $\mathbb{P}^{1}(\mathbb{R})$ of \mathbb{H}
Moduli space viewpoint:
NC space $C\left(\mathbb{P}^{1}(\mathbb{R})\right) \rtimes \Gamma$ as moduli space of NC tori (with level structure, if $G \subset \Gamma$ finite index)
holography principle: NCG on the boundary recovers AG in the bulk space, holographic image of modular forms? "modular shadows"

Bulk/boundary correspondence for modular curves

- K-theory of NC boundary \Leftrightarrow Manin's modular complex $H_{1}\left(X_{G}\right)$
- modular symbols $\{x, y\}$ between cusps $\mathbb{P}^{1}(\mathbb{Q}) / G$ extend to "limiting modular symbols" at irrational points (limiting cycles)
- Selberg zeta function of X_{G} as Fredholm determinant of Ruelle transfer operator on NC boundary
- Manin's identities for periods of modular forms become integral averages of "Lévy-Mellin transforms" on the NC boundary
Key: orbits of Γ on $\mathbb{P}^{1}(\mathbb{R}) \backslash \mathbb{P}^{1}(\mathbb{Q}) \Leftrightarrow$ orbits of the shift of the continued fraction expansion

NC spaces of \mathbb{Q}-lattices
Degenerations of elliptic curves to NC tori \Leftrightarrow degenerations of lattices $\Lambda=\mathbb{Z}+\tau \mathbb{Z}$ to pseudolattices $L=\mathbb{Z}+\theta \mathbb{Z}$
Adelic description of lattices \Rightarrow can also degenerate at the non-archimedean components \Leftrightarrow degenerations of level structures
\mathbb{Q}-lattices (Λ, ϕ) with $\Lambda \subset \mathbb{R}^{n}$ lattice and $\phi: \mathbb{Q}^{n} / \mathbb{Z}^{n} \rightarrow \mathbb{Q} \Lambda / \Lambda$ group homom
Commensurability $\mathbb{Q} \Lambda_{1}=\mathbb{Q} \Lambda_{2}$ and $\phi_{1}=\phi_{2} \bmod \Lambda_{1}+\Lambda_{2}$
Generalized for number fields or function fields \mathbb{K} instead of \mathbb{Q} Quotient by commensurability $=$ NC space

- 1-dimensional \mathbb{Q}-lattices

The cyclotomic tower $\operatorname{Sh}\left(\mathrm{GL}_{1}, \pm 1\right)=\mathrm{GL}_{1}(\mathbb{Q}) \backslash \mathrm{GL}_{1}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times\{ \pm 1\}$ replaced by noncommutative

$$
S h^{n c}\left(\mathrm{GL}_{1}, \pm 1\right)=\mathrm{GL}_{1}(\mathbb{Q}) \backslash \mathbb{A}_{\mathbb{Q}, f} \times\{ \pm 1\}
$$

C^{*}-algebra $C_{0}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \rtimes \mathbb{Q}_{+}^{*}$ Morita equivalent to $C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}=C^{*}(\mathbb{Q} / \mathbb{Z}) \rtimes \mathbb{N}$ (Bost-Connes algebra)

- 2-dimensional \mathbb{Q}-lattices

The Shimura variety $\operatorname{Sh}\left(\mathrm{GL}_{2}, \mathbb{H}^{ \pm}\right)=\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times \mathbb{H}^{ \pm}$of the modular tower replaced by noncommutative

$$
S^{n c}\left(\mathrm{GL}_{2}, \mathbb{H}^{ \pm}\right)=\mathrm{GL}_{2}(\mathbb{Q}) \backslash M_{2}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times \mathbb{P}^{1}(\mathbb{C})
$$

a groupoid C^{*}-algebra (more delicate: Γ-isomorphisms)

Quantum statistical mechanics

Algebra of observables: (unital) C^{*}-algebra \mathcal{A}
Time evolution: $\sigma: \mathbb{R} \rightarrow \operatorname{Aut}(\mathcal{A})$
States: $\varphi: \mathcal{A} \rightarrow \mathbb{C}, \varphi\left(a^{*} a\right) \geq 0, \varphi(1)=1$, probability measures (extremal $=$ points)
KMS Equilibrium states (Kubo-Martin-Schwinger) at inverse temperature β : $\forall a, b \in \mathcal{A}, \exists F_{a, b}(z)$

$$
\varphi\left(a \sigma_{t}(b)\right)=F_{a, b}(t), \quad \varphi\left(\sigma_{t}(b) a\right)=F_{a, b}(t+i \beta)
$$

