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Hopf algebra structures on rooted trees are by now a well-studied
object, especially in the context of combinatorics. In this work
we consider a Hopf algebra H by introducing a coproduct on a
(commutative) algebra of rooted forests, considering each tree of
the forest (which must contain at least one edge) as a Feyman-
like graph without loops. The primitive part of the graded dual is
endowed with a pre-Lie product defined in terms of insertion of
a tree inside another. We establish a surprising link between the
Hopf algebra H obtained this way and the well-known Connes-
Kreimer Hopf algebra of rooted trees Hcx by means of a natural
H-bicomodule structure on Hcg. This enables us to recover recent
results in the field of numerical methods for differential equations
due to Chartier, Hairer and Vilmart as well as Murua.
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1. Introduction

Since the pioneering work of Cayley [7] on the use of rooted trees in the context of differential
equations, many more instances where trees play a significant role have appeared in the literature.

* Corresponding author.

E-mail addresses: calaque@math.univ-lyon1.fr, damien.calaque@math.ethz.ch (D. Calaque), kurusch.ebrahimi-fard@uha.fr
(K. Ebrahimi-Fard), manchon@math.univ-bpclermont.fr (D. Manchon).

URLs: http://math.univ-lyon1.fr/~calaque/ (D. Calaque), http://www.th.physik.uni-bonn.de/th/People/fard/ (K. Ebrahimi-Fard),
http://math.univ-bpclermont.fr/~manchon/ (D. Manchon).

1 On leave of absence from Univ. Lyon 1, France.

0196-8858/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.aam.2009.08.003



D. Calaque et al. / Advances in Applied Mathematics 47 (2011) 282-308 283

The work of Butcher [5], Grossman and Larson [22] and, more recently, Munthe-Kaas and Wright [34]
in the field of numerical analysis, as well as the seminal findings of Kreimer and Connes in the context
of the process of renormalization in perturbative quantum field theory [15] marked such moments.
In these works it is the notion of Hopf algebra defined on rooted trees that characterizes genuine
combinatorial aspects of the underlying problems. The discovery of these algebraic structures lead
to more transparency eventually allowing to obtain profound insights which significantly altered the
picture. (See, for example, [14,16].) Since then the field of combinatorial Hopf algebra has emerged
and many more rooted tree Hopf algebras have been studied.

Recall Rota and Joni’s [26] observation that various combinatorial objects naturally possess compat-
ible product and coproduct structures, ultimately converging into the notion of graded connected Hopf
algebras, now referred to as combinatorial Hopf algebras. See Schmitt’s seminal paper [37]. Generally
speaking, such combinatorial Hopf algebras consist of a graded vector space where the homogeneous
components are spanned by finite sets of combinatorial objects, such as planar or non-planar rooted
trees, and the (co)algebraic structures are given by particular constructions on those objects. In fact,
roughly, one may distinguish between two complementary classes of combinatorial Hopf algebras on
rooted trees, those with a simple algebra structure and a more complicated coalgebra structure and
their graded duals. The aforementioned works by Grossman and Larson, Munthe-Kaas and Wright,
and Kreimer and Connes provide genuine examples. (See also Loday and Ronco [30].)

In this paper, we introduce on the graded commutative polynomial algebra of finite type over
the field k generated by rooted forests a coproduct defined by considering each tree of the forest as a
Feynman graph without loops. This Hopf algebra with its coproduct, is graded by the number of edges
denoted by e. It differs from Connes-Kreimer’s rooted tree Hopf algebra [15], see also [28], which is
graded by the number v of vertices, and where the coproduct is defined in terms of admissible cuts.
For each rooted tree t one has v(t) =e(t) + 1. We show that the primitive part of the graded dual is
endowed with a natural pre-Lie product defined in terms of insertion of a tree inside another.

However, we establish an apparently surprising and useful link between the Hopf algebra H ob-
tained this way and the aforementioned Connes-Kreimer Hopf algebra of rooted trees Hcx by means
of a H-bicomodule structure on Hcg obtained by a natural slight extension of the coproduct of H.
More precisely we show (see Proposition 10) that for any infinitesimal character a of H, the asso-
ciated left coaction operator ‘Lq : Hck — Hck is a biderivation. This in turn defines a Hopf algebra
automorphism ¢ Ly for any character ¢ of the Hopf algebra H.

We recover this way results due to Chartier, Hairer and Vilmart [11-13] about the compatibility
between two products, which, roughly speaking, can be considered as the convolution products with
respect to the two Hopf algebras above, see also [13,39]. We compare the backward error analysis
character w of [11,35] with the element log* of Chapoton [8], thus applying the recursive formulas
of [11,35] to the pre-Lie Magnus expansion of [18]. An operadic interpretation is outlined, and we
finally recover some nice properties of the application w by mapping surjectively Connes-Kreimer’s
Hopf algebra of rooted trees onto Hoffman’s quasi-shuffle Hopf algebra in one generator [24].

The paper is organized as follows. Section 2 and Section 3 briefly recall the basic notions of Hopf
algebra and rooted trees, respectively. In Section 4 a particular commutative and non-cocommutative
Hopf algebra H of rooted trees is studied in detail. The following two sections elaborate on the
coproduct of this Hopf algebra and present refined combinatorial ways to calculate it. In Section 7 a
non-recursive formula for the antipode of H is given. In Section 8 a particular Hopf algebra character
and its inverse are introduced, which are naturally related to the notion of backward error analysis.
The following Section 9 briefly recalls the Connes-Kreimer Hopf algebra Hck of rooted trees and
establishes a relation to the rooted tree Hopf algebra by introducing a H-bicomodule structure on
Hck. Section 10 recalls the composition of B-series. The Hopf algebraic interpretation of Chartier-
Hairer-Vilmart’s substitution law for B-series is given. Section 12 is a continuation of Section 8. Here
a link to the quasi-shuffle Hopf algebra is established and used to calculate a particular infinitesimal
character on the Connes-Kreimer Hopf algebra Hck. Finally, the last section contains some explicit
calculation of the antipode of H.
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2. Preliminaries

For later use in this section we briefly outline the (co)algebraic setting in which we will work.
Here, k denotes the ground field (which will be supposed to be of characteristic zero) over which all
algebraic structures are defined. The term algebra always means unital associative k-algebra, denoted
by the triple (A, m 4, n4), where A is a k-vector space with a product m4: A® A — A and a unit
map 714 : k — A. Coalgebras over k are denoted by the triple (C, A¢, €¢), where the coproduct map
Ac :C— C®C is coassociative and €¢ : C — k denotes the counit map. A subspace J C C is called
a left (right) coideal if Ac(J) CC® J (Ac(J) C J ®C). A right comodule over C is a k-vector
space M together with a linear map v : M — M ®C, such that (Idps ®A¢) oy = (Y @ ld¢) o ¥
and (Idpq ®€c) o v =1d a4 (analogously for left comodules). A bicomodule over C is a k-vector space
M together with two linear maps ¥ : M - M ®C and ¢ : M — C ® M which endow M with a
structure of right and left comodule, respectively, and such that the compatibility condition:

(dc®y)op=(¢p®ldc) oy (1)

holds. A bialgebra consists of an algebra and coalgebra structure together with compatibility relations.
We denote a Hopf algebra by (H, my, N1, A, €1, S). It is a bialgebra together with a particular k-
linear map, i.e. the antipode S : H — H, satisfying the Hopf algebra axioms [1,3,38]. In the following
we omit subscripts if there is no danger of confusion.

