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General philosophy:

@ Zeta functions are counting devices: spectra of operators with
spectral multiplicities, counting ideals with given norm, number
of periodic orbits, rational points, etc.

@ Zeta function does not determine object: isospectral manifolds,
arithmetically equivalent number fields, isogeny

@ but ... sometimes a family of zeta functions does

@ Zeta functions occur as partition functions of physical systems
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Number fields: finite extensions K of the field of rational numbers Q.

@ zeta functions: Dedekind (k(s) (for Q Riemann zeta)

e symmetries: Gx = Gal(K/K) absolute Galois group;
abelianized G

o adeles Ax and ideles A%, Artin map Jk : A, — G
@ topology: analogies with 3-manifolds (arithmetic topology)

How well do we understand them?
Analogy with manifolds: are there complete invariants?
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Recovering a Number Field from invariants

@ Dedekind zeta function (k(s) = (r(s) arithmetic equivalence
GaBmann examples:

K = Q(V3)and L = Q(V3 - 24)

not isomorphism K # L

@ Adeles rings A = Ay, adelic equivalence = arithmetic
equivalence; Komatsu examples:

K =Q(v2-9)and L = Q(v25-9)

not isomorphism K # L
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@ Abelianized Galois groups: G = Gi° also not isomorphism;
Onabe examples:

K = Q(v~2) and L = Q(v/=3)

not isomorphism K # L

@ But ... absolute Galois groups Gk = G, = isomorphism
K = LL: Neukirch—Uchida theorem
(Grothendieck’s anabelian geometry)
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Question: Can combine (k(s), Ax and Gg to something as strong
as G that determines isomorphism class of K?

Answer: Yes! Combine as a Quantum Statistical Mechanical system
Main Idea:

Construct a QSM system associated to a number field

Time evolution and equilibrium states at various temperatures

o

o

@ Low temperature states are related to L-series

@ Extremal equilibrium states determine the system
o

System recovers the number field up to isomorphism

Purely number theoretic consequence:
An identity of all L-functions with Grof3encharakter gives an
isomorphism of number fields
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Quantum Statistical Mechanics (minimalist sketch)
@ o/ unital C*-algebra of observables
@ oy time evolution, o : R — Aut(«/)
@ states w : &/ — C continuous, normalized w(1) = 1, positive

w(a*a) >0

equilibrium states w(ot(a)) =w(a) all t € R

representation 7 : &/ — (), Hamiltonian H

n(oy(a)) = e'r(a)e™™

partition function Z(3) = Tr(e~"")
Gibbs states (equilibrium, inverse temperature 3):
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@ Generalization of Gibbs states: KMS states
(Kubo—Martin—Schwinger) Va, b € A, 3 holomorphic F; 4 on
strip I3 = {0 < Imz < 3}, bounded continuous on 0/,

Fap(t) = w(aoi(b)) and Fap(t+iB) = w(oi(b)a)

Imz=0

i F(t + i) = ¢(o,(b)a)

F(1) = p(ac(b))
Imz=0

@ Fixed 3 > 0: KMSg state convex simplex: extremal states
(like points in NCG)
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Isomorphism of QSM systems: ¢ : (<7, 0) — (%, T)
0:d SB, poo=Toyp
C*-algebra isomorphism intertwining time evolution

@ Algebraic subalgebras &/ C o7 and #' C #: stronger
condition: QSM isomorphism also preserves “algebraic
structure”

A=Yl

@ Pullback of a state: p*w(a) = w(¢(a))
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Why QSM and Number theory? (a historical note)

1995: Bost-Connes QSM system .«/gc = C(Z) x N
@ generators e(r), r € Q/Z and pp, n € N and relations

[ntbm = Hmin,  fmftm =1

[infim = Hmbn  if - (n,m) =1
e(r+s)=-e(r)e(s), e(0)=1
poelr)iy = - 3 e(s)

e time evolution o¢(f) = f and o¢(n) = Ny
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e representations 7, : @gc — (?(N), p € 7*
To(tn)em = €nm, mo(e(r))em = (em

¢ = p(e(r)) root of unity
@ Hamiltonian Hep, = log(m) €y, partition function

Z(8) =Tr(e ") = (o(8)

Riemann zeta function
@ Low temperature KMS states: L-series normalized by zeta
@ Galois action on zero temperature states (class field theory)
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Further generalizations: other QSM’s with similar properties

@ Bost-Connes as GLi-case of QSM for moduli spaces of
Q-lattices up to commensurability (Connes-M.M. 2006)
= GL,-case, modular curves and modular functions

