Quantum statistical mechanics, *L*-series, Anabelian Geometry

Matilde Marcolli

Colloquium, Harvard University, March 24, 2011

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry

joint work with Gunther Cornelissen

General philosophy:

- Zeta functions are counting devices: spectra of operators with spectral multiplicities, counting ideals with given norm, number of periodic orbits, rational points, etc.
- Zeta function does not determine object: isospectral manifolds, arithmetically equivalent number fields, isogeny
- but ... sometimes a family of zeta functions does
- Zeta functions occur as partition functions of physical systems

イロト イヨト イヨト

Number fields: finite extensions \mathbb{K} of the field of rational numbers \mathbb{Q} .

- zeta functions: Dedekind $\zeta_{\mathbb{K}}(s)$ (for \mathbb{Q} Riemann zeta)
- symmetries: G_K = Gal(K/K) absolute Galois group; abelianized G^{ab}_K
- adeles $\mathbb{A}_{\mathbb{K}}$ and ideles $\mathbb{A}_{\mathbb{K}}^*$, Artin map $\vartheta_{\mathbb{K}} : \mathbb{A}_{\mathbb{K}}^* \to G_{\mathbb{K}}^{ab}$
- topology: analogies with 3-manifolds (arithmetic topology)

How well do we understand them? Analogy with manifolds: are there complete invariants?

Recovering a Number Field from invariants

 Dedekind zeta function ζ_K(s) = ζ_L(s) arithmetic equivalence Gaßmann examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt[8]{3})$$
 and $\mathbb{L}=\mathbb{Q}(\sqrt[8]{3\cdot 2^4})$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

 Adeles rings A_K ≅ A_L adelic equivalence ⇒ arithmetic equivalence; Komatsu examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt[8]{2\cdot9})$$
 and $\mathbb{L}=\mathbb{Q}(\sqrt[8]{2^5\cdot9})$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

 Abelianized Galois groups: G^{ab}_K ≅ G^{ab}_L also not isomorphism; Onabe examples:

$$\mathbb{K}=\mathbb{Q}(\sqrt{-2})$$
 and $\mathbb{L}=\mathbb{Q}(\sqrt{-3})$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

Question: Can combine $\zeta_{\mathbb{K}}(s)$, $\mathbb{A}_{\mathbb{K}}$ and $G_{\mathbb{K}}^{ab}$ to something as strong as $G_{\mathbb{K}}$ that determines isomorphism class of \mathbb{K} ?

Answer: Yes! Combine as a Quantum Statistical Mechanical system Main Idea:

- Construct a QSM system associated to a number field
- Time evolution and equilibrium states at various temperatures
- Low temperature states are related to L-series
- Extremal equilibrium states determine the system
- System recovers the number field up to isomorphism

Purely number theoretic consequence:

An identity of all *L*-functions with Großencharakter gives an isomorphism of number fields

Quantum Statistical Mechanics (minimalist sketch)

- \mathscr{A} unital C^* -algebra of observables
- σ_t time evolution, $\sigma : \mathbb{R} \to \operatorname{Aut}(\mathscr{A})$
- states $\omega : \mathscr{A} \to \mathbb{C}$ continuous, normalized $\omega(1) = 1$, positive

$$\omega(a^*a) \geq 0$$

- equilibrium states $\omega(\sigma_t(a)) = \omega(a)$ all $t \in \mathbb{R}$
- representation $\pi : \mathscr{A} \to \mathscr{B}(\mathscr{H})$, Hamiltonian H

$$\pi(\sigma_t(a)) = e^{itH}\pi(a)e^{-itH}$$

- partition function $Z(\beta) = \text{Tr}(e^{-\beta H})$
- Gibbs states (equilibrium, inverse temperature β):

$$\omega_{eta}(a) = rac{\operatorname{Tr}(\pi(a)e^{-eta H})}{\operatorname{Tr}(e^{-eta H})}$$

イロン 不良 とくほどう

Generalization of Gibbs states: KMS states
 (Kubo–Martin–Schwinger) ∀a, b ∈ A, ∃ holomorphic F_{a,b} on strip I_β = {0 < Im z < β}, bounded continuous on ∂I_β,

$$F_{a,b}(t) = \omega(a\sigma_t(b))$$
 and $F_{a,b}(t+i\beta) = \omega(\sigma_t(b)a)$

 Fixed β > 0: KMS_β state convex simplex: extremal states (like points in NCG)

ヘロン ヘ回 とくほ とくほ とう

Isomorphism of QSM systems: $\varphi : (\mathscr{A}, \sigma) \to (\mathscr{B}, \tau)$

$$\varphi: \mathscr{A} \xrightarrow{\simeq} \mathscr{B}, \quad \varphi \circ \sigma = \tau \circ \varphi$$

 C^* -algebra isomorphism intertwining time evolution

Algebraic subalgebras A[†] ⊂ A and B[†] ⊂ B: stronger condition: QSM isomorphism also preserves "algebraic structure"

$$arphi:\mathscr{A}^\dagger\stackrel{\simeq}{ o}\mathscr{B}^\dagger$$

• Pullback of a state: $\varphi^*\omega(a) = \omega(\varphi(a))$

・ロト ・同ト ・ヨト ・ヨト

Why QSM and Number theory? (a historical note)
1995: Bost–Connes QSM system A_{BC} = C(Ẑ) ⋊ N
generators e(r), r ∈ Q/Z and μ_n, n ∈ N and relations

$$\mu_{n}\mu_{m} = \mu_{m}\mu_{n}, \quad \mu_{m}^{*}\mu_{m} = 1$$

$$\mu_{n}\mu_{m}^{*} = \mu_{m}^{*}\mu_{n} \quad \text{if} \quad (n,m) = 1$$

$$e(r+s) = e(r)e(s), \quad e(0) = 1$$

$$\mu_{n}e(r)\mu_{n}^{*} = \frac{1}{n}\sum_{ns=r}e(s)$$

• time evolution $\sigma_t(f) = f$ and $\sigma_t(\mu_n) = n^{it}\mu_n$

• representations $\pi_{\rho} : \mathscr{A}_{BC} \to \ell^2(\mathbb{N}), \, \rho \in \hat{\mathbb{Z}}^*$

$$\pi_{\rho}(\mu_n)\epsilon_m = \epsilon_{nm}, \ \pi_{\rho}(\boldsymbol{e}(\boldsymbol{r}))\epsilon_m = \zeta_{\boldsymbol{r}}^m\epsilon_m$$