Let H be a connected filtered bialgebra:

k=HOcHVc..cHPc... | JH"=mn
n=>0

and let A be any commutative algebra. The space £(H, .A) of linear maps from H to A together with
the convolution product fxg:=m4o0(f®g)oA, f,ge L(H,.A) is an algebra with unit e :=n4o€.
The filtration of H implies a decreasing filtration on £(H,.A) and L(H, A) is complete with respect
to the induced topology, e.g. see [32] for more details. The subset gg C £L(*, .A) of linear maps « that
send the bialgebra unit to zero, o(1) = 0, forms a Lie algebra in £(H, A). The exponential

* 1 «k
exp*(a) = k—‘a
k=0 "

makes sense and is a bijection from go onto the group Go = e + go of linear maps y that send the
bialgebra unit to the algebra unit, a(1) =1 4.
An infinitesimal character with values in A is a linear map & € L(H, A) such that for x, y € H:

E(xy) =EXe(y) +ex)E(y). (2)

We denote by g4 C go the linear space of infinitesimal characters. We call an .4-valued map p in
L(H, A) a character if for x, y € H:

pPxY)=pX) ). (3)

The set of such unital algebra morphisms is denoted by G 4 C Gy. It is easily verified that the set G 4
of characters from H to A forms a group for the convolution product. In fact it is the pro-unipotent
group of A-valued morphisms on the bialgebra H. And g 4 in go is the corresponding pro-nilpotent Lie
algebra. The exponential map exp* restricts to a bijection between g4 and G 4. The neutral element
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e:=ny0€ in G4 is given by e(1) =14 and e(x) =0 for x € Kere. The inverse of ¢ € G 4 is given by
composition with the antipode S:

o =gpos. (4)

Recall the twisting map ty(a ® b) :=b ®a for a, b, say, in the k-vector space V.
For completeness we ask the reader to recall the notion of left pre-Lie algebra [2,9,17]. A left pre-Lie
algebra is a k-vector space P with a binary composition > that satisfies the left pre-Lie identity:

@asbyp>c—ax>b>co)=b>ar>c—br (a>c), (5)

for a,b,c € P and with an analogous identity for right pre-Lie algebra. For a,b € P the bracket
[a,b]:=ar>b — b > a satisfies the Jacobi identity and therefore turns P into a Lie algebra.

3. Rooted trees and rooted forests

Recall, that a - non-planar - rooted tree is either the empty set, or a finite connected simply
connected oriented graph such that every vertex has exactly one incoming edge, except for a distin-
guished vertex (the root) which has no incoming edge. A vertex without outgoing edges is called a
leaf. We list all rooted trees up to degree 5:

Dot bvue DYVeluvga

A rooted forest is a finite collection s = (tq,...,t;) of rooted trees, which we simply denote by
the (commutative) product t1 ---t,. The operator B (e.g. see [21]) associates to the forest s the tree
B (s) obtained by grafting the root of each connected component t; on a common new root. B (¥)
is the unique rooted tree e with only one vertex. Recall the definition of several important numbers
associated to a rooted forest s =t ---t,:

(1) The number of vertices v(s) = Z?:] v(t;).
(2) The number of edges e(s) = 27:1 e(tj). For a nonempty tree t we have e(t) = v(t) — 1.
(3) The tree factorial, recursively defined (with respect to the number of vertices) by e! =1 and

(By(tr---t)) ! =v(By(tr---tn) [ 1! = (1 + Zv(q)) [Tt

The tree factorial is multiplicatively extended to forests: (t1---tp)!:=tq1! -ty

(4) The internal symmetry factor o (s) = 1_[']1-:1 |Auttj|. Note that it differs from the true symmetry
factor o (B (s)) of the forest s, which is not multiplicative.

(6) The Connes-Moscovici coefficient of a tree t, e.g. see [4,21,27], defined by:

v(t)!
tlo(t)’

CM(t) =
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4. The rooted tree Hopf algebra
4.1. Definition

Let T be the k-vector space spanned by — non-planar - rooted trees, excluding the empty tree. Write
T = T' @ ke where o stands for the unique one-vertex tree, and where T’ is the k-vector space spanned
by rooted trees with at least one edge. Consider the symmetric algebra H = S(T’), which can be seen
as the k-vector space generated by rooted forests with all connected components containing at least
one edge. One identifies the unit of S(T’) with the rooted tree e. A subforest of a tree t is either the
trivial forest e, or a collection (t1,...,t;) of pairwise disjoint subtrees of t, each of them containing
at least one edge. In particular two subtrees of a subforest cannot have any common vertex.

Let s be a subforest of a rooted tree t. Denote by t/s the tree obtained by contracting each
connected component of s onto a vertex. We turn H into a bialgebra by defining a coproduct
A:H —> H®H on each tree t € T’ by:

A(t):Zs@t/s, (7)

sCt
where the sum runs over all possible subforests (including the unit e and the full subforest t). Here

are two examples:

£®-+o®£+21®1
PTR0ete@VT+H3VR{+3I0YV.

ad)
ACT)

As usual we extend the coproduct A multiplicatively onto S(T’). In fact, co-associativity is easily
verified. This makes H := @@07-{,1 a connected graded bialgebra, hence a Hopf algebra, where the
grading is defined in terms of the number of edges. The antipode S :H — H is given (recursively
with respect to the number of edges) by one of the two following formulas:

Sty=—t— Y  Ss)t/s. (8)
s, 8#AsCt

Sty=—t— Y  sS(t/s). (9)
s, 8#AsCt

4.2. The rooted tree bialgebra H

Consider the symmetric algebra H=S (T), which can be seen as the k-vector space generated by
rooted forests. A spanning subforest of a tree t is a collection (tq,...,t;) of disjoint subtrees, such
that any vertex of t belongs to one (unique) t;. The contracted tree t/s is defined the same way as
above, except that the contraction is effective only for subtrees with at least two vertices. This is
not a Hopf algebra since there is no inverse for the grouplike element e, but the Hopf algebra 'H
can be recovered as H/J, where J is the ideal of H spanned by 1 — e. The set G of characters of
the bialgebra 7 forms a monoid for the convolution product. The set G of characters of the Hopf
algebra H is a group, and can be seen as the submonoid of G formed by the elements ¢ such that
@(e)=1.

4.3. The associated pre-Lie structure

Denote by (Z) the dual basis in the graded dual H° of the forest basis of . The correspondence
Z : s+ Zs extends linearly to a unique vector space isomorphism from A onto 7°. For any tree t the
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corresponding Z; is an infinitesimal character of H, i.e. it is a primitive element of °. We denote by
* the (convolution) product of H°. From the formula directly stemming from the definition:

(Zex Zu = Zux ZOW) =Y Ze©)Zu(v/5) = Y Zu(s) Ze(v/5')

we see that if t and u are trees, the two sums on the right-hand side run over classes of subtrees
only (because Z; and Z, vanish on forests containing more than one tree). Looking more closely at it
we arrive at the following:

ZixZy —Zy*xZt = Zisy—ust-

Here t o> u is obtained by inserting t inside u, namely:

teu= Y NEuvv,

v,tCv and v/t=u

where N(t,u, v) is the number of subtrees of v isomorphic to ¢ such that v/t is isomorphic to u.
By the Cartier-Milnor-Moore theorem, the graded dual H° is isomorphic as a Hopf algebra to the
enveloping algebra U/ (g), where g = PrimH° is the Lie algebra spanned by the Z;’s for rooted trees t.
The product > satisfies the left pre-Lie relation (5). This pre-Lie structure can of course be transported
on g by setting Z; > Z, := Z;~y, and the Lie bracket is given by:

