Noncommutative Geometry and Arithmetic

Matilde Marcolli

ICM 2010 - Mathematical Physics Section

Matilde Marcolli Noncommutative Geometry and Arithmetic

通 とう ほうとう ほうど

Bibliography (partial)

- G. Cornelissen, M. Marcolli, *Quantum Statistical Mechanics, L-series, and anabelian geometry*, preprint.
- M. Marcolli, *Solvmanifolds and noncommutative tori with real multiplication*, Communications in Number Theory and Physics, Volume 2, No. 2 (2008) 423–479.
- Yu.I. Manin, M. Marcolli, *Continued fractions, modular symbols, and noncommutative geometry*, Selecta Mathematica (N.S.) Vol.8 N.3 (2002) 475-520.
- A. Connes, M. Marcolli, N. Ramachandran, *KMS states and complex multiplication*, Selecta Mathematica (N.S.) Vol.11 (2005) N.3–4, 325–347.
- A. Connes, M. Marcolli, *Quantum statistical mechanics of Q-lattices*, in "Frontiers in Number Theory, Physics and Geometry, I" pp.269–350, Springer Verlag, 2006.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The geometry of imaginary quadratic fields

Elliptic curves

 $E_q(\mathbb{C}) = \mathbb{C}^*/q^{\mathbb{Z}} = \mathbb{C}^2/(\mathbb{Z} + \tau \mathbb{Z})$

Complex multiplication $\operatorname{End}(E_{\tau,\mathbb{K}}) = \mathbb{Z} + fO_{\mathbb{K}}$ $\mathbb{K} = \mathbb{Q}(\tau) = \mathbb{Q}(\sqrt{-d})$, ring of integers $O_{\mathbb{K}}$, $f \geq 1$ integer (conductor)

Abelian extensions of imaginary quadratic fields (torsion points)

$$\mathbb{K}^{\mathsf{ab}} = \mathbb{K}(t(\mathsf{E}_{ au,\mathbb{K}, ext{tors}}), j(\mathsf{E}_{ au,\mathbb{K}}))$$

 $t= ext{coordinate}$ on quotient $E_ au/ ext{Aut}(E_ au)\simeq \mathbb{P}^1$ $j(E_{ au,\mathbb{K}})$ *j*-invariant

・ 同 ト ・ ヨ ト ・ ヨ ト

3

The moduli space viewpoint

Elliptic curves E_{τ} up to isomorphism modular curve $X_{\Gamma}(\mathbb{C}) = \mathbb{H}/\Gamma$, upper half plane mod $\mathrm{PSL}_2(\mathbb{Z})$ + level structure: $X_G(\mathbb{C}) = \mathbb{H}/G$, finite index $G \subset \Gamma$

complex multiplication case $au \in \mathbb{H}$ CM points, in some $\mathbb{K} = \mathbb{Q}(au) = \mathbb{Q}(\sqrt{-d})$

F field of modular functions on the tower

$$Sh(\operatorname{GL}_2, \mathbb{H}^{\pm}) = \operatorname{GL}_2(\mathbb{Q}) \setminus \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}, f}) \times \mathbb{H}^{\pm}$$

abelian extensions of imaginary quadratic fields:

 $\mathbb{K}^{ab} = \mathbb{K}(f(\tau), \ f \in F, \ \tau \in \ \mathsf{CM} \text{ points of } X_{\Gamma})$

values of modular functions at CM points Galois action $\operatorname{Gal}(\mathbb{K}^{ab}/\mathbb{K})$ induced by $\operatorname{Aut}(F) = \mathbb{Q}^* \backslash \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q},f})$

・ 同 ト ・ ヨ ト ・ ヨ ト

Case of \mathbb{Q} : Kronecker–Weber

$$\mathbb{Q}^{ab} = \mathbb{Q}(\mathbb{G}_{m,\mathrm{tors}}),$$

torsion points of multiplicative group \mathbb{G}_m , roots of unity, cyclotomic extensions tower

$$\mathsf{Sh}(\mathrm{GL}_1,\pm 1)=\mathrm{GL}_1(\mathbb{Q})ackslash\mathrm{GL}_1(\mathbb{A}_{\mathbb{Q},f}) imes\{\pm 1\}$$

Observation the multiplicative group $\mathbb{C}^* = \mathbb{G}_m(\mathbb{C})$ is a degenerate elliptic curve

$$q
ightarrow e^{2\pi i heta}, \hspace{1em} heta \in \mathbb{P}^1(\mathbb{Q}) \subset \mathbb{P}^1(\mathbb{R}) = \partial \mathbb{H}$$

Other possible degenerations of $E_q(\mathbb{C}) = \mathbb{C}^*/q^{\mathbb{Z}}$ when $q \to e^{2\pi i \theta}$ with $\theta \in \mathbb{R} \setminus \mathbb{Q}$??? No longer within algebraic geometry but noncommutative geometry Quotients in NCG are replaced by crossed product algebras!

