Quantum statistical mechanics, L-series, Anabelian Geometry

Matilde Marcolli

Colloquium, Harvard University, March 24, 2011

joint work with Gunther Cornelissen

General philosophy:

- Zeta functions are counting devices: spectra of operators with spectral multiplicities, counting ideals with given norm, number of periodic orbits, rational points, etc.
- Zeta function does not determine object: isospectral manifolds, arithmetically equivalent number fields, isogeny
- but ... sometimes a family of zeta functions does
- Zeta functions occur as partition functions of physical systems

Number fields: finite extensions \mathbb{K} of the field of rational numbers \mathbb{Q}.

- zeta functions: Dedekind $\zeta_{\mathbb{K}}(s)$ (for \mathbb{Q} Riemann zeta)
- symmetries: $G_{\mathbb{K}}=G a l(\overline{\mathbb{K}} / \mathbb{K})$ absolute Galois group; abelianized $G_{\mathbb{K}}^{a b}$
- adeles $\mathbb{A}_{\mathbb{K}}$ and ideles $\mathbb{A}_{\mathbb{K}}^{*}$, Artin map $\vartheta_{\mathbb{K}}: \mathbb{A}_{\mathbb{K}}^{*} \rightarrow G_{\mathbb{K}}^{a b}$
- topology: analogies with 3-manifolds (arithmetic topology)

How well do we understand them?
Analogy with manifolds: are there complete invariants?

Recovering a Number Field from invariants

- Dedekind zeta function $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$ arithmetic equivalence Gaßmann examples:

$$
\mathbb{K}=\mathbb{Q}(\sqrt[8]{3}) \text { and } \mathbb{L}=\mathbb{Q}\left(\sqrt[8]{3 \cdot 2^{4}}\right)
$$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

- Adeles rings $\mathbb{A}_{\mathbb{K}} \cong \mathbb{A}_{\mathbb{L}}$ adelic equivalence \Rightarrow arithmetic equivalence; Komatsu examples:

$$
\mathbb{K}=\mathbb{Q}(\sqrt[8]{2 \cdot 9}) \text { and } \mathbb{L}=\mathbb{Q}\left(\sqrt[8]{2^{5} \cdot 9}\right)
$$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

- Abelianized Galois groups: $G_{\mathbb{K}}^{\text {ab }} \cong G_{\mathbb{L}}^{\text {ab }}$ also not isomorphism; Onabe examples:

$$
\mathbb{K}=\mathbb{Q}(\sqrt{-2}) \text { and } \mathbb{L}=\mathbb{Q}(\sqrt{-3})
$$

not isomorphism $\mathbb{K} \neq \mathbb{L}$

- But ... absolute Galois groups $G_{\mathbb{K}} \cong G_{\mathbb{L}} \Rightarrow$ isomorphism $\mathbb{K} \cong \mathbb{L}$: Neukirch-Uchida theorem
(Grothendieck's anabelian geometry)

Question: Can combine $\zeta_{\mathbb{K}}(s), \mathbb{A}_{\mathbb{K}}$ and $G_{\mathbb{K}}^{\text {ab }}$ to something as strong as $G_{\mathbb{K}}$ that determines isomorphism class of \mathbb{K} ?
Answer: Yes! Combine as a Quantum Statistical Mechanical system Main Idea:

- Construct a QSM system associated to a number field
- Time evolution and equilibrium states at various temperatures
- Low temperature states are related to L-series
- Extremal equilibrium states determine the system
- System recovers the number field up to isomorphism

Purely number theoretic consequence:
An identity of all L-functions with Großencharakter gives an isomorphism of number fields

Quantum Statistical Mechanics (minimalist sketch)

- \mathscr{A} unital C^{*}-algebra of observables
- σ_{t} time evolution, $\sigma: \mathbb{R} \rightarrow \operatorname{Aut}(\mathscr{A})$
- states ω : $\mathscr{A} \rightarrow \mathbb{C}$ continuous, normalized $\omega(1)=1$, positive

$$
\omega\left(a^{*} a\right) \geq 0
$$

- equilibrium states $\omega\left(\sigma_{t}(a)\right)=\omega(a)$ all $t \in \mathbb{R}$
- representation $\pi: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$, Hamiltonian H

$$
\pi\left(\sigma_{t}(a)\right)=e^{i t H} \pi(a) e^{-i t H}
$$

- partition function $Z(\beta)=\operatorname{Tr}\left(e^{-\beta H}\right)$
- Gibbs states (equilibrium, inverse temperature β):

$$
\omega_{\beta}(a)=\frac{\operatorname{Tr}\left(\pi(a) e^{-\beta H}\right)}{\operatorname{Tr}\left(e^{-\beta H}\right)}
$$