(Ze, Zyl=Zt % Zy — ZyxZt =Z¢ > Zy — Zy > Zy.
4.4. Another normalization

Denote by Ay : H — H the linear map defined by Ay (s) = o (s)s for any rooted forest s, where
o (s) is the internal symmetry factor (see Section 3). The map A, is an algebra automorphism thanks
to the multiplicativity of . We modify the coproduct according to A, for each tree ¢ we define:

o(s)o(t/s) s

) Qt/s,

Ag(t):=(Ag ® Ag) o Ao A ()=

where the sum runs over the subforests of t. Then H endowed with this coproduct (without changing
the product) is a Hopf algebra with antipode S; = A5 0 S o A;l. The associated pre-Lie structure on
the graded dual H° is given by Z; > Zy = Zt .y, With:

t>gs U= Z M(t,u,v)v,

v,tCv and v/t=u

where M(t,u,v) = WN(L u,v) can be interpreted as the number of ways to insert the tree t
inside the tree u in order to get the tree v. See [25] for more on the combinatorics of rooted trees
and Hopf algebras.

5. Some coproduct computations
We will denote by E, the n-edged ladder (hence containing n + 1 vertices), and by C, the n-edged

corolla, i.e. the tree built from n vertices each linked by one edge to a common root. Eg and Cy both
coincide with the unit e.
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Proposition 1. A(C,) = ZZZO (Z)CP ® Cn—p and Ay (Cp) = Z?;:o Cp ® Cnp.

Proof. The only subforests of C, are the corollas Cp, 0 < p < n, each appearing (Z) times, and
Cn/Cp = Cy—p. The second equality comes then from the obvious formula o (Cx) =k! for any k. O

Corollary 2. Let n > 1. Then

n!
p— —_ r —_— . e
SC= 2 D Y G G (10)
1<r<n ki+-+kr=n
Se@)= Y (=" Y Ciy- G (11)
1<r<n ky+--+kr=n

Computing A(E;) needs some combinatorics: for any integer n > 1 and for 1 <r < n consider the
set K, of the length r compositions of the integer n, namely:

Kn,r :={(p1,...,pr)e(N_{0})r’ n ++pr:n}

Let us call block of the composition 7 one of the intervals:

Pij(m):={p1+--+pj+1,....,p1+---+pjsy1}, j=0,....,r—1

Proposition 3.

A(En)=3) > (HEPZj) ®Ey s pjr T (HEP2H> ®Ey sy (12)

r21 m=(p1,...pr)€Kn; ~j21 jz1

Proof. Let us label the edges of E; from 1 to n, upwards starting from the root. Any interval of
{1,...,n} corresponds bijectively to a subtree of E,;. Any composition 7t of n gives rise to exactly two
subforests of E,: the one the subtrees of which are given by the blocks of 7 of odd rank, and the one
the subtrees of which are given by the blocks of 7 of even rank. Any subforest is obtained this way
once and only once, and any class of subforests contains only one element (this coming from the fact
that the automorphism group of a ladder is trivial), which proves the result. O

The best way to get used to this particular coproduct is to present some examples. Here for the
first ladders up to degree 5:

A(o = oeX e
IRete®

NaCP
\

A(
A( £®.+.®£+2I®I

oo oo 0o o 0o
~
Il

£®.+.®§+2£®I+31®£+11®I

N/
Il

®.+.®[+2i®1+3£®£+41®£+31ua£+ﬂI®L

>
—~
[
r©

Il

Note that the coproduct A(E,) is the sum of 2" elements: this comes from the fact that the cardinal

of Ky, is equal to ('::11) yielding 2"~1 for the total number of compositions of n. This suggests a
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rewriting of the coproduct formula for E,; by means of compositions of n + 1, which can be done
the following way: there is a one-to-one correspondence between Kj41, and the set IN(M of “mock-
compositions” of n, namely sequences (p1, ..., pr) of nonnegative integers with p; +---+ p, =n, all
positive except perharps pi. Eq. (12) can be rewritten as:

A(En)=z Z (nEPZj—1>®EZj20p2j' (13)

r21 w=(ps,...prekn, J21
Note that the two coproducts A, and A coincide on the ladders Ej.

Remark 4. The coproduct in the bialgebra H shows forests involving the single root e on the left, for
example:

Aﬁ(i) = E@ ot ...®£+2I.® l

6. Another expression for the coproduct

We try in this section to generalize formula (13) to any rooted tree. For this purpose we need
the notion of composition for a tree (more exactly an analogue of the “mock-compositions” of the
previous section), which will be derived from the concept of floored tree.

Let t be a tree different from the unit e. Denote by ht the height function, defined on the set E(t)
of edges with values into the positive integers, by the distance from the top vertex of the given edge
down to the root. We consider the natural partial order on E(t), defined by e < ¢’ if and only if there
is a path from the root flowing through e and ending at e’.

Definition 1. A floored tree is a tree together with a nondecreasing function “floor” fl: E(t) — N such
that for any edge e the inequality fl(e) < ht(e) holds, and such that the image of fl is an interval (thus
starting with 0 or 1).

Note that this is a kind of “french” definition, as the lowest floor (which however can be empty)
is numbered by zero. Observe that there is a natural one-to-one correspondence between floored
trees with underlying tree E, and the mock-compositions of the integer n: to any such floored tree
we associate the sequence (kq,...,k;) where r — 1 is the maximum of the function fl, and where
ki +---+kj is the height reached by the (j — 1)th floor.

Let us denote by K. (¢t) the set of floored trees with underlying tree t and with top floor of rank
r—1. For any Te K,(t) we denote by (s1(6),...s;()) the associated collection of subforests, namely
s](t) :=f"1(j — 1). We have the following formula for the coproduct (where h(t) stands for the
maximum of the height function ht on t):

Proposition 5.

h(t)

A=) > <1‘[s2j71(?))®t/1_[s2j71(?>. (14)

r=1 ek (t) =1 j>1

As an example, a floored tree structure on the corolla C; is just a function fl: {eq,...ep} — {0, 1}
where the edges are denoted by ej, j=1,...,n. Formula (14) gives then back Proposition 1.
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7. A formula for the antipode

Let P,(t) be the set of partitions s = (s1,...,sr) of a tree t into r non-trivial subforests. Observe
that P(Cy) is the set of length r partitions of {1,...,n}.

Proposition 6. Let t # e be a tree. Then

so=Y Y ( I n)(r/
1<i<r=1

1<r<e(t) (E1ntr)EPL (D)

[ t,~>.