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Other number fields? Real quadratic fields? Hilbert's 12th problem (explicit class field theory)

Manin's program: Noncommutative tori and real multiplication Goal: find a geometric analog of CM elliptic curves for real quadratic fields $\mathbb{Q}(\sqrt{d})$

Noncommutative tori $\mathcal{A}_{\theta} = C(S^1) \rtimes_{\theta} \mathbb{Z}$ irrational rotation Two unitaries with $VU = e^{2\pi i \theta} UV$ Twisted group C^* -algebra $C^*(\mathbb{Z}^2, \sigma)$

$$\sigma_{\theta}((n,m),(n',m')) = \exp(-2\pi i(\xi_1 nm' + \xi_2 mn')), \quad \theta = \xi_2 - \xi_1$$

Real multiplication when $\theta \in \mathbb{Q}(\sqrt{d})$ non-trivial self Morita equivalences of the NC torus

伺い イヨト イヨト

Geometric idea: noncommutative geometry describes bad quotients X = nice geometric object (smooth manifold, variety, etc) $\sim =$ equivalence relation In general quotient $Y = X / \sim$ no longer nice Functions $C(Y) = \{f \in C(X) | \sim \text{invariant}\}$ too small (for instance $C(Y) = \mathbb{C}$) Better algebra of functions $C(\mathcal{R})$ functions on $\mathcal{R} \subset X \times X$ graph of the equivalence relation

$$f_1 \star f_2(x,y) = \sum_{x \sim z \sim y} f_1(x,z) f_2(z,y)$$

convolution product: associative, non-commutative Algebra of function on the "noncommutative space" $Y = X / \sim$ Leaves identification explicit: groupoid (cf stacks in alg geom)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Real quadratic fields candidate generators for abelian extensions Stark numbers: lattices $L \subset \mathbb{K} = \mathbb{Q}(\sqrt{d})$, family of L-functions

$$S_0(L,\ell_0) = \exp(\frac{d}{ds}\zeta(L,\ell_0,s)|_{s=0})$$

Prototype example: Shimizu L-function

$$L(\Lambda, s) = \sum_{\mu \in (\Lambda \smallsetminus \{0\})/V} rac{\operatorname{sign}(N(\mu))}{|N(\mu)|^s}$$

 $\Lambda = \iota(L) \subset \mathbb{R}^2$ lattice from two embeddings of $L \subset \mathbb{K}$ in \mathbb{R} ,

$$V = \{u \in O^*_{\mathbb{K}} \mid uL \subset L, \ \iota(u) \in (\mathbb{R}^*_+)^2\} = \epsilon^{\mathbb{Z}}$$

units, and $N(\mu) = \mu \mu'$ norm \Rightarrow in terms of geometry of NC tori with real multiplication?

ヨット イヨット イヨッ

 $\mathbb{T}_{\theta}/\operatorname{Aut}(\mathbb{T}_{\theta})$ analog of $E_{\mathbb{K}}/\operatorname{Aut}(E_{\mathbb{K}})$ for NC tori? (hint from Atiyah–Donnelly–Singer proof of Hirzebruch conjecture) Solvmanifold $X_{\epsilon} = \mathbb{R}^2 \rtimes_{\epsilon} \mathbb{R}/S(\Lambda, V)$

$$\pi_1(X_\epsilon) = \mathcal{S}(\mathsf{\Lambda}, \mathsf{V}) = \mathbb{Z}^2
times_{arphi_\epsilon} \mathbb{Z} = \mathsf{\Lambda}
times_\epsilon \mathsf{V}$$

 $T^2
ightarrow X_\epsilon
ightarrow S^1$ fibration (mapping torus)

Commutative homotopy quotient model (Baum–Connes) of NC space $\mathbb{T}_{\theta}/\operatorname{Aut}(\mathbb{T}_{\theta})$ given by

$$egin{aligned} \mathcal{A}_{ heta}
times V &\cong C^*(\mathbb{Z}^2
times_{arphi_\epsilon} \mathbb{Z}, ilde{\sigma}_{ heta}) \ & ilde{\sigma}_{ heta}((n,m,k), (n',m',k')) = \sigma_{ heta}((n,m), (n',m') arphi_\epsilon^k) \end{aligned}$$