 $\zeta_r = \rho(e(r))$ root of unity

• Hamiltonian $H\epsilon_m = \log(m) \epsilon_m$, partition function

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \zeta_{\mathbb{Q}}(\beta)$$

Riemann zeta function

- Low temperature KMS states: L-series normalized by zeta
- Galois action on zero temperature states (class field theory)

ヘロン 人間 とくほ とくほ とう

Further generalizations: other QSM's with similar properties

- QSM systems for imaginary quadratic fields (class field theory): Connes-M.M.-Ramachandran
- B.Jacob and Consani-M.M.: QSM systems for function fields (Weil and Goss L-functions as partition functions)
- Ha-Paugam: QSM systems for Shimura varieties ⇒ QSM systems for arbitrary number fields (Dedekind zeta function) further studied by Laca-Larsen-Neshveyev

We use these QSM systems for number fields

The Noncommutative Geometry viewpoint:

- Equivalence relation \mathscr{R} on X: quotient $Y = X/\mathscr{R}$. Even for very good $X \Rightarrow X/\mathscr{R}$ pathological!
- Functions on the quotient $\mathscr{A}(Y) := \{ f \in \mathscr{A}(X) \mid f\mathscr{R} \text{invariant} \}$
- \Rightarrow often too few functions: $\mathscr{A}(Y) = \mathbb{C}$ only constants
- NCG: $\mathscr{A}(Y)$ noncommutative algebra $\mathscr{A}(Y) := \mathscr{A}(\Gamma_{\mathscr{R}})$ functions on the graph $\Gamma_{\mathscr{R}} \subset X \times X$ of the equivalence relation with involution $f^*(x, y) = \overline{f(y, x)}$ and convolution product

$$(f_1 * f_2)(x, y) = \sum_{x \sim u \sim y} f_1(x, u) f_2(u, y)$$

• $\mathscr{A}(\Gamma_{\mathscr{R}})$ associative noncommutative $\Rightarrow Y = X/\mathscr{R}$ noncommutative space (as good as X to do geometry, but new phenomena: time evolutions, thermodynamics, quantum phenomena)

イロン 不良 とくほどう

In the various cases QSM system semigroup action on a space: Bost–Connes revisited (Connes–M.M. 2006)

• \mathbb{Q} -lattices: (Λ, ϕ) \mathbb{Q} -lattice in \mathbb{R}^n : lattice $\Lambda \subset \mathbb{R}^n$ + group homomorphism

$$\phi: \mathbb{Q}^n/\mathbb{Z}^n \longrightarrow \mathbb{Q}\Lambda/\Lambda$$

• Commensurability: $(\Lambda_1, \phi_1) \sim (\Lambda_2, \phi_2)$ iff $\mathbb{Q}\Lambda_1 = \mathbb{Q}\Lambda_2$ and $\phi_1 = \phi_2 \mod \Lambda_1 + \Lambda_2$

- \bullet Quotient $\mathbb Q\text{-lattices/Commensurability} \Rightarrow \mathsf{NC}$ space
- 1-dimensional \mathbb{Q} -lattices up to scaling $C(\hat{\mathbb{Z}})$

$$(\Lambda, \phi) = (\lambda \mathbb{Z}, \lambda \rho) \ \lambda > 0$$

 $\rho \in \operatorname{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}}$

 \bullet with action of semigroup $\tilde{\mathbb{N}}$ commensurability

$$\alpha_n(f)(\rho) = f(n^{-1}\rho)$$
 or zero

 $\mathcal{C}(\hat{\mathbb{Z}}) \rtimes \mathbb{N}$ Bost–Connes algebra: moduli space

QSM systems for number fields: algebra and time evolution (A, σ)

$$A_{\mathbb{K}} := \mathcal{C}(X_{\mathbb{K}}) \rtimes J^+_{\mathbb{K}}, \quad ext{with} \quad X_{\mathbb{K}} := G^{ ext{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{w}} \hat{\mathscr{O}}_{\mathbb{K}},$$

 $\hat{\mathscr{O}}_{\mathbb{K}} = \text{ring of finite integral adeles, } J^+_{\mathbb{K}} = \text{is the semigroup of ideals,}$ acting on $X_{\mathbb{K}}$ by Artin reciprocity

Crossed product algebra A_K := C(X_K) ⋊ J⁺_K, generators and relations: f ∈ C(X_K) and μ_n, n ∈ J⁺_K

$$\mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^* = e_{\mathfrak{n}}; \ \mu_{\mathfrak{n}}^*\mu_{\mathfrak{n}} = 1; \ \rho_{\mathfrak{n}}(f) = \mu_{\mathfrak{n}}f\mu_{\mathfrak{n}}^*;$$

$$\sigma_{\mathfrak{n}}(f)\boldsymbol{e}_{\mathfrak{n}} = \mu_{\mathfrak{n}}^{*}f\mu_{\mathfrak{n}}; \ \sigma_{\mathfrak{n}}(\rho_{\mathfrak{n}}(f)) = f; \ \rho_{\mathfrak{n}}(\sigma_{\mathfrak{n}}(f)) = f\boldsymbol{e}_{\mathfrak{n}}$$

イロン 不良 とくほどう

 Artin reciprocity map ∂_K : A^{*}_K → G^{ab}_K, write ∂_K(n) for ideal n seen as idele by non-canonical section s of

$$\mathbb{A}^*_{\mathbb{K},f} \xrightarrow{\hspace{1.5cm}} J_{\mathbb{K}} \qquad : \qquad (x_{\mathfrak{p}})_{\mathfrak{p}} \mapsto \prod_{\mathfrak{p} \text{ finite }} \mathfrak{p}^{v_{\mathfrak{p}}(x_{\mathfrak{p}})}$$