1<i<r=1

Proof. The proof is by induction on the number of edges of ¢, using the recursive formula (9) for the
antipode. Explicitely:

S(ty=—t—Y sS(t/s)

=—t—Zs< o=

s 1<r<e(t/s) (SRR tr)ePr(t/S)

-t Y oy % s( I ti)(t/(s I ti>>
1<r<e(t/s) (St tr)EPH(E)  MKi<r—1 1<i<r—1
= Y et oy (] )

1<

2<r<e(t) (t1,t2,-.,tr)EP(D)

(] I1 1 ,») <“/”/1<Q_f">>

<igr—

Y oy Y (]‘[ t,‘)(t/ r,-). g
1<i<r—1 1<i<r—1

1<r<e(®) (t1,...,tr)€P(E)
8. The backward error analysis character
Denote by E, the character of H given by:

CM(t)

Es(t) = V(D)

)

where CM(t) stands for the Connes-Moscovici coefficient (6) of the tree t (e.g. see [4,8,21,27]). In
particular:

Es (Cn) = EG(En) = m

Now define, as in [8], Ly := E;1 = E; 0 S,. The inverse is understood with respect to the convolution
product x, associated with the coproduct A, of Section 4.4.2 As rooted trees form a natural basis of
the free pre-Lie algebra in one generator [9,17], the values of L; show up naturally in the Magnus
expansion, i.e. in the expansion of the logarithm of the solution of the differential equation X =
AX, say, e.g. in an algebra of matrix valued functions [31,20]. This becomes more transparent when

2 The characters E, and L, are denoted respectively by exp* and log* by F. Chapoton in [8].
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realizing its underlying pre-Lie algebra structure, set up in [18,19]. In particular, according to (11) we
find:

. 1
L= Y D" > < I 7(ki+1)z>'

1<r<n ki+-+k=n ~1<i<r

Hence, with the convention Cy = e we have:

n n r 1
Y Le@Cx' =1+ X" Y (=) Y ( I1 m)

n>0 n>1 1<r<n ki+-+kr=n ~1<i<r

=1+) Y D > (1_[ (klekl)'>

n>1 1<r<n ki+-+kr=n “1<i<r

r xk '
-2 (Zm)

>0 k>1
X
eXx—1°

We recover then [8, Proposition 10], namely L, (Cp) = ﬁ—’;, where the B;’s stand for the Bernoulli
numbers:

Bg=1, B1=—-, By = —, By =——, e, Boky1=0 fork>1.

Translating this into the first normalization, we may consider the character E := E, o Ay, given by:

1
EM)=.

Then its inverse E~! = E o S with respect to the convolution product associated with the original
coproduct A is given by L = Ls o As. In particular we get:

L(Cy) = By.

Remark 7. Recall the notion of B-series [5,6,23] as a formal power series in the step size parameter
h containing elementary differentials and arbitrary coefficients encoded in a linear function « on the
set of rooted trees T:

2O p o, (15)

B, ha) =M1+ ) h'® )

teT

where a is a smooth vector field on R" and the elementary differential is defined as:

Fa(B(t1 -+ t) () =a™ () (Fat)(¥), ..., Faltn)(¥)).

Since Cayley [7] we use rooted trees to encode the solution of autonomous initial value problem
y(s) =a(y(s)), y(0) = yo, corresponding to (15) with o : T — k:

a(t) == E().
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For a detailed exposition of the ideas of backward error analysis and modified equations appearing in
the context of numerical methods for differential equations and related algebraic structures, i.e. com-
position and (vector field-)substitution of B-series, we refer the reader to [11-13,23]. In Section 10
below we will show how the substitution law for B-series is related to the bialgebra H.

9. Relation with the Connes-Kreimer Hopf algebra

9.1. The Connes-Kreimer algebra of rooted trees

Let k be a field of characteristic zero. The Connes-Kreimer Hopf algebra Hck = P> Hg}g is the
Hopf algebra of rooted forests over k, graded by the number of vertices. It is the free commutative
algebra on the linear space T spanned by nonempty rooted trees. For a rooted tree t, we denote by
E(t), V(t) the set of edges and vertices, respectively. The coproduct on a rooted forest u (i.e. a product
of rooted trees) is described as follows: the set U of vertices of a forest u is endowed with a partial
order defined by x < y if and only if there is a path from a root to y passing through x. Any subset
W of the set of vertices U of u defines a subforest w of u in an obvious manner, i.e. by keeping the
edges of u which link two elements of W. The coproduct is then defined by:

A= Y vew. (16)

vuw=u
W<V

Here the notation W < V means that x < y for any vertex x of w and any vertex y of v such that x
and y are comparable. Such a couple (V, W) is also called an admissible cut, with crown (or pruning)
v and trunk w. For comparison we remind the reader of the Connes-Kreimer coproduct defined in
terms of admissible cuts on a rooted tree t, i.e. ¢ C E(t):

Ak®)=t®@1+1®t+ Y P(O)®R. (17)
ceAdm(t)

Here we denote by Adm(t) the set of admissible cuts of a forest, i.e. the set of collections of edges
such that any path from the root to a leaf contains at most one edge of the collection. In order
to make this picture completely correct, we must stress that for any nonempty tree two particular
admissible cuts must be associated with the empty collection: the empty cut and the total cut, or
digging out. Following [21] we denote as usual by P€(t) (resp. R°(t)) the pruning (resp. the trunk)
of t, i.e. the subforest formed by the edges above the cut c € Adm(t) (resp. the subforest formed
by the edges under the cut). Note that the trunk of a tree is a tree, but the pruning of a tree may
be a forest. Here, 1 stands for the empty forest, which is the unit. One sees easily, that deg(t) =
deg(P€(t)) + deg(R°(t)), for all admissible cuts. We present two examples:

Ack (1) 1914100 +.0.
Ack(V) = VOLI+1®V+2e@ [+ eeD .

Observe that the coproduct Acg is highly non-cocommutative.
With the restriction that V and W be nonempty (i.e. if V and W give rise to an ordered partition
of U into two blocks) we get the restricted coproduct:

Ack@W) = Ack() —u®1-1Qu= Z vew, (18)
vaw=u
W<V, VWD

which is often displayed >_ ., u’ ® u” in Sweedler’s notation. The iterated restricted coproduct writes
in terms of ordered partitions of U into n blocks:
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At w) = » Vi®- - ® vy, (19)
ViL---LUV,=U
Vn<~--<V1, Vj;ﬁ(/j

and we get the full iterated coproduct A’CIF (u) by allowing empty blocks in the formula above.

Let B4 be the operator (of degree one) acting on a forest u =t; ---t, by grafting the components
to a new common root. Recall that B, is a coalgebra Hochschild cocycle, namely for any forest u:

AckoB4(u) =B+ (W) ®1+ (Id®B+) o Ack(u),

where 1:k — Hcg is the unit (see [21]). Note (see e.g. [25,36]) that Hck is isomorphic, as a Hopf
algebra, to the graded dual of the Grossman-Larson Hopf algebra.

There is also an associated pre-Lie structure: Denote by (3s) the dual basis in the graded dual Hg,
of the forest basis of Hck. The correspondence § : s — &5 extends linearly to a unique vector space
isomorphism from Hck onto Hgy. For any tree t the corresponding & is an infinitesimal character of
Hck, i.e. it is a primitive element of 7°. We denote by * the (convolution) product of H°. We have:

Ot % Oy — Oy * 8¢ = St~ u—u—st-

Here t — u is obtained by grafting t on u, namely:
t— u:ZN’(t,u, V)V,
v

where N’(t,u, v) is the number of partitions V(t) =V LI W, W <V such that vjy =t and v|w =u.
By the Cartier-Milnor-Moore theorem, the graded dual Hgy is isomorphic as a Hopf algebra to the
enveloping algebra U/ (gck), where gcx = PrimHgy is the Lie algebra spanned by the &’s for rooted
trees t. The product — satisfies the left pre-Lie relation (5). This pre-Lie structure can of course be
transported on gck by setting 8; — 8, := &;—y, and the Lie bracket is given by:

[8¢, Sul = 8¢ * 6y — 8y * 8¢ = 8¢ — 8y — Sy — bt
Another normalization is often employed, by setting:
tru=A;" (Ac () = As ().