・吊り ・ヨト ・ヨト ・ヨ

Isospectral deformation of X_{ϵ} to NC space: all fiber T^2 become NC tori \mathbb{T}_{θ} , spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ (NC Riemannian manifold) fiberwise Dirac operator on RM noncommutative torus

$$D_{\theta,\theta'} = \left(\begin{array}{cc} 0 & \delta_{\theta'} - i\delta_{\theta} \\ \delta_{\theta'} + i\delta_{\theta} & 0 \end{array}\right)$$

 $\delta_{\theta}\psi_{n,m} = (n + m\theta)\psi_{n,m}, \text{ and } \delta_{\theta'}\psi_{n,m} = (n + m\theta')\psi_{n,m}$

Eta function \Rightarrow Shimizu *L*-function Wick rotation of a Lorentzian geometry (Lorentzian spectral triple) $N(\lambda) = \lambda_1 \lambda_2 = (n + m\theta)(n + m\theta')$ modes of wave operator $\Box_{\lambda} = N(\lambda)$, Lorentzian Dirac operator $\mathcal{D}^2_{\mathbb{K},\lambda} = \Box_{\lambda}$

直 とう きょう うちょう

The noncommutative boundary of modular curves

NC tori are degenerations of elliptic curves at the irrational points $\tau \to \theta$ of the boundary $\mathbb{P}^1(\mathbb{R})$ of \mathbb{H}

Moduli space viewpoint:

NC space $C(\mathbb{P}^1(\mathbb{R})) \rtimes \Gamma$ as moduli space of NC tori (with level structure, if $G \subset \Gamma$ finite index)

holography principle: NCG on the boundary recovers AG in the bulk space, holographic image of modular forms? "modular shadows"

向下 イヨト イヨト

Bulk/boundary correspondence for modular curves

- K-theory of NC boundary \Leftrightarrow Manin's modular complex $H_1(X_G)$
- modular symbols $\{x, y\}$ between cusps $\mathbb{P}^1(\mathbb{Q})/G$ extend to "limiting modular symbols" at irrational points (limiting cycles)
- Selberg zeta function of X_G as Fredholm determinant of Ruelle transfer operator on NC boundary
- Manin's identities for periods of modular forms become integral averages of "Lévy–Mellin transforms" on the NC boundary

Key: orbits of Γ on $\mathbb{P}^1(\mathbb{R}) \smallsetminus \mathbb{P}^1(\mathbb{Q}) \Leftrightarrow$ orbits of the shift of the continued fraction expansion

(日本) (日本) (日本)

NC spaces of Q-lattices

Degenerations of elliptic curves to NC tori \Leftrightarrow degenerations of lattices $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$ to pseudolattices $L = \mathbb{Z} + \theta \mathbb{Z}$

Adelic description of lattices \Rightarrow can also degenerate at the non-archimedean components \Leftrightarrow degenerations of level structures

Q-lattices (Λ, ϕ) with $\Lambda \subset \mathbb{R}^n$ lattice and $\phi : \mathbb{Q}^n / \mathbb{Z}^n \to \mathbb{Q}\Lambda / \Lambda$ group homom

Commensurability $\mathbb{Q}\Lambda_1 = \mathbb{Q}\Lambda_2$ and $\phi_1 = \phi_2 \mod \Lambda_1 + \Lambda_2$

Generalized for number fields or function fields $\mathbb K$ instead of $\mathbb Q$ Quotient by commensurability = NC space

(周) (王) (王)

1-dimensional Q-lattices
 The cyclotomic tower Sh(GL₁, ±1) = GL₁(Q)\GL₁(A_{Q,f}) × {±1}
 replaced by noncommutative

$$Sh^{nc}(\operatorname{GL}_1,\pm 1) = \operatorname{GL}_1(\mathbb{Q}) \setminus \mathbb{A}_{\mathbb{Q},f} \times \{\pm 1\}$$

 C^* -algebra $C_0(\mathbb{A}_{\mathbb{Q},f}) \rtimes \mathbb{Q}^*_+$ Morita equivalent to $C(\hat{\mathbb{Z}}) \rtimes \mathbb{N} = C^*(\mathbb{Q}/\mathbb{Z}) \rtimes \mathbb{N}$ (Bost–Connes algebra)