@ QSM systems for imaginary quadratic fields (class field theory):
Connes-M.M.-Ramachandran

@ B.Jacob and Consani-M.M.: QSM systems for function fields
(Weil and Goss L-functions as partition functions)

@ Ha-Paugam: QSM systems for Shimura varieties = QSM
systems for arbitrary number fields (Dedekind zeta function)
further studied by Laca-Larsen-Neshveyev

We use these QSM systems for number fields

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry



The Noncommutative Geometry viewpoint:

e Equivalence relation % on X: quotient Y = X/Z%. Even for very
good X = X/ pathological!

e Functions on the quotient &7(Y) := {f € &/ (X) | f%Z — invariant}
= often too few functions: <7 (Y) = C only constants

e NCG: /(YY) noncommutative algebra <7 (Y) := <7 (I ) functions
on the graph 'z C X x X of the equivalence relation with involution
f*(x,y) = f(y, x) and convolution product

(fi x ) (x,y) = Z fi(x, u)fa(u, y)

X~ousy

e o/ (I ») associative noncommutative = Y = X/%
noncommutative space (as good as X to do geometry, but new
phenomena: time evolutions, thermodynamics, quantum
phenomena)
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In the various cases QSM system semigroup action on a space:
Bost—Connes revisited (Connes—M.M. 2006)
e Q-lattices: (A, ¢) Q-lattice in R": lattice A C R” + group
homomorphism
¢:Q"/Z" — QA/A
o Commensurability: (/\1 s ¢1) ~ (/\2, gbg) iff Q/\1 = Q/\g
and ¢1 = ¢o mod Ay + Ao
e Quotient Q-lattices/Commensurability = NC space
e 1-dimensional Q-lattices up to scaling C(Z)

(N, @) =(AZ,Ap) A>0

p € Hom(Q/Z,Q/Z) = |m Z/nZ = 7.
e with action of semigroup N commensurability

an(f)(p) = f(n""p) or zero

C(Z) » N Bost-Connes algebra: moduli space
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QSM systems for number fields: algebra and time evolution (A, o)

Ax = C(Xi) » i, with X = GE x5, Ok,

ﬁA’K = ring of finite integral adeles, J;i = is the semigroup of ideals,
acting on Xk by Artin reciprocity

@ Crossed product algebra Ag := C(Xk) x JH‘(f, generators and
relations: f € C(Xk) and fin, n € Jif

finfly = €n; finpin = 1; pa(f) = pafpg;

on(f)en = pafun; on(pa(f)) = f; pa(on(f)) = fen
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@ Artin reciprocity map Uk : Ai — G, write Uk (n) for ideal n
seen as idele by non-canonical section s of

N O |
’\§/ p finite
@ semigroup action: n € Jif acting on f € C(Xk) as
pa(F)(7, ) = (O (1), 8(n) ™" p)en,

e = it projector onto [(7, p)] with s(n)~1p € Ok
@ partial inverse of semigroup action:

ou(f)(x) = f(nxx)  with  nx[(v, p)] = [(Ix(n) ", np)]
e Time evolution o acts on Jif as a phase factor N(n)"
oxi(f)=f and ox () = N(0)" iy

for f € C(G x 4. ) and forn € Jif
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Algebraic structure: covariance algebra
Algebraic subalgebra Al{( of C*-algebra Ag := C(Xk) x Jit
A]% unital, non-involutive algebra generated by C(Xk) and the yn,
n € Ji (but not ), with relations

(using pigpin = 1) frn = pnon(f),  pnf = pu(F)pin
Comment: presence of an algebraic subalgebra also in previous
examples of arithmetic QSM

Comment: similar NCG interpretation as moduli spaces of K-lattices
up to commensurability
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QSM isomorphism: two number fields K and L.
v Ak 5 AL
C*-algebra isomorphism
@POOK =010
intertwines the time evolutions
P AJ]I; = A]J]E

preserves the covariance algebras
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Theorem The following are equivalent:
@ K = L are isomorphic number fields
© Quantum Statistical Mechanical systems are isomorphic

(AK, O‘K) ~ (A]L, O‘]L)

C*-algebra isomorphism ¢ : Ax — Ar, compatible with time
evolution, oy, o ¢ = o o and covariance ¢ : Al =5 Al

© There is a group isomorphism ¢ : G2 — G2 of Pontrjagin
duals of abelianized Galois groups with

Lk (x, s) = Lu(v(x), s)

identity of all L-functions with GroBencharakter
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Comments:

@ Generalization of arithmetic equivalence:
x = 1 gives (k(s) = (L(s)