• semigroup action: $\mathfrak{n} \in J^+_{\mathbb{K}}$ acting on $f \in \mathcal{C}(X_{\mathbb{K}})$ as

$$\rho_{\mathfrak{n}}(f)(\gamma,\rho) = f(\vartheta_{\mathbb{K}}(\mathfrak{n})\gamma, s(\mathfrak{n})^{-1}\rho)e_{\mathfrak{n}},$$

 $e_{\mathfrak{n}} = \mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^*$ projector onto $[(\gamma, \rho)]$ with $s(\mathfrak{n})^{-1}
ho \in \hat{\mathscr{O}}_{\mathbb{K}}$

• partial inverse of semigroup action:

 $\sigma_{\mathfrak{n}}(f)(x) = f(\mathfrak{n} * x) \quad \text{with} \quad \mathfrak{n} * [(\gamma, \rho)] = [(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1} \gamma, \mathfrak{n} \rho)]$

• Time evolution $\sigma_{\mathbb{K}}$ acts on $J^+_{\mathbb{K}}$ as a phase factor $N(\mathfrak{n})^{it}$

$$\sigma_{\mathbb{K},t}(f) = f$$
 and $\sigma_{\mathbb{K},t}(\mu_n) = N(n)^{it} \mu_n$

for $f\in {\it C}({\it G}_{\mathbb K}^{{\rm ab}} imes_{\hat{\mathscr O}_{\mathbb K}^{st}}\,\hat{\mathscr O}_{\mathbb K})$ and for $\mathfrak n\in J_{\mathbb K}^+$

Algebraic structure: covariance algebra

Algebraic subalgebra $A_{\mathbb{K}}^{\dagger}$ of C^* -algebra $A_{\mathbb{K}} := C(X_{\mathbb{K}}) \rtimes J_{\mathbb{K}}^+$:

 $A_{\mathbb{K}}^{\uparrow}$ unital, non-involutive algebra generated by $C(X_{\mathbb{K}})$ and the $\mu_{\mathfrak{n}}$, $\mathfrak{n} \in J_{\mathbb{K}}^{+}$ (but not $\mu_{\mathfrak{n}}^{*}$), with relations

(using
$$\mu_{\mathfrak{n}}^*\mu_{\mathfrak{n}} = 1$$
) $f\mu_{\mathfrak{n}} = \mu_{\mathfrak{n}}\sigma_{\mathfrak{n}}(f)$, $\mu_{\mathfrak{n}}f = \rho_{\mathfrak{n}}(f)\mu_{\mathfrak{n}}$

Comment: presence of an algebraic subalgebra also in previous examples of arithmetic QSM

Comment: similar NCG interpretation as moduli spaces of $\mathbb{K}\mbox{-lattices}$ up to commensurability

QSM isomorphism: two number fields \mathbb{K} and \mathbb{L}

$$arphi: \mathit{A}_{\mathbb{K}} \stackrel{\sim}{
ightarrow} \mathit{A}_{\mathbb{L}}$$

 C^* -algebra isomorphism

$$\varphi \circ \sigma_{\mathbb{K}} = \sigma_{\mathbb{L}} \circ \varphi$$

intertwines the time evolutions

$$arphi: \mathbf{A}^{\dagger}_{\mathbb{K}} \stackrel{\sim}{
ightarrow} \mathbf{A}^{\dagger}_{\mathbb{L}}$$

preserves the covariance algebras

A (10) < A (10) < A (10)</p>

Theorem The following are equivalent:

- $\textcircled{0} \quad \mathbb{K} \cong \mathbb{L} \text{ are isomorphic number fields}$
- Quantum Statistical Mechanical systems are isomorphic

$$(\mathbf{A}_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (\mathbf{A}_{\mathbb{L}}, \sigma_{\mathbb{L}})$$

 C^* -algebra isomorphism $\varphi : A_{\mathbb{K}} \to A_{\mathbb{L}}$ compatible with time evolution, $\sigma_{\mathbb{L}} \circ \varphi = \varphi \circ \sigma_{\mathbb{K}}$ and covariance $\varphi : A_{\mathbb{K}}^{\dagger} \xrightarrow{\sim} A_{\mathbb{L}}^{\dagger}$

• There is a group isomorphism $\psi : \hat{G}^{ab}_{\mathbb{K}} \to \hat{G}^{ab}_{\mathbb{L}}$ of Pontrjagin duals of abelianized Galois groups with

$$L_{\mathbb{K}}(\chi, \boldsymbol{s}) = L_{\mathbb{L}}(\psi(\chi), \boldsymbol{s})$$

identity of all L-functions with Großencharakter

くちゃく 通 やく ほやく ほう

Comments:

• Generalization of arithmetic equivalence:

 $\chi = 1$ gives $\zeta_{\mathbb{K}}(s) = \zeta_{\mathbb{L}}(s)$

- Now also a purely number theoretic proof of (3) ⇒ (1) available by Hendrik Lenstra and Bart de Smit
- L-functions L(χ, s), for s = β > 1 is product of ζ_K(β) and evaluation of an extremal KMS_β state of the QSM system (A_K, σ_K) at a test function f_χ ∈ C(X_K)

ヘロン 人間 とくほ とくほ とう

Scheme of proof: $(2) \Rightarrow (1)$

- QSM isomorphism \Rightarrow arithmetic equivalence $\zeta_{\mathbb{K}}(s) = \zeta_{\mathbb{L}}(s)$
- $A_{\mathbb{K}}^{\dagger} \simeq A_{\mathbb{L}}^{\dagger}$ gives homeomorphism $X_{\mathbb{K}} \simeq X_{\mathbb{L}}$ and compatible semigroup isomorphism $J_{\mathbb{K}}^+ \simeq J_{\mathbb{L}}^+$
- Group isomorphism $G^{ab}_{\mathbb{K}}\simeq G^{ab}_{\mathbb{L}}$
- This preserves ramification \Rightarrow isomorphism of local units $\hat{\mathscr{O}}_{\wp}^* \xrightarrow{\sim} \hat{\mathscr{O}}_{\varphi(\wp)}^*$ and products $\varphi : \hat{\mathscr{O}}_{\mathbb{K}}^* \xrightarrow{\sim} \hat{\mathscr{O}}_{\mathbb{L}}^*$
- Semigroup isomorphism $\mathbb{A}^*_{\mathbb{K},f} \cap \hat{\mathscr{O}}_{\mathbb{K}} \xrightarrow{\sim} \mathbb{A}^*_{\mathbb{L},f} \cap \hat{\mathscr{O}}_{\mathbb{L}}$
- Endomorphism action of these \Rightarrow inner: $\mathscr{O}_{\mathbb{K},+}^{\times} \xrightarrow{\sim} \mathscr{O}_{\mathbb{L},+}^{\times}$ (tot pos non-zero integers)
- Recover additive structure (mod any totally split prime) $\varphi(x + y) = \varphi(x) + \varphi(y) \mod p$