• 2-dimensional \mathbb{Q} -lattices The Shimura variety $Sh(GL_2, \mathbb{H}^{\pm}) = GL_2(\mathbb{Q}) \setminus GL_2(\mathbb{A}_{\mathbb{Q},f}) \times \mathbb{H}^{\pm}$ of the modular tower replaced by noncommutative

$$Sh^{nc}(\mathrm{GL}_2,\mathbb{H}^{\pm})=\mathrm{GL}_2(\mathbb{Q})\backslash M_2(\mathbb{A}_{\mathbb{Q},f}) imes \mathbb{P}^1(\mathbb{C})$$

a groupoid C^* -algebra (more delicate: Γ -isomorphisms)

伺 とう ヨン うちょう

Quantum statistical mechanics

Algebra of observables: (unital) C^* -algebra \mathcal{A} Time evolution: $\sigma : \mathbb{R} \to \operatorname{Aut}(\mathcal{A})$ States: $\varphi : \mathcal{A} \to \mathbb{C}, \ \varphi(a^*a) \ge 0, \ \varphi(1) = 1$, probability measures (extremal = points) KMS Equilibrium states (Kubo-Martin-Schwinger) at inverse

temperature β : $\forall a, b \in \mathcal{A}, \exists F_{a,b}(z)$

$$\varphi(a\sigma_t(b)) = F_{a,b}(t), \quad \varphi(\sigma_t(b)a) = F_{a,b}(t+i\beta)$$

 $F_{a,b}$ holomorphic on horizontal strip $I_{\beta} = \{0 < \Im(z) < \beta\}$, bounded continuous on ∂I_{β}

 φ_β fails to be a trace by amount controlled by interpolation by a holomorphic function

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

QSM systems of Q-lattices

1-dimensional \mathbb{Q} -lattices up to commensurability and scaling: algebra $\mathcal{A} = C^*(\mathbb{Q}/\mathbb{Z}) \rtimes \mathbb{N}$, time evolution

$$\sigma_t(f)(L,L') = \left(\frac{covol(L')}{covol(L)}\right)^{it} f(L,L')$$

 $\sigma_t(e(r)) = e(r), \ \sigma_t(\mu_n) = n^{it}\mu_n$ Bost–Connes quantum statistical mechanical system Analog for 2-dimensional Q-lattices

Idea: Equilibrium states of a QSM at inverse temperature β are like "points" for a NC space (extremal KMS states)

伺下 イヨト イヨト

Idea Low temperature equilibrium states recover classical (algebro-geometric) spaces

• 1-dimensional \mathbb{Q} -lattices

Low temperature extremal KMS states $Sh(\operatorname{GL}_1, \pm 1) = \operatorname{GL}_1(\mathbb{Q}) \setminus \operatorname{GL}_1(\mathbb{A}_{\mathbb{Q},f}) \times \{\pm 1\}$, with symmetries $\hat{\mathbb{Z}}^*$; values of KMS states on $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] \rtimes \mathbb{N}$ torsion points of \mathbb{G}_m (roots of unity) generators of \mathbb{Q}^{ab}

• 2-dimensional \mathbb{Q} -lattices Low temperature extremal KMS states $Sh(GL_2, \mathbb{H}^{\pm}) = GL_2(\mathbb{Q}) \setminus GL_2(\mathbb{A}_{\mathbb{Q},f}) \times \mathbb{H}^{\pm}$, with symmetries $Aut(F) = \mathbb{Q}^* \setminus GL_2(\mathbb{A}_{\mathbb{Q},f})$

伺下 イヨト イヨト

QSM of imaginary quadratic fields $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$ Commensurability classes of 1-dimensional \mathbb{K} -lattices, convolution algebra

$$(f_1 \star f_2)((\Lambda, \phi), (\Lambda', \phi')) = \sum_{(\Lambda'', \phi'') \sim (\Lambda, \phi)} f_1((\Lambda, \phi), (\Lambda'', \phi'')) f_2((\Lambda'', \phi''), (\Lambda', \phi'))$$

Restriction of algebra of 2-dim Q-lattices to 1-dim K-lattices Same time evolution: norms of ideals Symmetries: $\mathbb{A}_{K,f}^*/\mathbb{K}^* \simeq \operatorname{Gal}(\mathbb{K}^{ab}/\mathbb{K})$ (automorphisms $\hat{\mathcal{O}}^*/\mathcal{O}^*$, endomorphisms $Cl(\mathcal{O})$, class number) Zero temperature extremal KMS states \Rightarrow values of modular functions at CM points (explicit class field theory)

向下 イヨト イヨト

QSM of number fields

Ha–Paugam: generalization of 2-dim \mathbb{Q} -lattices to Shimura varieties, from these QSM systems of number fields by specialization, reformulation gives

$$\mathcal{A}_{\mathbb{K}} = \mathcal{C}(\mathcal{G}^{ab}_{\mathbb{K}} imes_{\hat{\mathcal{O}}^{*}_{\mathbb{K}}} \hat{\mathcal{O}}_{\mathbb{K}}) \rtimes J^{+}_{\mathbb{K}},$$