@ Now also a purely number theoretic proof of (3) = (1) available
by Hendrik Lenstra and Bart de Smit

@ L-functions L(y,s), for s = § > 1 is product of (x(3) and

evaluation of an extremal KMSg state of the QSM system
(Ak, oK) at a test function f, € C(Xk)
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Scheme of proof: (2) = (1)

@ QSM isomorphism = arithmetic equivalence (k(s) = (L(s)

° A]% ~ A]E gives homeomorphism Xg ~ Xi, and compatible
semigroup isomorphism Jif ~ Jﬂf

@ Group isomorphism G ~ G&b

° TAhis preserves ramification = isAomorpbism of local units
05 = 07,y and products ¢ : O = OF

@ Semigroup isomorphism Aj (N Ox S AL N %

@ Endomorphism action of these = inner: O | = Zon
(tot pos non-zero integers)

@ Recover additive structure (mod any totally split prime)
e(x +y) = ¢(x) + ¢(y) mod p
>0k ~0L,=>K~L
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Scheme of proof: (2) = (3)

@ QSM isomorphism = G ~ G’ preserving ramification (as
above)

character groups ¢ : G2 = G2

character x to function f, € C(Xk), matching ¢(f,) = fy(y)
xX(9x(n)) = v () (IL(p(n)))

Matching KMSjs states: w! 5(0(f)) = wE 4(f)

@ using arithmetic equivalence: Lk (x,s) = LL(¥(x), s)

QSM isomorphism =- matching of L-series
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Scheme of proof: (3) = (1)
@ need compatible isomorphisms Jif = Ji" and C(Xx) = C(XL)

@ know same number of primes ( above same p with inertia
degree f want to match compatibly with Artin map
@ use combinations of L-series as counting functions: on finite

quotients 7g : G® — G

> ZX(WG x(Vr(n)) | = br.cn(v)

neJEg

N (n)

b]K,G,n(’Y) =
@ For Gﬁin = Gal of max ab ext unram over n, get unique m € Jff
with Np,(m) = Nk(n) and
e (YL(m)) = mge (v7)"(k(n)))

#{n € Jﬁ(f : NK(I‘l) =n and 7T6(19K(n)) = WG(’Y)}

@ Use stratification of Xk to extend ¢ : C(G®) = C(G) to
¢ : C(Xx) = C(X) compatibly with semigroup actions
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One more equivalent formulation: K and L isomorphic iff 3
e topological group isomorphism 1 : G2 = G2°
@ semigroup isomorphism W : JH'(f = Jf
with compatibility conditions
@ Norm compatibility: N (W(n)) = Ng(n) for all n € Jif
@ Artin map compatibility: for every finite abelian extension
K' = (K#®)N/K, with N C G&: prime p of K unramified in K’
= prime W(p) unramified in L = (]Lab)ﬁ’(’v)/]]_, and

A

)(Froby) = Frobyy)
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Conclusions
@ Is Quantum Statistical Mechanics a “noncommutative version”
of anabelian geometry?
@ What about function fields? QSM systems exist, purely NT proof
seems not to work, but this QSM proof may work

General philosophy L-functions as coordinates determining
underlying geometry

Examples:

@ Cornelissen-M.M.: zeta functions of a spectral triple on limit set
of Schottky uniformized Riemann surface determine conformal
structure

@ Cornelissen—J.W.de Jong: family of zeta functions of spectral
triple of Riemannian manifold determine manifold up to isometry
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Anabelian versus Noncommutative
@ Anabelian geometry describes a number field K in terms of the
absolute Galois group Gk

@ But... no description of Gk in terms of internal data of K only
(Kronecker’s hope)

@ Langlands: relate to internal data via automorphic forms

@ For abelian extensions yes: G%b in terms of internal data:
adeles, ideles (class field theory)

@ But... G does not recover K

@ Noncommutative geometry replaces Gk with the QSM system
(Ak, o) to reconstruct K

o Ax = C(Xk) x J]kf is built only from internal data of K (primes,
adeles, G)
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More details on the proof of (2) = (1): Stratification of Xk
® Ok = [, Ok, and

a5 ; o
XK,n = Gy Xﬁf& ﬁK,n with  Xg = I|7>mXK,,,

Topological groups

Gﬁ(b Xﬁﬁé ﬁ]]*(,n = Gﬂa(b/ﬂK(ﬁf(,n) = G']?(b,n
Gal of max ab ext unramified at primes dividing n
Jif . C Jif subsemigroup gen by prime ideals dividing n
Decompose Xk » = Xz , [[ X%,