$F_{a, b}$ holomorphic on horizontal strip $I_{\beta}=\{0<\Im(z)<\beta\}$, bounded continuous on ∂I_{β}
φ_{β} fails to be a trace by amount controlled by interpolation by a holomorphic function

QSM systems of \mathbb{Q}-lattices
1-dimensional \mathbb{Q}-lattices up to commensurability and scaling: algebra $\mathcal{A}=C^{*}(\mathbb{Q} / \mathbb{Z}) \rtimes \mathbb{N}$, time evolution

$$
\sigma_{t}(f)\left(L, L^{\prime}\right)=\left(\frac{\operatorname{covol}\left(L^{\prime}\right)}{\operatorname{covol}(L)}\right)^{i t} f\left(L, L^{\prime}\right)
$$

$\sigma_{t}(e(r))=e(r), \sigma_{t}\left(\mu_{n}\right)=n^{i t} \mu_{n}$
Bost-Connes quantum statistical mechanical system
Analog for 2-dimensional \mathbb{Q}-lattices
Idea: Equilibrium states of a QSM at inverse temperature β are like "points" for a NC space (extremal KMS states)

Idea Low temperature equilibrium states recover classical (algebro-geometric) spaces

- 1-dimensional \mathbb{Q}-lattices

Low temperature extremal KMS states $\operatorname{Sh}\left(\mathrm{GL}_{1}, \pm 1\right)=\mathrm{GL}_{1}(\mathbb{Q}) \backslash \mathrm{GL}_{1}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times\{ \pm 1\}$, with symmetries $\hat{\mathbb{Z}}^{*} ;$ values of KMS states on $\mathbb{Q}[\mathbb{Q} / \mathbb{Z}] \rtimes \mathbb{N}$ torsion points of \mathbb{G}_{m} (roots of unity) generators of $\mathbb{Q}^{a b}$

- 2-dimensional \mathbb{Q}-lattices

Low temperature extremal KMS states $\operatorname{Sh}\left(\mathrm{GL}_{2}, \mathbb{H}^{ \pm}\right)=\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}, f}\right) \times \mathbb{H}^{ \pm}$, with symmetries $\operatorname{Aut}(F)=\mathbb{Q}^{*} \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}, f}\right)$

QSM of imaginary quadratic fields $\mathbb{K}=\mathbb{Q}(\sqrt{-d})$
Commensurability classes of 1 -dimensional \mathbb{K}-lattices, convolution algebra
$\left(f_{1} \star f_{2}\right)\left((\Lambda, \phi),\left(\Lambda^{\prime}, \phi^{\prime}\right)\right)=\sum_{\left(\Lambda^{\prime \prime}, \phi^{\prime \prime}\right) \sim(\Lambda, \phi)} f_{1}\left((\Lambda, \phi),\left(\Lambda^{\prime \prime}, \phi^{\prime \prime}\right)\right) f_{2}\left(\left(\Lambda^{\prime \prime}, \phi^{\prime \prime}\right),\left(\Lambda^{\prime}, \phi^{\prime}\right)\right)$
Restriction of algebra of 2-dim \mathbb{Q}-lattices to 1-dim \mathbb{K}-lattices
Same time evolution: norms of ideals
Symmetries: $\mathbb{A}_{\mathbb{K}, f}^{*} / \mathbb{K}^{*} \simeq \operatorname{Gal}\left(\mathbb{K}^{a b} / \mathbb{K}\right)$
(automorphisms $\hat{\mathcal{O}}^{*} / \mathcal{O}^{*}$, endomorphisms $\mathrm{Cl}(\mathcal{O})$, class number)
Zero temperature extremal KMS states \Rightarrow values of modular functions at CM points (explicit class field theory)

QSM of number fields

Ha-Paugam: generalization of 2-dim \mathbb{Q}-lattices to Shimura varieties, from these QSM systems of number fields by specialization, reformulation gives

$$
\mathcal{A}_{\mathbb{K}}=C\left(G_{\mathbb{K}}^{a b} \times_{\hat{\mathcal{O}}_{\mathbb{K}}^{*}} \hat{\mathcal{O}}_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+},
$$

$J_{\mathbb{K}}^{+}$semigroup of integral ideals, $G_{\mathbb{K}}^{a b}=\operatorname{Gal}\left(\mathbb{K}^{a b} / \mathbb{K}\right)$
Time evolution by norms of nonzero ideals $\sigma_{t}\left(\mu_{a}\right)=n(a)^{i t} \mu_{a}$
Partition function Dedekind zeta function $\zeta_{\mathbb{K}}(\beta)=\sum_{a} n(a)^{-\beta}$
No solution of Hilbert's 12th problem (arithmetic subalgebra to evaluate zero temperature KMS states?)