 $\Rightarrow \mathscr{O}_{\mathbb{K}} \simeq \mathscr{O}_{\mathbb{L}} \Rightarrow \mathbb{K} \simeq \mathbb{L}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Scheme of proof: (2) \Rightarrow (3)

- QSM isomorphism $\Rightarrow G^{ab}_{\mathbb{K}} \simeq G^{ab}_{\mathbb{L}}$ preserving ramification (as above)
- character groups $\psi: \hat{G}^{ab}_{\mathbb{K}} \stackrel{\sim}{\to} \hat{G}^{ab}_{\mathbb{L}}$
- character χ to function $f_{\chi} \in C(X_{\mathbb{K}})$, matching $\varphi(f_{\chi}) = f_{\psi(\chi)}$

•
$$\chi(\vartheta_{\mathbb{K}}(\mathfrak{n})) = \psi(\chi)(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n})))$$

- Matching KMS $_{\beta}$ states: $\omega_{\gamma,\beta}^{\mathbb{L}}(\varphi(f)) = \omega_{\widetilde{\gamma},\beta}^{\mathbb{K}}(f)$
- using arithmetic equivalence: $L_{\mathbb{K}}(\chi,s) = L_{\mathbb{L}}(\psi(\chi),s)$

QSM isomorphism \Rightarrow matching of L-series

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Scheme of proof: $(3) \Rightarrow (1)$

- need compatible isomorphisms $J^+_{\mathbb{K}} \stackrel{\sim}{\to} J^+_{\mathbb{L}}$ and $\mathcal{C}(X_{\mathbb{K}}) \stackrel{\sim}{\to} \mathcal{C}(X_{\mathbb{L}})$
- know same number of primes p above same p with inertia degree f want to match compatibly with Artin map
- use combinations of *L*-series as counting functions: on finite quotients $\pi_G: G^{ab}_{\mathbb{K}} \to G$

$$\sum_{\mathfrak{n}\in J_{\mathbb{K}}^{+}\atop N_{\mathbb{K}}(\mathfrak{n})} \left(\sum_{\widehat{G}} \chi(\pi_{G}(\gamma)^{-1}) \chi(\vartheta_{\mathbb{K}}(\mathfrak{n})) \right) = b_{\mathbb{K},G,n}(\gamma)$$

 $b_{\mathbb{K},G,n}(\gamma) = \#\{\mathfrak{n} \in J^+_{\mathbb{K}} : N_{\mathbb{K}}(\mathfrak{n}) = n \text{ and } \pi_G(\vartheta_{\mathbb{K}}(\mathfrak{n})) = \pi_G(\gamma)\}$

• For $G^{ab}_{\mathbb{L},n} = \text{Gal of max ab ext unram over } n$, get unique $\mathfrak{m} \in J^+_{\mathbb{L}}$ with $N_{\mathbb{L}}(\mathfrak{m}) = N_{\mathbb{K}}(\mathfrak{n})$ and

$$\pi_{G^{ab}_{\mathbb{K},n}}(\vartheta_{\mathbb{L}}(\mathfrak{m})) = \pi_{G^{ab}_{\mathbb{L},n}}((\psi^{-1})^*(\vartheta_{\mathbb{K}}(\mathfrak{n})))$$

• Use stratification of $X_{\mathbb{K}}$ to extend $\psi : C(G^{ab}_{\mathbb{K}}) \xrightarrow{\sim} C(G^{ab}_{\mathbb{L}})$ to $\varphi : C(X_{\mathbb{K}}) \xrightarrow{\sim} C(X_{\mathbb{L}})$ compatibly with semigroup actions

One more equivalent formulation: \mathbb{K} and \mathbb{L} isomorphic iff \exists

- topological group isomorphism $\hat{\psi}: {\it G}_{\mathbb{K}}^{\it ab} \stackrel{\sim}{\to} {\it G}_{\mathbb{L}}^{\it ab}$
- semigroup isomorphism $\Psi: J^+_{\mathbb{K}} \stackrel{\sim}{
 ightarrow} J^+_{\mathbb{L}}$

with compatibility conditions

- Norm compatibility: $N_{\mathbb{L}}(\Psi(\mathfrak{n})) = N_{\mathbb{K}}(\mathfrak{n})$ for all $\mathfrak{n} \in J_{\mathbb{K}}^+$

$$\hat{\psi}(\operatorname{Frob}_{\mathfrak{p}}) = \operatorname{Frob}_{\Psi(\mathfrak{p})}$$

イロト イポト イラト イラト 一戸

Conclusions

- Is Quantum Statistical Mechanics a "noncommutative version" of anabelian geometry?
- What about function fields? QSM systems exist, purely NT proof seems not to work, but this QSM proof may work

General philosophy *L*-functions as coordinates determining underlying geometry

Examples:

- Cornelissen-M.M.: zeta functions of a spectral triple on limit set of Schottky uniformized Riemann surface determine conformal structure
- Cornelissen–J.W.de Jong: family of zeta functions of spectral triple of Riemannian manifold determine manifold up to isometry

イロト イヨト イヨト

Anabelian versus Noncommutative

- Anabelian geometry describes a number field $\mathbb K$ in terms of the absolute Galois group $G_{\mathbb K}$
- But... no description of $G_{\mathbb{K}}$ in terms of internal data of \mathbb{K} only (Kronecker's hope)
- Langlands: relate to internal data via automorphic forms
- For abelian extensions yes: $G^{ab}_{\mathbb{K}}$ in terms of internal data: adeles, ideles (class field theory)
- But... $G^{ab}_{\mathbb{K}}$ does not recover \mathbb{K}
- Noncommutative geometry replaces G_K with the QSM system (A_K, σ_K) to reconstruct K
- A_K = C(X_K) ⋊ J⁺_K is built only from internal data of K (primes, adeles, G^{ab}_K)