We have immediately:

t~u= ZM/(t, u,v)v,
v

where M'(t,u, v) = %N’(t, u, v) can be interpreted as the number of ways to graft the tree t on

the tree u in order to get the tree v. Considering the normalized dual basis 5 = o (t)8; we obviously
have:

8¢ * 8y — Oy * 8¢ = St~u—unt-

The pre-Lie algebra (T, ~) is the free pre-Lie algebra with one generator [9]. For more properties
of the two pre-Lie structures — and > (or equivalently ~ and > ), see [33].
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9.2. A compatible left comodule structure

One observes that there is a H-bicomodule structure on the Connes-Kreimer Hopf algebra Hck
defined as follows: for any nonempty tree t we set @(t) = ¥ (t) = A(t), for the unit tree 1 we set
P(1)=e®1,¥(1) =1Q e, and we extend & (resp. ¥) to an algebra morphism from Hcg to HQ Hck
(resp. Hck ® H). The coaction axioms for @ and ¥ are clearly verified as well as the compatibility
condition (@ ® Idy) o ¥ = (Idyy ®¥) o ®@. We will use Sweedler’s notation:

¢(X)=ZX1®XO, ‘I/(X)=Zx6®x’l.
*) ®)

We are now interested in finding relations between this bicomodule structure and the Connes-
Kreimer coproduct Acg.

Theorem 8. The following identity of linear maps from Hcy into H ® Hcex ® Hek holds:

(Jdy @A) o @ =m'3 0 (® Q@ P) 0 Ack, (20)

wherem"3 : H ® Hek ® H ® Hex — H ® Hex ® He is defined by:

mB@ebeced =ac®bd.

Proof. The verification is immediate for the empty forest. Recall that we denote by Adm(t) the set of
admissible cuts of a forest. We have then for any nonempty forest:

(dn @A) 0 D (1) = (dn @A) ) s®t/s

s subforest
of t

Z Z s® PE(t/s) @ RE(t/s).

s subforest ceAdm(t/s)
of t

On the other hand we compute:

m'>o (@ ®®) o Ack(t) =m0 (¢ ® <1>)( Y. Poe Rf(t))
ceAdm(t)

:m1,3( Z Z Z s/®Pc(t)/s’®s”®RC(f)/SH>

ceAdm(t) s’ subforest s” subforest
of P€(t) of RE(t)

=2 X ) sYeroserws

ceAdm(t) s’ subforest s” subforest
of PC(t) of R°(t)

= > > s® PE(t)/s N PE(t) ® RE(t)/s N RE(t)

ceAdm(t) s subforest of t
containing no edge of ¢

- Z Z s® P(t/s) @ R°(t/s),

s subforest ceAdm(t/s)
of t

which proves the theorem. O
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Corollary 9. Let a : H — k be any linear map. Then the operator ‘L, : Hcx — Hcx defined by ‘Ly =
@®ldyy )o@, ie.:

‘La) =) (a,x1)%
(x)

satisfies the identity:

t t
Ack o Lg ="Linxq 0 Ack,

where: m* : H* — (H ® H)™* is defined by m*(a)(x ® y) := a(xy), and where

Lieq 1= (M*a ® ldyg @ 1dp) 0 T2,3 0 (@ ® D).

In particular when a € H° thenm*a=3_; a1 ® az € H° ® H°, and

Acko'ly= Z(tlm ® tLaz) o Ack.
(@)

Proof. The operator !L, is the transpose of the left multiplication operator Lg : Hex — Heg with
respect to the left H°-module structure (i.e. Ly(b) = a » b), which justifies the notation. Similarly, if
a € H° then m*a € H°®H°, and ‘L is the transpose of the left multiplication operator Ly« : Hex ®
Heg — Heg ® Heg with respect to the left H° ® H°-module structure given by &= 7230 (@ Q D).
Here the notation 73 stands for the flip of the two middle terms, namely 73(@ ® b ® c ® d) =
a®c®b®d. The proof of the corollary is a straightforward computation in view of Theorem 8:

Acko'Log=Acko (a®Idyg) o @
=@a® IdHCK 2 IdHCK) o (IdH RAck) o ®
= (@ ® Idyg ®ldyg) om'3 o (@ @ @) o Ack

= (m*a @ ldy ®ldye) 0 2,30 (P @ P) o Ack

= th*a o Ack. O

Note that a similar property for the right coaction operator {R, is not available, due to the fact
that the coproduct Acy is highly non-cocommutative.

Proposition 10. Let a : H — k be an infinitesimal character of H. Then the operator ‘L, is a biderivation of
the Hopf algebra Hck. Similarly if ¢ : H — k is a character of 'H, the operator th is an automorphism of the
Hopf algebra Hck.

Proof. Let u =t;---t, be any forest in Hcg and a an infinitesimal character of H. We have then:

‘L) =) (a, u1)ug
(u)

= Z (a,s)yu/s

s subforest of u
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= Y. (asu/s

s subtree of u

=Z Z (a,s)yu/s

Jj=1s subtree of t;
n
¢
=D bt Lat)tigr - ta,
j=1
hence ‘L, is a derivation. The coderivation property is an immediate consequence of Corollary 9. The
statement for characters follows from a similar computation. 0O

Corollary 11. The compatibility between the Hopf algebra structure and the comodule structure yields:

(1) For any infinitesimal character a of H the operator Lq is a biderivation of Hgy.
(2) Any character ¢ of H defines an automorphism Ly, of the Hopf algebra Hg,.

Proof. This is a direct consequence of Proposition 10. O

We denote by the same sign » the convolution product on 7° and the left and right actions of
H° on Hg,. We keep the other star * for the convolution product on Hg,. For any forest s € Hck
(resp. H) we denote by 8s € Hgy (resp. Zs € H°) the corresponding element of the dual basis. Corol-
lary 11 in particular implies:

Corollary 12. Let ¢ be a character of ‘H, let « be any linear map from H into k, and let b, ¢ be linear maps
form Hcg into k. Let € = &y be the co-unit of Hcg. Then:

axeE=cxo=0(e)E, (21)
O *x0g =0 %0 =0, (22)
Zexb=bxZ,=b, (23)
@x(bxc)=(pxb)*(pxc), (24)
(@xb)y* T=pxb*1. (25)

The formulation of this result is completely parallel to Proposition 3.5 in [11] on composition
and substitution of B-series: we will fully justify this similarity and prove in the next section that
Corollary 12 and Proposition 14 (more precisely their counterparts w.r.t. bialgebra H described in
Section 9.3 below) indeed imply Proposition 3.5 in [11]. Following A. Murua [35] we denote by §
the character of the Connes-Kreimer Hopf algebra Hck such that §(e) =1 and §(t) =0 for any tree
different from ¢ and e. This should not be confused with the infinitesimal character §,.

Proposition 13. There is a one-to-one correspondence between characters of H and a distinguished subset of
characters of Hcg, namely:

(1) For any character ¢ of H, the element ¢’ := ¢ x 8, is the infinitesimal character of Hcx which coincides
with ¢ on nonempty trees. This settles a one-to-one correspondence ¢ — ¢ x 8, between characters of H
and infinitesimal characters of Hck which take the value 1 on the tree .