- Generalization of Gibbs states: KMS states (Kubo-Martin-Schwinger) $\forall a, b \in A, \exists$ holomorphic $F_{a, b}$ on strip $I_{\beta}=\{0<\operatorname{Im} z<\beta\}$, bounded continuous on ∂I_{β},

$$
F_{a, b}(t)=\omega\left(a \sigma_{t}(b)\right) \quad \text { and } \quad F_{a, b}(t+i \beta)=\omega\left(\sigma_{t}(b) a\right)
$$

- Fixed $\beta>0: \mathrm{KMS}_{\beta}$ state convex simplex: extremal states (like points in NCG)

Isomorphism of QSM systems: $\varphi:(\mathscr{A}, \sigma) \rightarrow(\mathscr{B}, \tau)$

$$
\varphi: \mathscr{A} \xrightarrow{\sim} \mathscr{B}, \quad \varphi \circ \sigma=\tau \circ \varphi
$$

C^{*}-algebra isomorphism intertwining time evolution

- Algebraic subalgebras $\mathscr{A}^{\dagger} \subset \mathscr{A}$ and $\mathscr{B}^{\dagger} \subset \mathscr{B}$: stronger condition: QSM isomorphism also preserves "algebraic structure"

$$
\varphi: \mathscr{A}^{\dagger} \xrightarrow{\simeq} \mathscr{B}^{\dagger}
$$

- Pullback of a state: $\varphi^{*} \omega(a)=\omega(\varphi(a))$

Why QSM and Number theory? (a historical note)

 1995: Bost-Connes QSM system $\mathscr{A}_{B C}=C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}$- generators $e(r), r \in \mathbb{Q} / \mathbb{Z}$ and $\mu_{n}, n \in \mathbb{N}$ and relations

$$
\begin{gathered}
\mu_{n} \mu_{m}=\mu_{m} \mu_{n}, \quad \mu_{m}^{*} \mu_{m}=1 \\
\mu_{n} \mu_{m}^{*}=\mu_{m}^{*} \mu_{n} \quad \text { if } \quad(n, m)=1 \\
e(r+s)=e(r) e(s), \quad e(0)=1 \\
\mu_{n} e(r) \mu_{n}^{*}=\frac{1}{n} \sum_{n s=r} e(s)
\end{gathered}
$$

- time evolution $\sigma_{t}(f)=f$ and $\sigma_{t}\left(\mu_{n}\right)=n^{i t} \mu_{n}$
- representations $\pi_{\rho}: \mathscr{A}_{B C} \rightarrow \ell^{2}(\mathbb{N}), \rho \in \hat{\mathbb{Z}}^{*}$

$$
\pi_{\rho}\left(\mu_{n}\right) \epsilon_{m}=\epsilon_{n m}, \quad \pi_{\rho}(e(r)) \epsilon_{m}=\zeta_{r}^{m} \epsilon_{m}
$$

$\zeta_{r}=\rho(e(r))$ root of unity

- Hamiltonian $H \epsilon_{m}=\log (m) \epsilon_{m}$, partition function

$$
Z(\beta)=\operatorname{Tr}\left(e^{-\beta H}\right)=\zeta_{\mathbb{Q}}(\beta)
$$

Riemann zeta function

- Low temperature KMS states: L-series normalized by zeta
- Galois action on zero temperature states (class field theory)

Further generalizations: other QSM's with similar properties

- Bost-Connes as $G L_{1}$-case of QSM for moduli spaces of \mathbb{Q}-lattices up to commensurability (Connes-M.M. 2006) $\Rightarrow \mathrm{GL}_{2}$-case, modular curves and modular functions
- QSM systems for imaginary quadratic fields (class field theory): Connes-M.M.-Ramachandran
- B.Jacob and Consani-M.M.: QSM systems for function fields (Weil and Goss L-functions as partition functions)
- Ha-Paugam: QSM systems for Shimura varieties \Rightarrow QSM systems for arbitrary number fields (Dedekind zeta function) further studied by Laca-Larsen-Neshveyev
We use these QSM systems for number fields

The Noncommutative Geometry viewpoint:

- Equivalence relation \mathscr{R} on X : quotient $Y=X / \mathscr{R}$. Even for very $\operatorname{good} X \Rightarrow X / \mathscr{R}$ pathological!
- Functions on the quotient $\mathscr{A}(Y):=\{f \in \mathscr{A}(X) \mid f \mathscr{R}$ - invariant $\}$
\Rightarrow often too few functions: $\mathscr{A}(Y)=\mathbb{C}$ only constants
- NCG: $\mathscr{A}(Y)$ noncommutative algebra $\mathscr{A}(Y):=\mathscr{A}\left(\Gamma_{\mathscr{R}}\right)$ functions on the graph $\Gamma_{\mathscr{R}} \subset X \times X$ of the equivalence relation with involution $f^{*}(x, y)=\overline{f(y, x)}$ and convolution product

$$
\left(f_{1} * f_{2}\right)(x, y)=\sum_{x \sim u \sim y} f_{1}(x, u) f_{2}(u, y)
$$