 $J^+_{\mathbb{K}}$ semigroup of integral ideals, $G^{ab}_{\mathbb{K}} = \operatorname{Gal}(\mathbb{K}^{ab}/\mathbb{K})$ Time evolution by norms of nonzero ideals $\sigma_t(\mu_a) = n(a)^{it}\mu_a$ Partition function Dedekind zeta function $\zeta_{\mathbb{K}}(\beta) = \sum_a n(a)^{-\beta}$ No solution of Hilbert's 12th problem (arithmetic subalgebra to evaluate zero temperature KMS states?)

・ 同 ト ・ ヨ ト ・ ヨ ト …

From noncommutative to anabelian geometry How much does $(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}})$ know about \mathbb{K} ? Neukirch–Uchida: $\mathbb{K} \simeq \mathbb{L}$ isomorphic as fields iff absolute Galois groups isomorphic as topological groups The QSM system $(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}})$ seems to involve only the abelianization $G_{\mathbb{K}}^{ab}$, but ...

Thm (Cornelissen-M.) $\mathbb{K} \simeq \mathbb{L}$ isomorphic as fields iff $(\mathcal{A}_{\mathbb{K}}, \sigma_{\mathbb{K}})$ and $(\mathcal{A}_{\mathbb{L}}, \sigma_{\mathbb{L}})$ isomorphic QSM

Also equivalent to identity of all *L*-series with Hecke characters (induced by a homeom of idele class groups)

Where is the anabelian geometry hidden in the QSM $(A_{\mathbb{K}}, \sigma_{\mathbb{K}})$?

向下 イヨト イヨト

Outline of proof start with isomorphism of QSM: $\varphi : \mathcal{A}_{\mathbb{K}} \to \mathcal{A}_{\mathbb{L}}$ isom of C^* -algebras with $\sigma_{\mathbb{L}} \varphi = \varphi \sigma_{\mathbb{K}}$ This gives:

- \bullet Homeomorphism of space of extremal KMS_β states
- $\zeta_{\mathbb{K}}(\beta) = \zeta_{\mathbb{L}}(\beta)$ arithmetic equivalence of fields
- Homeomorphism of $X_{\mathbb{K}}$ and $X_{\mathbb{L}}$ with $X_{\mathbb{K}} = G_{\mathbb{K}}^{ab} \times_{\hat{\mathcal{O}}_{\mathbb{K}}^*} \hat{\mathcal{O}}_{\mathbb{K}}$
- Locally constant (in $X_{\mathbb{K}}$) isomorphism of semigroups $J^+_{\mathbb{K}}$ and $J^+_{\mathbb{L}}$
- \bullet Isomorphism of ${\cal G}_{\mathbb K}^{ab}$ and ${\cal G}_{\mathbb L}^{ab}$ as endomorphisms of the QSM
- Locally constant $J^+_{\mathbb{K}}\simeq J^+_{\mathbb{L}}$ is constant
- Induced isoms $\hat{\mathcal{O}}^*_{\mathbb{K}} \simeq \hat{\mathcal{O}}^*_{\mathbb{L}}$, $\mathbb{A}^*_{\mathbb{K},f} \simeq \mathbb{A}^*_{\mathbb{L},f}$, and $\mathcal{O}^{\times}_{\mathbb{K}} \simeq \mathcal{O}^{\times}_{\mathbb{L}}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline of proof next step

• Isom $J^+_{\mathbb{K}} \simeq J^+_{\mathbb{L}}$ induces isom of additive groups of residue fields $(\bar{\mathbb{K}}_{\wp}, +) \simeq (\bar{\mathbb{L}}_{\varphi(\wp)}, +)$ at prime ideals (using Galois cohomology)

• Same map induces isom of multiplicative groups of integers and of additive groups of residue fields $\Rightarrow \mathbb{K}$ and \mathbb{L} isomorphic as fields

Matching of L-series low temperature KMS states

$$\omega_{eta}(f) = rac{\chi(
ho\gamma)}{\zeta_{\mathbb{K}}(eta)} \sum_{m{a}\in J^+_{\mathbb{K},B}} rac{ ilde{\chi}(m{a})}{N_{\mathbb{K}}(m{a})^eta}$$

 $f(\gamma, \rho) = \chi(\gamma \rho)$, Hecke character whose restriction to $\hat{\mathcal{O}}^*$ depends on set of places *B*, Dirichlet character $\tilde{\chi}$