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The geometry of imaginary quadratic fields

Elliptic curves
Eq(C) = C∗/qZ = C2/(Z + τZ)

Complex multiplication End(Eτ,K) = Z + fOK
K = Q(τ) = Q(

√
−d), ring of integers OK, f ≥ 1 integer

(conductor)

Abelian extensions of imaginary quadratic fields (torsion points)

Kab = K(t(Eτ,K,tors), j(Eτ,K))

t = coordinate on quotient Eτ/Aut(Eτ ) ' P1

j(Eτ,K) j-invariant
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The moduli space viewpoint
Elliptic curves Eτ up to isomorphism
modular curve XΓ(C) = H/Γ, upper half plane mod PSL2(Z)
+ level structure: XG (C) = H/G , finite index G ⊂ Γ

complex multiplication case τ ∈ H CM points, in some
K = Q(τ) = Q(

√
−d)

F field of modular functions on the tower

Sh(GL2,H±) = GL2(Q)\GL2(AQ,f )×H±

abelian extensions of imaginary quadratic fields:

Kab = K(f (τ), f ∈ F , τ ∈ CM points of XΓ)

values of modular functions at CM points

Galois action Gal(Kab/K) induced by Aut(F ) = Q∗\GL2(AQ,f )
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Case of Q: Kronecker–Weber

Qab = Q(Gm,tors),

torsion points of multiplicative group Gm, roots of unity,
cyclotomic extensions tower

Sh(GL1,±1) = GL1(Q)\GL1(AQ,f )× {±1}

Observation the multiplicative group C∗ = Gm(C) is a degenerate
elliptic curve

q → e2πiθ, θ ∈ P1(Q) ⊂ P1(R) = ∂H

Other possible degenerations of Eq(C) = C∗/qZ when q → e2πiθ

with θ ∈ RrQ ???
No longer within algebraic geometry but noncommutative geometry

Quotients in NCG are replaced by crossed product algebras!
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Other number fields? Real quadratic fields?
Hilbert’s 12th problem (explicit class field theory)

Manin’s program: Noncommutative tori and real multiplication

Goal: find a geometric analog of CM elliptic curves for real
quadratic fields Q(

√
d)

Noncommutative tori Aθ = C (S1) oθ Z irrational rotation
Two unitaries with VU = e2πiθUV
Twisted group C ∗-algebra C ∗(Z2, σ)

σθ((n,m), (n′,m′)) = exp(−2πi(ξ1nm
′ + ξ2mn′)), θ = ξ2 − ξ1

Real multiplication when θ ∈ Q(
√
d) non-trivial self Morita

equivalences of the NC torus
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Geometric idea: noncommutative geometry describes bad quotients
X = nice geometric object (smooth manifold, variety, etc)
∼= equivalence relation
In general quotient Y = X/ ∼ no longer nice
Functions C (Y ) = {f ∈ C (X ) | ∼ invariant} too small
(for instance C (Y ) = C)
Better algebra of functions C (R) functions on R ⊂ X × X graph
of the equivalence relation

f1 ? f2(x , y) =
∑

x∼z∼y
f1(x , z)f2(z , y)

convolution product: associative, non-commutative
Algebra of function on the “noncommutative space” Y = X/ ∼
Leaves identification explicit: groupoid (cf stacks in alg geom)
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Real quadratic fields candidate generators for abelian extensions

Stark numbers: lattices L ⊂ K = Q(
√
d), family of L-functions

S0(L, `0) = exp(
d

ds
ζ(L, `0, s)|s=0)

Prototype example: Shimizu L-function

L(Λ, s) =
∑

µ∈(Λr{0})/V

sign(N(µ))

|N(µ)|s

Λ = ι(L) ⊂ R2 lattice from two embeddings of L ⊂ K in R,

V = {u ∈ O∗K | uL ⊂ L, ι(u) ∈ (R∗+)2} = εZ

units, and N(µ) = µµ′ norm
⇒ in terms of geometry of NC tori with real multiplication?
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Tθ/Aut(Tθ) analog of EK/Aut(EK) for NC tori?
(hint from Atiyah–Donnelly–Singer proof of Hirzebruch conjecture)

Solvmanifold Xε = R2 oε R/S(Λ,V )

π1(Xε) = S(Λ,V ) = Z2 oϕε Z = Λ oε V

T 2 → Xε → S1 fibration (mapping torus)