More details on the proof of (2) \Rightarrow (1): Stratification of $X_{\mathbb{K}}$ • $\hat{\mathcal{O}}_{\mathbb{K},n} := \prod_{\mathfrak{p} \mid n} \hat{\mathcal{O}}_{\mathbb{K},\mathfrak{p}}$ and

$$X_{\mathbb{K},n} := G^{ab}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}} \hat{\mathscr{O}}_{\mathbb{K},n} \quad \text{with} \quad X_{\mathbb{K}} = \varinjlim_{n} X_{\mathbb{K},n}$$

Topological groups

$$G^{ ext{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^{st}_{\mathbb{K}}}\hat{\mathscr{O}}^{st}_{\mathbb{K},n}\simeq G^{ ext{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}(\hat{\mathscr{O}}^{st}_{\mathbb{K},n})=G^{ ext{ab}}_{\mathbb{K},n}$$

Gal of max ab ext unramified at primes dividing n

J⁺_{K,n} ⊂ J⁺_K subsemigroup gen by prime ideals dividing *n*Decompose X_{K,n} = X¹_{K,n} ∐ X²_{K,n}

$$X^1_{\mathbb{K},n} := igcup_{\mathfrak{n}\in J^+_{\mathbb{K},n}} artheta_{\mathbb{K}}(\mathfrak{n})G^{ ext{ab}}_{\mathbb{K},n} ext{ and } X^2_{\mathbb{K},n} := igcup_{\mathfrak{p}\mid n}Y_{\mathbb{K},\mathfrak{p}}$$

where $Y_{\mathbb{K},\mathfrak{p}} = \{(\gamma, \rho) \in X_{\mathbb{K},n} : \rho_{\mathfrak{p}} = 0\}$

- $X^1_{\mathbb{K},n}$ dense in $X_{\mathbb{K},n}$ and $X^2_{\mathbb{K},n}$ has $\mu_{\mathbb{K}}$ -measure zero
- Algebra $C(X_{\mathbb{K},n})$ is generated by functions

$$f_{\chi,\mathfrak{n}} : \gamma \mapsto \chi(\vartheta_{\mathbb{K}}(\mathfrak{n}))\chi(\gamma), \quad \chi \in \widehat{G}^{\mathrm{ab}}_{\mathbb{K},n}, \quad \mathfrak{n} \in J^+_{\mathbb{K},n}$$

First Step of (2) \Rightarrow (1): $(A_{\mathbb{K}}, \sigma_{\mathbb{K}}) \simeq (A_{\mathbb{L}}, \sigma_{\mathbb{L}}) \Rightarrow \zeta_{\mathbb{K}}(s) = \zeta_{\mathbb{L}}(s)$

• QSM (A, σ) and representation $\pi : A \to B(\mathscr{H})$ gives Hamiltonian

$$egin{aligned} \pi(\sigma_t(\pmb{a})) &= \pmb{e}^{itH} \pi(\pmb{a}) \pmb{e}^{-itH} \ H_{\sigma_{\mathbb{K}}} arepsilon_{\mathfrak{n}} &= \log \pmb{N}(\mathfrak{n}) \ arepsilon_{\mathfrak{n}} \end{aligned}$$

Partition function $\mathscr{H} = \ell^2(J^+_{\mathbb{K}})$

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \zeta_{\mathbb{K}}(\beta)$$

- Isomorphism φ : (A_K, σ_K) ≃ (A_L, σ_L) ⇒ homeomorphism of sets of extremal KMS_β states by pullback ω ↦ φ^{*}(ω)
- KMS $_{\beta}$ states for ($A_{\mathbb{K}}, \sigma_{\mathbb{K}}$) classified [LLN]: $\beta > 1$

$$\omega_{\gamma,\beta}(f) = \frac{1}{\zeta_{\mathbb{K}}(\beta)} \sum_{\mathfrak{m} \in J^+_{\mathbb{K}}} \frac{f(\vartheta_{\mathbb{K}}(\mathfrak{m})\gamma)}{N_{\mathbb{K}}(\mathfrak{m})^{\beta}}$$

parameterized by $\gamma \in \textit{G}^{\tt{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}(\hat{\mathscr{O}}^{*}_{\mathbb{K}})$

 Comparing GNS representations of ω ∈ KMS_β(A_L, σ_L) and φ^{*}(ω) ∈ KMS_β(A_K, σ_K) find Hamiltonians

$$H_{\mathbb{K}} = U H_{\mathbb{L}} U^* + \log \lambda$$

for some U unitary and $\lambda \in \mathbb{R}^*_+$

Then partition functions give

$$\zeta_{\mathbb{L}}(\beta) = \lambda^{-\beta} \zeta_{\mathbb{K}}(\beta)$$

identity of Dirichlet series

$$\sum_{n\geq 1}rac{a_n}{n^{eta}}$$
 and $\sum_{n\geq 1}rac{b_n}{(\lambda n)^{eta}}$

with $a_1 = b_1 = 1$, taking limit as $\beta \to \infty$

$$a_1 = \lim_{\beta \to \infty} b_1 \lambda^{-\beta} \quad \Rightarrow \lambda = 1$$

Conclusion of first step: arithmetic equivalence $\zeta_{\mathbb{L}}(\beta) = \zeta_{\mathbb{K}}(\beta)$

Consequences:

From arithmetic equivalence already know \mathbb{K} and \mathbb{L} have same degree over \mathbb{Q} , discriminant, normal closure, unit groups, archimedean places.