(2) For any character ¢ of 'H, the element s := ¢ % § is the character of Hck which coincides with ¢ on
nonempty trees. This settles a one-to-one correspondence ¢ +— @ x § between characters of H and char-
acters of Hcg which take the value 1 on the tree e.
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Proof. Let ¢ be a character of H. By using the fact that @ is an algebra morphism it is straightforward
to check that ¢ 8 is a character of Hck, and that ¢ x §(t) = ¢(t) for any nonempty tree t. Replacing
8 by 8, we obviously get an infinitesimal character. The rest is an immediate check. O

Using Proposition 13 and identity (25) we immediately obtain the analog of the last identity of
[11, Proposition 3.5]:

Proposition 14. Let b be a character of Hcy such that b(e) =1, and let b be the unique character of H such
that b = b x §. Then:

b1 =pxs 1. (26)

We will denote by exp* and log* the exponential and the logarithm? with respect to the convolu-
tion product of Hg,. Now using Proposition 13 and identity (24) we see that any character b of Hck
with b(e) =1 writes in a unique way:

b =exp*(¢ x8,) = ¢ » (exp*4,), (27)

where ¢ is a character of H. Recall that:

8 t—l
exp .()_H

for any nonempty tree (see [35, Theorem 9] and the proof therein). In other words, exp*§, = E % §,
where E is the character defined in Section 8.

9.3. The left H-comodule structure

All results of the previous subsection are still valid almost without modification when one replaces
the Hopf algebra H with the bialgebra H. Remark first that H and Hcxk are naturally isomorphic as
vector spaces and even as algebras. The comodule map @ : Hcx — H ® Hck is simply given by the
coproduct A modulo this identification. Theorem 8 is still valid in this setting, as well as Corollary 9,
Proposition 10 and Corollary 11. Corollary 12 also holds provided e is replaced by the unit 1 in
Eq. (21). Proposition 13 is replaced by:

Proposition 15. There is a one-to-one correspondence between characters of H and characters of Hck,
namely:

(1) For any character ¢ of H, the element @' := @ * 8, is the infinitesimal character of Hck which coincides
with ¢ on nonempty trees. This settles a one-to-one correspondence ¢ — ¢ * 8, between characters of H
and infinitesimal characters of Hck.

(2) For any character ¢ of 'H, the element @5 := @ = § is the character of Hck which coincideiwith @ on
nonempty trees. This settles a one-to-one correspondence ¢ +— @ x § between characters of H and char-
acters of Hck.

Concerning item (2) in the foregoing proposition it is easily seen that this correspondence identi-
fies two characters via the natural algebra isomorphism between Hck and H.

Finally, Proposition 14 still holds with condition b(e) =1 dropped, where b is now the unique
character of H such that b =b « .

3 Note that this is not related to the notations used by Chapoton in [8], briefly recalled in Section 8, which may be quite
confusing here.
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9.4. Operadic interpretation

Recall [8] that one can associate a pro-nilpotent group Go to any augmented operad O (i.e. any
operad with no 0-ary operation and the identity as unique 1-ary operation). The associated Lie algebra
go is in fact a pre-Lie algebra. The group of characters of H, is exactly the group associated with the
augmented operad PreLie [9,8]. The pre-Lie operation giving rise to the corresponding Lie algebra is
exactly the pre-Lie operation >,. One should emphasize that the existence of a pre-Lie structure on
go has nothing to do with the fact that the operad O is PreLie itself! Our second pre-Lie structure is
the one on the free pre-Lie algebra with one generator, which is nothing but the linear span of rooted
trees endowed with the grafting ~ (see next section).

One may wonder if the character group Gk of the Connes-Kreimer Hopf algebra is obtained from
an augmented operad CK along the same lines. A partial answer to this question is given by the
NAP operad [10,29]. This operad is defined as follows: NAP(n) is the linear span of rooted trees
with n vertices numbered from 1 to n. The action of the symmetric group S, is obvious, and the
composition

y :NAP(n) x NAP(p1) x --- x NAP(pn) — NAP(p1+---+ pn),

(t;tq,t2, ..., tg) > Y (t; tq, b2, ..., ty)

is given by replacing vertex number i of t by the root of t; and re-indexing the vertices of the big
tree thus obtained. NAP stands for “Non-Associative Permutative”. A NAP algebra is a vector space A
endowed with a bilinear map o: A x A — A such that (aob) oc= (aoc)ob. NAP algebras already
appeared under the name “right commutative algebras” in [17], where the authors also show that the
free NAP algebra with one generator is the space of rooted trees endowed with the Butcher product
(see below). It is proven in [10] that the character group of Hck is a subgroup of Gnap in a natural
way.

10. B-series: composition and substitution

Consider any left pre-Lie algebra (A, ), and introduce a fictitious unit 1 such that 1I>a=ar>1=a
for any a € A. Due to the fact that (T, ~) is the free pre-Lie algebra with one generator [9], there is
for any a € A a unique pre-Lie algebra morphism Fg : (T, ~) — (A, >) such that F,(e) =a. A B-series
is an element of hA[[h]] ® k.1 defined by:

) 46)

oG) Fq(s), (28)

B(a;a) := a(P)1 + Zhv“

seT

where « is any linear form on T & k@. It matches the usual notion of B-series [23], see Remark 7,
when A is the pre-Lie algebra of vector fields on R", with a > b = Vb for the canonical flat torsion-
free connection V on R" (it is also convenient to set F,(#) = 1). The vector fields F,(t) for a tree
t are differentiable maps from R" to R" called elementary differentials. B-series can be composed
coefficientwise, as series in the indeterminate h whose coefficients are maps from R" to R". The
same definition with trees decorated by a set of colours D leads to straightforward generaliza-
tions. For example P-series used in partitioned Runge-Kutta methods [23] correspond to bi-coloured
trees.

A slightly different way of defining B-series is the following: consider the unique pre-Lie algebra
morphism F; : T — hA[h] such that F,(e) = ha. It respects the graduations given by the number
of vertices and the powers of h respectively, hence it extends to Fg T > hA[[h]], where T is the
completion of T with respect to the graduation. We further extend it to the empty tree by setting
Fa(?) =1. We have then:
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B(a:a) = Fa08 '(a), (29)
where 3 is the isomorphism from T @k to (T & ko)* given by the normalized dual basis.
We restrict ourselves to B-series B(w; a) with o(¥) = 1. Such «’s are in one-to-one correspondence

with characters of the algebra of forests (which is the underlying algebra of either Hck or H) by
setting:

oty - ty) i=o(ty) - -aty).

The Hairer-Wanner theorem [23, Theorem II1.1.10] says that composition of B-series corresponds to
the convolution product of characters of Hcg, namely:

B(B;a) o B(x;a) = B(x x 8,a), (30)
where linear forms «, 8 on T @k and their character counterparts are identified modulo the above
correspondence.

Let us now turn to substitution of B-series, following reference [11]. The idea is to replace the
vector field a in a B-series B(8;a) by another vector field @ which expresses itself as a B-series, i.e.
d=h""B(a;a) where « is now a linear form on T @k such that «(¥) = 0. Such o’s are again in
one-to-one correspondence with characters of H.

Proposition 16. Let «, 8 be linear forms on T, we have:

B(ﬂ; %B(a; a)) = B(a * B;a),

where « is multiplicatively extended to forests, 8 is seen as an infinitesimal character of Hck and where x is
the convolution product associated to the coproduct Ag.

Proof. Let o € (T @ k¥)* such that a(¥) = 0. By universal property of the free pre-Lie algebra there
exists a unique pre-Lie algebra morphism Ay : T — T such that Agy(e) = :3'*1(05), which obviously
extends to Ay :T — T.The following equality between pre-Lie algebra morphisms is a straightforward
consequence of (29):

f%B(a;a) = a0 Aq.