Xioo= |J 9x(m)GE, and XZ,:=|] Yk,

nedf pln

where Yk, = {(7,p) € Xk,n : pp =0}
Xg , dense in Xg , and XZ , has ux-measure zero
Algebra C(Xk ) is generated by functions

fym oy x(Wx(n)x(v), x € aﬁﬁb,m ne J]Ig,n
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First Step of (2) = (1): (Ak, ok) =~ (AL, oL) = (k(S) = (L(S)

@ QSM (A, o) and representation 7 : A — B(J¢) gives
Hamiltonian ' .
n(oi(a)) = e™'r(a)e™™

Hyyen = log N(n) ep
Partition function 57 = (2(Jg)

Z(B) = Tr(e") = Gk (8)
@ Isomorphism ¢ : (Ak, ok) ~ (AL, o1.) = homeomorphism of
sets of extremal KMS states by pullback w — ¢*(w)

@ KMS; states for (Ak, o) classified [LLN]: 3 > 1

_ (Vk(m)y)
wy,5(f) = & (B8) m§+ Ng (m)?

K

parameterized by v € G2 /9x (07%)
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@ Comparing GNS representations of w € KMS3(Ar, o1,) and
¢*(w) € KMSg(Ak, o) find Hamiltonians

Hx = UHy, U* + log A

for some U unitary and A € R’}

@ Then partition functions give

L(B) = AP(B)

identity of Dirichlet series

with a; = by = 1, taking limit as § — oo

a;= lim AP = \=1
B—o0

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry



Conclusion of first step: arithmetic equivalence (1.(5) = (k(5)

Consequences:

From arithmetic equivalence already know K and L have same
degree over QQ, discriminant, normal closure, unit groups,
archimedean places.

But... not class group (or class number)
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Second Step of (2) = (1): unraveling the crossed product
@1 C(Xx) x Jf = C(XL) x i with op0p =poox

and preserving the covariance algebra ¢ : A& = AITL
@ Restrict to finitely many isometries 11, Nk (p) = p
@ Ak generated by ju,fiy;in Ag( only punf

@ Eigenspaces of time evolution in AE{ preserved:
s0 C(Xk) = C(XL) and @(pin) = D fim fam

e Commutators [f, un] = (f — pn(f))pn: match maximal ideals
(mod commutators) so that homeomorphism & : Xg — XL
compatible with semigroup actions 7y, (n)(P(x)) = P (1 (X))
with locally constant ay : Jif — JiF
(thatis, p(pa) = > 5m7ax(n)un)

@ ay = a constant: know [LLN] ergodic action of Jﬂ‘g on Xk, level
sets would be clopen invariant subsets
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Third Step of (2) = (1): isomorphism G& = Gg°
@ Projectors ek, = pn ity mapped to projector €L, (n)
o Fixm € Jf and Ok o = [Tom i p, then

Vikw == [ ) Range(eK,n):Gggxﬁﬁ{(o,...,o,ﬁ“K,m,o,...,O)}

(mn)=1

O(Viem) = (| P(Range(exn))=  [|  Range(ep y(w)
(m,n)=1 (p(m),(n))=1
= G]ib Xﬁ%ﬁ {(07 A ,0, ﬁl\hw(m), 0, e 0)} = VL,SD(m)

@ 1, integral adele = 1 at the prime divisors of m, zero elsewhere
Hi m = G¥ Xéx {In} C X 5 G o {Vom} € Xu

@ checkthat y € ﬁﬂm is a unit

@ then Hk n classes [(7, 1m)] ~ [(7/, 1m)] <= Fu € 5’]}; with
v =dk(u) Tyand 1y = uly
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@ then for égg,m Gal of max ab ext unram outside prime div of m

Him = G¥ /Yx (H 5’:) =GR,

qfm

° éﬁg’m has dense subgroup gen by ¥k (n), ideals coprime to m
= Hik m gen by these v, := [(Vx(n)™", 1n)]
@ with 1, = [(1, 1m)] and (1) = [(Xm, Ym)] get

O(Yn, ) = P([(Fre(n12) 7", 1))
= ®([(9x(nyn2) "', ny np 1)]) (since ny, np coprime to m)
= O(nynz # 1) = (4 12) 4P (1) = [(VL(0(1112)) ™ X, (11 12)Yim )]

o Im 1,=1= (1m) = (1) and get

lim &
m—-+00 m—-+o00

D(1172) = D(7192) (1) " = D(71)(72)P(1) 2 = D(71)-D(72)
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Fourth step of (2): Preserving ramification
N C G2 subgroup, G2/N = G*/®(N)

p ramifies in K'/K <= ¢(p) ramifies in L' /L

where K’ = (K*®)N finite extension and I/ := (IL*)®(N)