Commutative homotopy quotient model (Baum–Connes) of NC
space Tθ/Aut(Tθ) given by

Aθ o V ∼= C ∗(Z2 oϕε Z, σ̃θ)

σ̃θ((n,m, k), (n′,m′, k ′)) = σθ((n,m), (n′,m′)ϕk
ε )
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Isospectral deformation of Xε to NC space: all fiber T 2 become
NC tori Tθ, spectral triple (A,H,D) (NC Riemannian manifold)
fiberwise Dirac operator on RM noncommutative torus

Dθ,θ′ =

(
0 δθ′ − iδθ

δθ′ + iδθ 0

)
δθψn,m = (n + mθ)ψn,m, and δθ′ψn,m = (n + mθ′)ψn,m

Eta function ⇒ Shimizu L-function
Wick rotation of a Lorentzian geometry (Lorentzian spectral triple)
N(λ) = λ1λ2 = (n + mθ)(n + mθ′) modes of wave operator
2λ = N(λ), Lorentzian Dirac operator D2

K,λ = 2λ
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The noncommutative boundary of modular curves
NC tori are degenerations of elliptic curves at the irrational points
τ → θ of the boundary P1(R) of H
Moduli space viewpoint:

NC space C (P1(R)) o Γ as moduli space of NC tori
(with level structure, if G ⊂ Γ finite index)

holography principle: NCG on the boundary recovers AG in the
bulk space, holographic image of modular forms? “modular
shadows”
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Bulk/boundary correspondence for modular curves

• K-theory of NC boundary ⇔ Manin’s modular complex H1(XG )

• modular symbols {x , y} between cusps P1(Q)/G extend to
“limiting modular symbols” at irrational points (limiting cycles)

• Selberg zeta function of XG as Fredholm determinant of Ruelle
transfer operator on NC boundary

• Manin’s identities for periods of modular forms become integral
averages of “Lévy–Mellin transforms” on the NC boundary

Key: orbits of Γ on P1(R) r P1(Q) ⇔ orbits of the shift of the
continued fraction expansion
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NC spaces of Q-lattices
Degenerations of elliptic curves to NC tori ⇔ degenerations of
lattices Λ = Z + τZ to pseudolattices L = Z + θZ
Adelic description of lattices ⇒ can also degenerate at the
non-archimedean components ⇔ degenerations of level structures

Q-lattices (Λ, φ) with Λ ⊂ Rn lattice and φ : Qn/Zn → QΛ/Λ
group homom
Commensurability QΛ1 = QΛ2 and φ1 = φ2 mod Λ1 + Λ2

Generalized for number fields or function fields K instead of Q
Quotient by commensurability = NC space
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• 1-dimensional Q-lattices
The cyclotomic tower Sh(GL1,±1) = GL1(Q)\GL1(AQ,f )× {±1}
replaced by noncommutative

Shnc(GL1,±1) = GL1(Q)\AQ,f × {±1}

C ∗-algebra C0(AQ,f ) oQ∗+ Morita equivalent to

C (Ẑ) oN = C ∗(Q/Z) oN (Bost–Connes algebra)

• 2-dimensional Q-lattices
The Shimura variety Sh(GL2,H±) = GL2(Q)\GL2(AQ,f )×H± of
the modular tower replaced by noncommutative

Shnc(GL2,H±) = GL2(Q)\M2(AQ,f )× P1(C)

a groupoid C ∗-algebra (more delicate: Γ-isomorphisms)
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Quantum statistical mechanics
Algebra of observables: (unital) C ∗-algebra A
Time evolution: σ : R→ Aut(A)
States: ϕ : A → C, ϕ(a∗a) ≥ 0, ϕ(1) = 1, probability measures
(extremal = points)
KMS Equilibrium states (Kubo-Martin-Schwinger) at inverse
temperature β: ∀a, b ∈ A,∃Fa,b(z)

ϕ(aσt(b)) = Fa,b(t), ϕ(σt(b)a) = Fa,b(t + iβ)

Fa,b holomorphic on horizontal strip Iβ = {0 < =(z) < β},
bounded continuous on ∂Iβ
ϕβ fails to be a trace by amount controlled by interpolation by a
holomorphic function
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QSM systems of Q-lattices
1-dimensional Q-lattices up to commensurability and scaling:
algebra A = C ∗(Q/Z) oN, time evolution