From noncommutative to anabelian geometry
How much does $\left(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ know about \mathbb{K} ?
Neukirch-Uchida: $\mathbb{K} \simeq \mathbb{L}$ isomorphic as fields iff absolute Galois groups isomorphic as topological groups
The QSM system $\left(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ seems to involve only the abelianization $G_{\mathbb{K}}^{a b}$, but ...
Thm (Cornelissen-M.) $\mathbb{K} \simeq \mathbb{L}$ isomorphic as fields iff $\left(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ and $\left(\mathcal{A}_{\mathbb{L}}, \sigma_{\mathbb{L}}\right)$ isomorphic QSM
Also equivalent to identity of all L-series with Hecke characters (induced by a homeom of idele class groups)
Where is the anabelian geometry hidden in the QSM $\left(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$?

Outline of proof start with isomorphism of QSM: $\varphi: \mathcal{A}_{\mathbb{K}} \rightarrow \mathcal{A}_{\mathbb{L}}$ isom of C^{*}-algebras with $\sigma_{\mathbb{L}} \varphi=\varphi \sigma_{\mathbb{K}}$ This gives:

- Homeomorphism of space of extremal KMS_{β} states
- $\zeta_{\mathbb{K}}(\beta)=\zeta_{\mathbb{L}}(\beta)$ arithmetic equivalence of fields
- Homeomorphism of $X_{\mathbb{K}}$ and $X_{\mathbb{L}}$ with $X_{\mathbb{K}}=G_{\mathbb{K}}^{a b} \times_{\hat{\mathcal{O}}_{\mathbb{K}}^{*}} \hat{\mathcal{O}}_{\mathbb{K}}$
- Locally constant (in $X_{\mathbb{K}}$) isomorphism of semigroups $J_{\mathbb{K}}^{+}$and $J_{\mathbb{L}}^{+}$
- Isomorphism of $G_{\mathbb{K}}^{a b}$ and $G_{\mathbb{L}}^{a b}$ as endomorphisms of the QSM
- Locally constant $J_{\mathbb{K}}^{+} \simeq J_{\mathbb{L}}^{+}$is constant
- Induced isoms $\hat{\mathcal{O}}_{\mathbb{K}}^{*} \simeq \hat{\mathcal{O}}_{\mathbb{L}}^{*}, \mathbb{A}_{\mathbb{K}, f}^{*} \simeq \mathbb{A}_{\mathbb{L}, f}^{*}$, and $\mathcal{O}_{\mathbb{K}}^{\times} \simeq \mathcal{O}_{\mathbb{L}}^{\times}$

Outline of proof next step

- Isom $J_{\mathbb{K}}^{+} \simeq J_{\mathbb{L}}^{+}$induces isom of additive groups of residue fields $\left(\overline{\mathbb{K}}_{\wp},+\right) \simeq\left(\overline{\mathbb{L}}_{\varphi(\wp)},+\right)$ at prime ideals (using Galois cohomology)
- Same map induces isom of multiplicative groups of integers and of additive groups of residue fields $\Rightarrow \mathbb{K}$ and \mathbb{L} isomorphic as fields Matching of L-series low temperature KMS states

$$
\omega_{\beta}(f)=\frac{\chi(\rho \gamma)}{\zeta_{\mathbb{K}}(\beta)} \sum_{a \in J_{\mathbb{K}, B}^{+}} \frac{\tilde{\chi}(a)}{N_{\mathbb{K}}(a)^{\beta}}
$$

$f(\gamma, \rho)=\chi(\gamma \rho)$, Hecke character whose restriction to $\hat{\mathcal{O}}^{*}$ depends on set of places B, Dirichlet character $\tilde{\chi}$