But... not class group (or class number)

イロト イヨト イヨト

Second Step of (2) \Rightarrow (1): unraveling the crossed product

$$\varphi: \mathcal{C}(\mathcal{X}_{\mathbb{K}}) \rtimes J^+_{\mathbb{K}} \xrightarrow{\simeq} \mathcal{C}(\mathcal{X}_{\mathbb{L}}) \rtimes J^+_{\mathbb{L}} \quad \text{with} \quad \sigma_{\mathbb{L}} \circ \varphi = \varphi \circ \sigma_{\mathbb{K}}$$

and preserving the covariance algebra $arphi: {\sf A}_{\mathbb K}^\dagger \stackrel{\sim}{ o} {\sf A}_{\mathbb L}^\dagger$

- Restrict to finitely many isometries μ_{\wp} , $N_{\mathbb{K}}(\wp) = p$
- $A_{\mathbb{K}}$ generated by $\mu_{\mathfrak{n}} f \mu_{\mathfrak{m}}^*$; in $A_{\mathbb{K}}^{\dagger}$ only $\mu_{\mathfrak{n}} f$
- Eigenspaces of time evolution in A[†]_K preserved: so C(X_K) → C(X_L) and φ(μ_n) = Σμ_m f_{n,m}
- Commutators [f, μ_n] = (f − ρ_n(f))μ_n: match maximal ideals (mod commutators) so that homeomorphism Φ : X_K → X_L compatible with semigroup actions γ_{αx(n)}(Φ(x)) = Φ(γ_n(x)) with locally constant α_x : J⁺_K → J⁺_L (that is, φ(μ_n) = ∑ δ_{m,αx(n)}μ_n)
- α_x = α constant: know [LLN] ergodic action of J⁺_K on X_K, level sets would be clopen invariant subsets

・ロト ・ 同ト ・ ヨト ・ ヨト …

Third Step of (2) \Rightarrow (1): isomorphism $G^{ab}_{\mathbb{K}} \xrightarrow{\sim} G^{ab}_{\mathbb{L}}$

- Projectors $e_{\mathbb{K},\mathfrak{n}} = \mu_{\mathfrak{n}}\mu_{\mathfrak{n}}^*$ mapped to projector $e_{\mathbb{L},\varphi(\mathfrak{n})}$
- Fix $\mathfrak{m} \in J^+_{\mathbb{K}}$ and $\hat{\mathscr{O}}_{\mathbb{K},\mathfrak{m}} = \prod_{\mathfrak{p}\mid\mathfrak{m}} \hat{\mathscr{O}}_{\mathbb{K},\mathfrak{p}}$, then

$$V_{\mathbb{K},\mathfrak{m}} := \bigcap_{(\mathfrak{m},\mathfrak{n})=1} \operatorname{Range}(\boldsymbol{e}_{\mathbb{K},\mathfrak{n}}) = \boldsymbol{G}_{\mathbb{K}}^{ab} \times_{\hat{\mathcal{O}}_{\mathbb{K}}^{*}} \{(0,\ldots,0,\hat{\mathcal{O}}_{\mathbb{K},\mathfrak{m}},0,\ldots,0)\}$$

$$\Phi(V_{\mathbb{K},\mathfrak{m}}) = \bigcap_{(\mathfrak{m},\mathfrak{n})=1} \Phi(\operatorname{Range}(e_{\mathbb{K},\mathfrak{n}})) = \bigcap_{(\varphi(\mathfrak{m}),\varphi(\mathfrak{n}))=1} \operatorname{Range}(e_{\mathbb{L},\varphi(\mathfrak{n})})$$
$$= G_{\mathbb{L}}^{ab} \times_{\hat{\mathcal{O}}_{\mathbb{L}}^{*}} \{(0,\ldots,0,\hat{\mathcal{O}}_{\mathbb{L},\varphi(\mathfrak{m})},0,\ldots,0)\} = V_{\mathbb{L},\varphi(\mathfrak{m})}$$

• $1_{\mathfrak{m}}$ integral adele = 1 at the prime divisors of \mathfrak{m} , zero elsewhere

$$\mathcal{H}_{\mathbb{K},\mathfrak{m}}:= \mathcal{G}^{ ext{ab}}_{\mathbb{K}} imes_{\hat{\mathscr{O}}^*_{\mathbb{K}}}\{1_{\mathfrak{m}}\}\subseteq X_{\mathbb{K}} o \mathcal{G}^{ ext{ab}}_{\mathbb{L}} imes_{\hat{\mathscr{O}}^*_{\mathbb{L}}}\{y_{arphi(\mathfrak{m})}\}\subseteq X_{\mathbb{L}}$$

• check that
$$y \in \hat{\mathcal{O}}_{\mathbb{L},\mathfrak{m}}^*$$
 is a unit
• then $H_{\mathbb{K},\mathfrak{m}}$ classes $[(\gamma, 1_{\mathfrak{m}})] \sim [(\gamma', 1_{\mathfrak{m}})] \iff \exists u \in \hat{\mathcal{O}}_{\mathbb{K}}^*$ with
 $\gamma' = \vartheta_{\mathbb{K}}(u)^{-1}\gamma$ and $1_{\mathfrak{m}} = u1_{\mathfrak{m}}$

 $\bullet\,$ then for $\mathring{G}^{ab}_{\mathbb{K},\mathfrak{m}}$ Gal of max ab ext unram *outside* prime div of $\mathfrak{m}\,$

$$\mathcal{H}_{\mathbb{K},\mathfrak{m}}\cong \mathcal{G}^{\mathtt{ab}}_{\mathbb{K}}/artheta_{\mathbb{K}}\left(\prod_{\mathfrak{q}
eq \mathfrak{m}} \hat{\mathscr{O}}^*_{\mathfrak{q}}
ight)\cong \mathring{\mathcal{G}}^{\mathtt{ab}}_{\mathbb{K},\mathfrak{m}}$$

Ĝ^{ab}_{K,m} has dense subgroup gen by ϑ_K(n), ideals coprime to m
 ⇒ H_{K,m} gen by these γ_n := [(ϑ_K(n)⁻¹, 1_m)]
 with 1_m = [(1, 1_m)] and Φ(1_m) = [(x_m, y_m)] get

$$\Phi(\gamma_{\mathfrak{n}_1} \cdot \gamma_{\mathfrak{n}_2}) = \Phi([(\vartheta_{\mathbb{K}}(\mathfrak{n}_1 \, \mathfrak{n}_2)^{-1}, \mathfrak{1}_{\mathfrak{m}})])$$