Applying (29) twice we have then:

1 ~
B(ﬁ; HB(oua)) =Fa0Ay 08 ' (B),
whereas:

B(a*B;a)=Fq08 (o xp).
We are done if we can prove that:
Aa(®) =81 (@ *8)
for any t € T. This is obviously true for t = e according to the definition of A, and (22), hence for any

t because Ay is a pre-Lie algebra morphism, and 5§ 1(o % 8(—)) as well according to the distributivity
equation (24). This proves the proposition. O
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11. The CHV-Murua @ map and quasi-shuffle products

We are interested in the inverse L of the character E for the convolution product . We firstly give
a quick proof of the following result due to A. Murua [35, Remark 11]:

Theorem 17.
w:=Lx8, =log*s.

Proof. We compute:

E xlog* 8§ = log*(E % §)
=log* exp* 8,

=6,.
Hence E xlog* 8 = E x L x §,, from which the theorem follows. O

We call log* § the CHV-Murua w-map after Chartier, Hairer, Vilmart [11], and Murua [35]. One can
find in those references some algorithms and recursive equations for computing the coefficients of
w, which we will recover in the following subsection by means of a quasi-shuffle product. In fact,
recalling the (free) pre-Lie structure on rooted trees corresponding to Connes-Kreimer's Hopf algebra,
see [9] for details, one deduces from the foregoing and [18,19] that:

o B w(t)
Q=) —LO[R )@= —t.
rg nl teT o ()

Here, L~ [a](b) :=a ~ b is the left pre-Lie multiplication (in the free pre-Lie algebra over one gener-
ator e). The first few terms on the left-hand side are:

1 1 1
Ql = o—50/\04-1(.@0)f\o-‘rﬁo/\(omo)-‘r"'
1 1 1
= .*§I+§£+EV+'“

A very interesting approach in terms of non-commutative symmetric functions, along the lines of
[20], has been developed by W. Zhao [40]. Compare with [8]* and the second line of the table in
Section 12.2.

11.1. Quasi-shuffle products

Definition 2. Let k,[,r € N with k+1—r > 0. A (k, [)-quasi-shuffle of type r is a surjective map 7= from
{1,...,k+I1l} onto {1,...,k+Il—r}suchthat 7 (1) <--- <mw (k) and w (k+1) < --- < (k+1). We shall
denote by mix — sh(k, [; r) the set of (k,I)-quasi-shuffles of type r. The elements of mix — sh(k, [; 0)
are the ordinary (k, I)-shuffles. Quasi-shuffles are also called mixable shuffles or stuffles. We denote by
mix — sh(k, I) the set of (k, [)-quasi-shuffles (of any type).

4 We would like to thank F. Chapoton who first pointed us to the link between the work [18] and the results in [8], and also
pointed reference [40] to us.



D. Calaque et al. / Advances in Applied Mathematics 47 (2011) 282-308 301

Let A be a commutative (not necessarily unital) algebra. We denote by (a, b) + [ab] the product
of A. Let A be the deconcatenation coproduct on A = T(A) = EBk;o A®k let o the product on A
defined by:

(V1 Vi) © (Vi1 -+ - Vi) = Z wi Wi,
7 emix—sh(k,l)

with:

(the product above is the product of A, and contains only one or two terms). The quasi-shuffle product
¢ is commutative, and can also be recursively defined for u =uq---uy and v=v7---v; by:

uov=ui((uz---up) ov)+vi(uova---vp)+uvil(z---u) o (va---vp),  (31)

or alternatively:

uov=_(u- 1) ov)ug+ o vi---vi—))vi+ (g ug—1) o (vi---vi—p))uevil.  (32)

Recall (see [24]) that (A, o, A) is a connected graded Hopf algebra, where A stands for the usual
deconcatenation coproduct:

N
AUy ) =Y Uy Uy @ Uryy -+ U
r=0

Remark 18. When the multiplication of the algebra A is set to 0, the quasi-shuffle product ¢ reduces
to the ordinary shuffle product mi.

Let A be the field k itself, and let A = T(A) = k[x] be the free associative algebra over one gener-
ator x, which is identified with the unit 1 of the field k. We equip A = T (k) with the commutative
quasi-shuffle product defined above. Note that in the definition all the letters are equal to x and we
have [xx] = x. The algebra (A, ¢) is filtered, but not graded with respect to the number of letters in a
word. Example:

Pox’= 2x(x © xx) + [xx](x © X)

= 2xxxX + 2xx(X © x) + 2x[xx]x + 2[xx]xx + [xx][xx]
= 2XXXX + 4xxxx + 2xx[xx] + 2x[xx]x + 2[xx]xx + [xx][xx]
= 6xxxx + 2x[xx]x + 2[xx]xx + 2xx[xx] + [xx][xx]

=6x* + 6x> + X%
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11.2. A Hopf algebra morphism
Let L : A — A be the linear operator which multiplies with the single-lettered word x on the right:
LU) :=Ux.
It is immediate to show that L is a coalgebra cocycle, namely:
Aol=L®1+(d®RL)o A

where 1:k — A is the unit. Due to the universal property of the Connes-Kreimer Hopf algebra, there
is a unique Hopf algebra morphism A : Hcx — A such that:

AoBy=LoA. (33)

In other words the morphism A is recursively defined by A(e) =x and

A) =L(A(t1) 0+ 0 A(tn)) = (A(t1) 0 -+ 0 A(tn))x (34)

for t = By (t1---ty). That is, briefly said, each rooted tree is mapped to a particular polynomial by
putting a quasi-shuffle product in each branching point. The morphism A is obviously surjective (be-
cause the ladder with n vertices B} (1) is mapped on x"). In order to study the kernel of A we
introduce a quasi-shuffle like product on rooted trees (which is not associative). For two rooted trees
a=B,(ar---ap) and b = B, (b1 ---bp) recall [11,35] the Butcher product a o b which is obtained by
grafting the tree b to the root of the tree a, namely:

aob=Bi(a;---ayb),

whereas the merging product a x b is obtained by merging the roots, namely:

axb=Bi(ay---agby1---bp).

The merging product is associative and commutative, whereas the Butcher product is neither associa-
tive nor commutative. We remind the quasi-shuffle like product on rooted trees defined by:

av<b:=aob+boa+axb,
which is implicitly used in [11] (see Proposition 4.3 therein).
Proposition 19. For any rooted trees a and b we have:
A(as<b) = A(a) ¢ A(b).

Proof. According to the recursive definition (32) we have:

A(a) o A(b) = (A(aq -+ ap)x) o (A(by -+ - bp)x)
= ((A@) o0 Aan))x) o ((A(b1) o -+ o A(bp))x)
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= ((A@) oo Adan))x o A(by) o -+ o A(bp))x
+ (A(a) oo Aan) o (A(b1) o -+ A(bp))x)X
+ (A@@) o -+ 0 Aan) © A(b1) o -+ o A(bp))x

= ((Aa---an)x) o A(b1 - -bp))x+ (Aay - - an) o (A(by - -bp))x)x
+ (A(ar---ap) o A(by -+ -bp))x

= (A(aby ---bp) + A(ay - -anb) + A(ay ---azby - -bp))x

= A(ar<b). ]

Theorem 20. Ker A is the smallest ideal of Hcx stable under By and containing the expressions a><b — ab
for any rooted trees a and b.