® seen have isomorphism ® : Gg¢ . = G, (Gal of max ab ext
K., unram outside prime div of m)

e K’ = (K*)N fin ext ramified precisely above py,...,p, € J

@ By previous I” := (IL)*") contained in L, )...s(p.) but not in

/ . !
any Lw(m)---w(m)--«p(pr) = L' /IL ramified precisely above

90(]31), ce 790(pr)
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Fifth Step of (2) = (1): from QSM isomorphism get also
@ Isomorphism of local units

v Oy = O
max ab ext where p unramified = fixed field of inertia group /2°,

by ramification preserving
<b(l;b) =

ab
©(p)

and by local class field theory [ ~ 5’;
@ by product of the local units: isomorphism

0 085S 0F
@ Semigroup isomorphism
¢ (AN Ok, x) S (Af;NOL, x)
by exact sequence
0— O = A NOg — Jf -0

(non-canonically) split by choice of uniformizer , at every place

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry



Recover multiplicative structure of the field
@ Endomorphism action of Ay ;N Ok

es(f) (7, p) = (7,57 ' p)er, es(pin) = pin

e, char function of set s~ 1p € Ok
° 5’]12 = part acting by automorphisms
° @ (closure of tot pos units): trivial endomorphisms
® 0y , = Uk — {0} (non-zero tot pos elements of ring of

integers): inner endomorphisms (isometries in A]% eigenv of
time evolution)

] (p(&s) = Ey(s) for all s € A]}k&,f N éK

Conclusion: isom of multiplicative semigroups of tot pos non-zero
elements of rings of integers

(0% 1, %) = (00 1, %)
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Last Step of (2) = (1): Recover additive structure of the field
Extend by ¢(0) = 0 the map ¢ : (ﬁ£+, )5S (ﬁf+, ), Claim: it
is additive
@ Start with induced multipl map of local units ¢ : 6" —> ﬁL ()
(from ramification preserving)
@ set1,=(0,...,0,1,0,. )and1p :[(1,1p)]EXK,f0r
ue Ok, mtegral |dele u,g =(1,...,1,u1,...,1):

[(1, up)] = [(Fx () ™", )] = S([(Tre(up) ™), D) =2 [(1, () o())]

@ Group isom to image Ak p: ﬁﬂ’gp — Xk ﬂ> Zgp C Xk

= [(1, up)] = [(1,up - 1,)] = [(1,(0,...,0,u,0,...,0)]
@ Commutative diagram

~ AK, p
ﬁip — K p

ook

Lp(9) oy Llsee)
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@ Fix rational prime p totally split in K (hence unramified) =
arithm equiv: p tot splitin I

@ Set Zpp) integers coprime to pA with A = Ag = A,
discriminant

@ map wg p: Z(pA) — ﬁl\ﬁzp — Z]K,p with WKyp: a— [(1 ,a- 1p)]

@ a=py...p, rational prime unramified = permute factors
ax((2)) = Po(1) - - - Po(r) S0 ax((a)) = (a) fixes ideals (a) € Jg

O(wg p(a)) = P((2)*1p) = a1, ((2))x®(1p) = ()1 p(p) = DL ()

° sop: Of, 5’£7¢(p) constant on Zpa)
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@ As above fix ational prime p totally split in K (hence in L) and
p € Ji& above p with f(p |K) = 1 (hence f((p)|L) = 1)
@ Use p: ﬁip = ﬁfi o(y) T0 get multiplicative map of residue

fields by Teichmdiller lift 7 K; =F, — ﬁAﬂ*&p =Qp
@ Show its extension by zero additive (hence identity map

: Fyy — Fy) by extending 7 p: O, — Oy, with

X = limp_ o0 xP"

e for aresidue class in K, 2 [Fp, choose integer a congruent to a
mod p and coprime to discriminant A (Chinese remainder thm)

o(1xp(a)) = go( lim ap”) = lim @(a)f =1 ,(p(a)) = m,(a)

n—--o00 n——+oo

?(a) = ¢(1i p(@)) mod p(p) = 11.,5(a) mod p(p) = amod ¢ (p)
@ So ¢ identity mod any tot split prime, so for any x,y € Ok 4+
e(x +y) = ¢(x) + ¢(y) mod ¢(p)
@ totally split primes of arbitrary large norm (Chebotarev)
= (p additive
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