 $=\Phi([(\vartheta_{\mathbb{K}}(\mathfrak{n}_{1}\,\mathfrak{n}_{2})^{-1},\mathfrak{n}_{1}\,\mathfrak{n}_{2}\,\mathfrak{1}_{\mathfrak{m}})]) \text{ (since }\mathfrak{n}_{1},\mathfrak{n}_{2} \text{ coprime to }\mathfrak{m})$

 $=\Phi(\mathfrak{n}_{1}\mathfrak{n}_{2}*\mathbf{1}_{\mathfrak{m}})=\varphi(\mathfrak{n}_{1}\mathfrak{n}_{2})*\Phi(\mathbf{1}_{\mathfrak{m}})=[(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n}_{1}\mathfrak{n}_{2}))^{-1}x_{\mathfrak{m}},\varphi(\mathfrak{n}_{1}\mathfrak{n}_{2})y_{\mathfrak{m}})]$

•
$$\lim_{m \to +\infty} \mathbf{1}_m = \mathbf{1} \Rightarrow \lim_{m \to +\infty} \Phi(\mathbf{1}_m) = \Phi(\mathbf{1})$$
 and get

$$\widetilde{\Phi}(\gamma_1\gamma_2) = \Phi(\gamma_1\cdot\gamma_2)\Phi(1)^{-1} = \Phi(\gamma_1)\Phi(\gamma_2)\Phi(1)^{-2} = \widetilde{\Phi}(\gamma_1)\cdot\widetilde{\Phi}(\gamma_2)$$

Fourth step of (2): Preserving ramification $N \subset G^{ab}_{\mathbb{K}}$ subgroup, $G^{ab}_{\mathbb{K}}/N \xrightarrow{\sim} G^{ab}_{\mathbb{L}}/\Phi(N)$

 \mathfrak{p} ramifies in $\mathbb{K}'/\mathbb{K}\iff \varphi(\mathfrak{p})$ ramifies in \mathbb{L}'/\mathbb{L}

where $\mathbb{K}' = (\mathbb{K}^{ab})^N$ finite extension and $\mathbb{L}' := (\mathbb{L}^{ab})^{\Phi(N)}$

- seen have isomorphism $\Phi : \mathring{G}^{ab}_{\mathbb{K},\mathfrak{m}} \xrightarrow{\sim} \mathring{G}^{ab}_{\mathbb{L},\varphi(\mathfrak{m})}$ (Gal of max ab ext $\mathbb{K}_{\mathfrak{m}}$ unram outside prime div of \mathfrak{m})
- $\mathbb{K}' = (\mathbb{K}^{ab})^N$ fin ext ramified precisely above $\mathfrak{p}_1, \ldots, \mathfrak{p}_r \in J^+_{\mathbb{K}}$
- By previous $\mathbb{L}' := (\mathbb{L})^{\Phi(N)}$ contained in $\mathbb{L}_{\varphi(\mathfrak{p}_1)\cdots\varphi(\mathfrak{p}_r)}$ but not in any $\mathbb{L}_{\varphi(\mathfrak{p}_1)\cdots\widehat{\varphi(\mathfrak{p}_r)}\cdots\varphi(\mathfrak{p}_r)} \Rightarrow \mathbb{L}'/\mathbb{L}$ ramified precisely above $\varphi(\mathfrak{p}_1), \dots, \varphi(\mathfrak{p}_r)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Fifth Step of (2) \Rightarrow (1): from QSM isomorphism get also

Isomorphism of local units

$$\varphi \,:\, \hat{\mathscr{O}}^*_{\mathfrak{p}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\varphi(\mathfrak{p})}$$

max ab ext where p unramified = fixed field of inertia group I_{p}^{ab} , by ramification preserving

$$\Phi(I^{\mathsf{ab}}_{\mathfrak{p}}) = I^{\mathsf{ab}}_{\varphi(\mathfrak{p})}$$

and by local class field theory $\mathit{I}^{\scriptscriptstyle ab}_{\mathfrak{p}} \simeq \hat{\mathscr{O}}^{*}_{\mathfrak{p}}$

by product of the local units: isomorphism

$$\varphi \,:\, \hat{\mathscr{O}}^*_{\mathbb{K}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\mathbb{L}}$$

Semigroup isomorphism

$$arphi\,:\,(\mathbb{A}^*_{\mathbb{K},f}\cap\hat{\mathscr{O}}_{\mathbb{K}}, imes)\stackrel{\sim}{
ightarrow}(\mathbb{A}^*_{\mathbb{L},f}\cap\hat{\mathscr{O}}_{\mathbb{L}}, imes)$$

by exact sequence

$$0 \to \hat{\mathscr{O}}_{\mathbb{K}}^* \to \mathbb{A}_{\mathbb{K},f}^* \cap \hat{\mathscr{O}}_{\mathbb{K}} \to J_{\mathbb{K}}^+ \to 0$$

(non-canonically) split by choice of uniformizer π_p at every place

Recover multiplicative structure of the field

• Endomorphism action of $\mathbb{A}^*_{\mathbb{K},f} \cap \hat{\mathscr{O}}_{\mathbb{K}}$

$$\epsilon_{s}(f)(\gamma,
ho) = f(\gamma, s^{-1}
ho) e_{ au}, \ \ \epsilon_{s}(\mu_{\mathfrak{n}}) = \mu_{\mathfrak{n}} e_{ au}$$

 $\pmb{e}_{ au}$ char function of set $\pmb{s}^{-1}
ho\in\hat{\mathscr{O}}_{\mathbb{K}}$

- $\hat{\mathscr{O}}^*_{\mathbb{K}} =$ part acting by automorphisms
- $\overline{\mathscr{O}^*_{\mathbb{K},+}}$ (closure of tot pos units): trivial endomorphisms
- *O*[×]_{K,+} = *O*_{K,+} {0} (non-zero tot pos elements of ring of integers): inner endomorphisms (isometries in A[†]_K eigenv of time evolution)

•
$$arphi(arepsilon_{m{s}})=arepsilon_{arphi(m{s})}$$
 for all $m{s}\in\mathbb{A}^*_{\mathbb{K},f}\cap\hat{\mathscr{O}}_{\mathbb{K}}$