Proof. According to Eq. (33) the kernel of A is clearly stable under B, and moreover u € Ker A if
and only if B4 (u) € Ker A. According to Proposition 19, any expression a < b — ab belongs to Ker A.
Now let u € Ker A. Let [u| be the filtration degree of u, i.e.

n
u| :min{n, ue @Hg()}

k=0

The only non-trivial element in Ker A of filtration degree < 2 writes u = e > e — ee. Let us prove
Theorem 20 by induction on the filtration degree: suppose that any u € Ker A of filtration degree <n
is of the type described in the theorem, and let u € Ker A of filtration degree n + 1. Now proceed by
induction on the maximal number of subtrees, namely:

P
d(u) = min{p, uc @S"(T)},

k=0

where T is vector space freely spanned by the rooted trees. If d(u) = 1, then u is a linear combination
of trees, hence u = B4 (v) with |v|=|u| —1=n. As v € Ker A the theorem is proved in this case. If
d(u) =p > 1 then u is a linear combination of forests. Suppose that the theorem is verified up to
d(u) = p, and let u such that |u| =n+1 and d(u) = p 4+ 1. Write the unique decomposition u =v +w
where d(w) = p and v € SPT1(T). Define v by replacing any forest vq <+ Vpy1 by (vipava) - vpyq
in the explicit expression of v. It is clear that d(Vv) =d(u) — 1= p and that v —V belongs to the ideal
generated by {as<b —ab, a,b € T}. The theorem follows since we have u =v — vV + (V + w), with
V+weKerA and dV+w)=d@u)—1=p,aswellas [V+w|<n+1. O

11.3. Applications to the CHV-Murua w map

Lemma 21. Let §: A — k the linear map defined by 3(1) = g(x) =1, and 3(u) = 0 for any word of length
s > 2. Then § is a character of A for the quasi-shuffle product <, and we have:

d=3060A.

Proof. If u and v are words of respective length /(u) and I(v), then u ¢ v is a linear combination
of words of length bigger than sup(l(u),[(v)). Hence 8(u ¢ v) =0 unless u and v are single-lettered
words. We have then in this case:
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S(uov)=38(uv+vu+[uv])
(1)
(

SWs(v),

I
>

which proves that § is a character. The second assertion comes from a straightforward computa-
tion. O

Now set:
K*Z K*3

+ + -,
2 3

@:=log"s =K —

with K :=3 — e. As K vanishes on words containing more than one letter, we have for any word
U=1uq---Us:

*S _1\s+1
W) = (=15t L(u) — =n
S S

Due to the fact that A is a Hopf algebra morphism we obviously get:

Theorem 22.

w=woA.

Corollary 23. Let ws(t) the number of words of length s in A(t), i.e.:

It]

A(t) = Z‘ ws(H)X°.

s=1
Then we have:

-1 s+1
o)=Y %ws(t).

s>1

We can easily see that ws(t) is the number of terms in the iterated coproduct:

A(S)(t) — Zt(]) R ® t(s)
®)

such that each t; is a bullet-forest oki (with obviously ki + --- + ks = |t]). In view of formula (19)
it equals the number of ordered partitions of the tree t into s bullet-subforests. Hence our ws(t)
coincides with Murua’s one, and Corollary 23 gives exactly identity (40) in [35].

Proposition 24. For any rooted trees a and b, we have w(a > b) = 0.

Proof. As a consequence of Proposition 19 and Theorem 22, we have w(as<b) = @(A(a) ¢ A(b)) =0,
because @ is an infinitesimal character of A4, and as such vanishes on any non-trivial diamond prod-

uct. O

Remark 25. Propositions 4.3, 4.5 and 4.7 in [11] can be retrieved from this result.
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11.4. Generalized multinomial coefficients
A simple formula is given for the quasi-shuffle product on A:
Ko — Xn: (1 +k— r) <k)xl+k7r
N = k r ‘

Indeed, the number of (k, I)-quasi-shuffles of type r is equal to:

v fkHI=r\(K\  (k+I-1)
ashik, 1) = ( )( ) T k=) =)t

k r
This can be seen as follows: there is (k+,£_r) choices for the images 71, ..., inside {1,...,k+1—r}.
The whole quasi-shuffle 7 is then determined by the overlaps, i.e. the choice of a subset E of {1,...,1}

containing r elements, such that j € E if and only if 7~ 1(r(j)) has exactly two elements. There are

(’;) choices of overlaps, which proves the claim. We can also define the quasi-shuffle multinomial

coefficient gsh(ki,...kp;r) as the number of surjective maps 7 : {1,...,> k;j} > {1,..., > k;j —r}
such that Ty okl <000 < Ty ook forany j=0,...,n— 1. It is also given by the coefficient of

xkittha=r in ¥k o ... o xkn Of course when r =0 we recover the usual multinomial coefficients.

The coefficients ws(t) defined by Murua (see preceding section) can be interpreted as tree versions
of these quasi-shuffle multinomial coefficients. To see this let us change the notations of the preceding
section, by setting for any rooted tree t:

Cs(t) := wje)—s(0).
In other words, Cs(t) is the coefficient of x/!I=5 in the polynomial A(t).
Proposition 26. For any rooted tree t = B (t1, ..., ty) we have:

Co=Y_ Y, ash(ltsl =r1,.... ltal = J)Cry (t2) -+~ Cr, (tn).

Jj=0 ri+-tm=s—j,
1,Tn 20

Proof. This amounts to the equality:
At) = (A1) o+ o Atp))X
by considering the coefficient of x!!=* on both sides. O

Applying Proposition 26 to the generalized corolla Cy, ., = B4 (Ek,, ..., E,) (here E; stands for
the ladder with j vertices Bﬂr(o)) we find:

Cs(Cry.,...ka) = ash(ka, ... kn;$).
Proposition 26 for s = 0 reduces to:

(It1] + -+ ]!
Co(t) = ~——————2Co(ty) -+ Coltn),
el It
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leading to:

It|!
Co(t) = o

These are generalizations of the usual multinomial coefficients, which can be recovered as:

(k1 4+ -+ kp)!
kql--kg!

12. Some computations
12.1. Antipode computation for some trees

We list the values of the antipode S, : H — H up to order 5. Observe the conservation of the
number of edges.

Sols) =
Se(l) = -1

ey = —taotl

Sa V) = —V-FII

Se(d) = —i+5h—5m
so(V) = —Yaali+vi—e
solfe) = —“Noltesviosi
(W) — —W2vioill

l +6iz+3ii Cordir e 1a11i

%)
Q
-~
x

I

_ f\{+2i1+2Y1+$v718£117v11+181111
So(v) = — 2Pl V- 3vile Ll

_ —L? :+7££—zsizz—zsiiusdm7421::1:
So(W) = — 2l 2T Vo 3Tl - 3wV 4Vl - 1110

%)
q
=N
N

|

(%)

q

A

N
I

12.2. Values of w up to degree 5

Here are the values of L and L, (i.e. w and ws ) on the trees up to 5 vertices (compare with [11,
35,8]):
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N L T A A

1 1 1 1 1 1 1 3 1 1 1 1
o®© | 1| =3 | 35 5 | ~a 5§ 1 O 5 20 10 3 20 30 & "8 3
o® | ;| 1|1 | _1 _1 _1 o |1 3 1 11 1 1 1 _1
o(t) 2 3 12 4 12 12 5 40 10 180 20 60 120 120 720
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