σt(f )(L, L′) = (
covol(L′)

covol(L)
)it f (L, L′)

σt(e(r)) = e(r), σt(µn) = nitµn
Bost–Connes quantum statistical mechanical system
Analog for 2-dimensional Q-lattices

Idea: Equilibrium states of a QSM at inverse temperature β are
like “points” for a NC space (extremal KMS states)
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Idea Low temperature equilibrium states recover classical
(algebro-geometric) spaces

• 1-dimensional Q-lattices
Low temperature extremal KMS states
Sh(GL1,±1) = GL1(Q)\GL1(AQ,f )× {±1}, with symmetries Ẑ∗;
values of KMS states on Q[Q/Z] oN torsion points of Gm (roots
of unity) generators of Qab

• 2-dimensional Q-lattices
Low temperature extremal KMS states
Sh(GL2,H±) = GL2(Q)\GL2(AQ,f )×H±, with symmetries
Aut(F ) = Q∗\GL2(AQ,f )
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QSM of imaginary quadratic fields K = Q(
√
−d)

Commensurability classes of 1-dimensional K-lattices, convolution
algebra

(f1?f2)((Λ, φ), (Λ′, φ′)) =
∑

(Λ′′,φ′′)∼(Λ,φ)

f1((Λ, φ), (Λ′′, φ′′))f2((Λ′′, φ′′), (Λ′, φ′))

Restriction of algebra of 2-dim Q-lattices to 1-dim K-lattices
Same time evolution: norms of ideals
Symmetries: A∗K,f /K∗ ' Gal(Kab/K)

(automorphisms Ô∗/O∗, endomorphisms Cl(O), class number)
Zero temperature extremal KMS states ⇒ values of modular
functions at CM points (explicit class field theory)
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QSM of number fields
Ha–Paugam: generalization of 2-dim Q-lattices to Shimura
varieties, from these QSM systems of number fields by
specialization, reformulation gives

AK = C (G ab
K ×Ô∗K ÔK) o J+

K ,

J+
K semigroup of integral ideals, G ab

K = Gal(Kab/K)

Time evolution by norms of nonzero ideals σt(µa) = n(a)itµa

Partition function Dedekind zeta function ζK(β) =
∑

a n(a)−β

No solution of Hilbert’s 12th problem (arithmetic subalgebra to
evaluate zero temperature KMS states?)
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From noncommutative to anabelian geometry
How much does (AK, σK) know about K?

Neukirch–Uchida: K ' L isomorphic as fields iff
absolute Galois groups isomorphic as topological groups

The QSM system (AK, σK) seems to involve only the
abelianization G ab

K , but ...

Thm (Cornelissen-M.) K ' L isomorphic as fields iff
(AK, σK) and (AL, σL) isomorphic QSM

Also equivalent to identity of all L-series with Hecke characters
(induced by a homeom of idele class groups)

Where is the anabelian geometry hidden in the QSM (AK, σK)?
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Outline of proof start with isomorphism of QSM:
ϕ : AK → AL isom of C ∗-algebras with σLϕ = ϕσK

This gives:

• Homeomorphism of space of extremal KMSβ states
• ζK(β) = ζL(β) arithmetic equivalence of fields
• Homeomorphism of XK and XL with XK = G ab

K ×Ô∗K ÔK

• Locally constant (in XK) isomorphism of semigroups J+
K and J+

L
• Isomorphism of G ab

K and G ab
L as endomorphisms of the QSM

• Locally constant J+
K ' J+

L is constant

• Induced isoms Ô∗K ' Ô∗L, A∗K,f ' A∗L,f , and O×K ' O
×
L
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Outline of proof next step

• Isom J+
K ' J+

L induces isom of additive groups of residue fields
(K̄℘,+) ' (L̄ϕ(℘),+) at prime ideals (using Galois cohomology)

• Same map induces isom of multiplicative groups of integers and
of additive groups of residue fields ⇒ K and L isomorphic as fields

Matching of L-series low temperature KMS states

ωβ(f ) =
χ(ργ)

ζK(β)

∑
a∈J+

K,B

χ̃(a)

NK(a)β

f (γ, ρ) = χ(γρ), Hecke character whose restriction to Ô∗ depends on set

of places B, Dirichlet character χ̃
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