Conclusion: isom of multiplicative semigroups of tot pos non-zero elements of rings of integers

$$\varphi \, : \, (\mathscr{O}_{\mathbb{K},+}^{\times},\times) \xrightarrow{\sim} (\mathscr{O}_{\mathbb{L},+}^{\times},\times)$$

ヘロン ヘ回 とくほ とくほ とう

Last Step of (2) \Rightarrow (1): Recover additive structure of the field Extend by $\varphi(0) = 0$ the map $\varphi : (\mathscr{O}_{\mathbb{K},+}^{\times}, \times) \xrightarrow{\sim} (\mathscr{O}_{\mathbb{L},+}^{\times}, \times)$, Claim: it is additive

- Start with induced multipl map of local units φ : Ô^{*}_{K,p} → Ô^{*}_{L,φ(p)} (from ramification preserving)
- set $1_{\mathfrak{p}} = (0, \dots, 0, 1, 0, \dots, 0)$ and $\mathbf{1}_{\mathfrak{p}} := [(1, 1_{\mathfrak{p}})] \in X_{\mathbb{K}}$; for $u \in \hat{\mathcal{O}}_{\mathbb{K},\mathfrak{p}}$, integral idele $u_{\mathfrak{p}} := (1, \dots, 1, u, 1, \dots, 1)$: $[(1, u_{\mathfrak{p}})] = [(\vartheta_{\mathbb{K}}(u_{\mathfrak{p}})^{-1}, 1)] \mapsto \Phi([(\vartheta_{\mathbb{K}}(u_{\mathfrak{p}})^{-1}), 1)]) =: [(1, \varphi(u)_{\varphi(\mathfrak{p})})]$
- Group isom to image $\lambda_{\mathbb{K},\mathfrak{p}} : \hat{\mathscr{O}}^*_{\mathbb{K},\mathfrak{p}} \to X_{\mathbb{K}} \xrightarrow{[\cdot \mathbf{1}_{\mathfrak{p}}]} Z_{\mathbb{K},\mathfrak{p}} \subset X_{\mathbb{K}}$ $u \mapsto [(1, u_{\mathfrak{p}})] \mapsto [(1, u_{\mathfrak{p}} \cdot \mathbf{1}_{\mathfrak{p}})] = [(1, (0, \dots, 0, u, 0, \dots, 0)]$
- Commutative diagram

- Fix rational prime *p* totally split in K (hence unramified) ⇒ arithm equiv: *p* tot split in L
- Set $\mathbb{Z}_{(p\Delta)}$ integers coprime to $p\Delta$ with $\Delta = \Delta_{\mathbb{K}} = \Delta_{\mathbb{L}}$ discriminant

• map
$$\varpi_{\mathbb{K},\mathfrak{p}} \colon \mathbb{Z}_{(\rho\Delta)} \hookrightarrow \hat{\mathscr{O}}^*_{\mathbb{K},\mathfrak{p}} \to Z_{\mathbb{K},\mathfrak{p}} \text{ with } \varpi_{\mathbb{K},\mathfrak{p}} \colon a \mapsto [(1, a \cdot 1_{\mathfrak{p}})]$$

• $a = \mathfrak{p}_1 \dots \mathfrak{p}_r$ rational prime unramified \Rightarrow permute factors $\alpha_x((a)) = \mathfrak{p}_{\sigma(1)} \dots \mathfrak{p}_{\sigma(r)}$ so $\alpha_x((a)) = (a)$ fixes ideals $(a) \in J^+_{\mathbb{Q}}$

$$\Phi(\varpi_{\mathbb{K},\mathfrak{p}}(a)) = \Phi((a) \ast \mathbf{1}_{\mathfrak{p}}) = \alpha_{\mathbf{1}_{\mathfrak{p}}}((a)) \ast \Phi(\mathbf{1}_{\mathfrak{p}}) = (a) \ast \mathbf{1}_{\varphi(\mathfrak{p})} = \varpi_{\mathbb{L},\varphi(\mathfrak{p})}(a)$$

• so
$$\varphi \colon \hat{\mathscr{O}}^*_{\mathbb{K},\mathfrak{p}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\mathbb{L},\varphi(\mathfrak{p})}$$
 constant on $\mathbb{Z}_{(\rho\Delta)}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

- As above fix ational prime *p* totally split in K (hence in L) and p ∈ J⁺_K above *p* with *f*(p |K) = 1 (hence *f*(φ(p)|L) = 1)
- Use $\varphi : \hat{\mathscr{O}}^*_{\mathbb{K},\mathfrak{p}} \xrightarrow{\sim} \hat{\mathscr{O}}^*_{\mathbb{L},\varphi(\mathfrak{p})}$ to get multiplicative map of residue fields by Teichmüller lift $\tau_{\mathbb{K},p} : \overline{\mathbb{K}}^*_p \cong \mathbb{F}^*_p \hookrightarrow \hat{\mathscr{O}}^*_{\mathbb{K},\mathfrak{p}} \cong \mathbb{Q}^*_p$
- for *a* residue class in K^{*}_p ≅ F_p, choose integer *a* congruent to *a* mod p and coprime to discriminant Δ (Chinese remainder thm)

$$arphi(au_{\mathbb{K},p}(a)) = arphi\left(\lim_{n o +\infty} a^{p^n}
ight) = \lim_{n o +\infty} arphi(a)^{p^n} = au_{\mathbb{L},p}(arphi(a)) = au_{\mathbb{L},p}(a)$$

 $\widetilde{\varphi}(\widetilde{a}) = \varphi(\tau_{\mathbb{K},\rho}(a)) \operatorname{mod} \varphi(\mathfrak{p}) = \tau_{\mathbb{L},\rho}(a) \operatorname{mod} \varphi(\mathfrak{p}) = \widetilde{a} \operatorname{mod} \varphi(\mathfrak{p})$

• So φ identity mod any tot split prime, so for any $x, y \in \mathscr{O}_{\mathbb{K},+}$

$$\varphi(\mathbf{x} + \mathbf{y}) = \varphi(\mathbf{x}) + \varphi(\mathbf{y}) \operatorname{mod} \varphi(\mathfrak{p})$$

• totally split primes of arbitrary large norm (Chebotarev)

 $\Rightarrow \varphi \text{ additive}$

ヘロン ヘ回 とくほ とくほ とう