- $\mathscr{A}\left(\Gamma_{\mathscr{R}}\right)$ associative noncommutative $\Rightarrow Y=X / \mathscr{R}$ noncommutative space (as good as X to do geometry, but new phenomena: time evolutions, thermodynamics, quantum phenomena)

In the various cases QSM system semigroup action on a space: Bost-Connes revisited (Connes-M.M. 2006)

- \mathbb{Q}-lattices: $(\Lambda, \phi) \mathbb{Q}$-lattice in \mathbb{R}^{n} : lattice $\Lambda \subset \mathbb{R}^{n}+$ group homomorphism

$$
\phi: \mathbb{Q}^{n} / \mathbb{Z}^{n} \longrightarrow \mathbb{Q} \Lambda / \Lambda
$$

- Commensurability: $\left(\Lambda_{1}, \phi_{1}\right) \sim\left(\Lambda_{2}, \phi_{2}\right)$ iff $\mathbb{Q} \Lambda_{1}=\mathbb{Q} \Lambda_{2}$ and $\phi_{1}=\phi_{2} \bmod \Lambda_{1}+\Lambda_{2}$
- Quotient \mathbb{Q}-lattices/Commensurability \Rightarrow NC space
- 1-dimensional \mathbb{Q}-lattices up to scaling $C(\hat{\mathbb{Z}})$

$$
(\Lambda, \phi)=(\lambda \mathbb{Z}, \lambda \rho) \quad \lambda>0
$$

$\rho \in \operatorname{Hom}(\mathbb{Q} / \mathbb{Z}, \mathbb{Q} / \mathbb{Z})=\lim _{n} \mathbb{Z} / n \mathbb{Z}=\hat{\mathbb{Z}}$

- with action of semigroup \mathbb{N} commensurability

$$
\alpha_{n}(f)(\rho)=f\left(n^{-1} \rho\right) \text { or zero }
$$

$C(\widehat{\mathbb{Z}}) \rtimes \mathbb{N}$ Bost-Connes algebra: moduli space

QSM systems for number fields: algebra and time evolution (A, σ)

$$
A_{\mathbb{K}}:=C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}, \quad \text { with } \quad X_{\mathbb{K}}:=G_{\mathbb{K}}^{\mathrm{ab}} \times_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}},
$$

$\hat{\mathscr{O}}_{\mathbb{K}}=$ ring of finite integral adeles, $J_{\mathbb{K}}^{+}=$is the semigroup of ideals, acting on $X_{\mathbb{K}}$ by Artin reciprocity

- Crossed product algebra $A_{\mathbb{K}}:=C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}$, generators and relations: $f \in C\left(X_{\mathbb{K}}\right)$ and $\mu_{\mathfrak{n}}, \mathfrak{n} \in J_{\mathbb{K}}^{+}$

$$
\begin{gathered}
\mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^{*}=e_{\mathfrak{n}} ; \mu_{\mathfrak{n}}^{*} \mu_{\mathfrak{n}}=1 ; \rho_{\mathfrak{n}}(f)=\mu_{\mathfrak{n}} f \mu_{\mathfrak{n}}^{*} ; \\
\sigma_{\mathfrak{n}}(f) e_{\mathfrak{n}}=\mu_{\mathfrak{n}}^{*} f \mu_{\mathfrak{n}} ; \quad \sigma_{\mathfrak{n}}\left(\rho_{\mathfrak{n}}(f)\right)=f ; \rho_{\mathfrak{n}}\left(\sigma_{\mathfrak{n}}(f)\right)=f e_{\mathfrak{n}}
\end{gathered}
$$

- Artin reciprocity map $\vartheta_{\mathbb{K}}: \mathbb{A}_{\mathbb{K}}^{*} \rightarrow G_{\mathbb{K}}^{\text {ab }}$, write $\vartheta_{\mathbb{K}}(\mathfrak{n})$ for ideal \mathfrak{n} seen as idele by non-canonical section s of

$$
\mathbb{A}_{\mathbb{K}, f}^{*} \longrightarrow J_{\mathbb{K}} \quad: \quad\left(x_{\mathfrak{p}}\right)_{\mathfrak{p}} \mapsto \prod_{\mathfrak{p} \text { finite }} \mathfrak{p}^{v_{\mathfrak{p}}\left(x_{\mathfrak{p}}\right)}
$$

- semigroup action: $\mathfrak{n} \in J_{\mathbb{K}}^{+}$acting on $f \in C\left(X_{\mathbb{K}}\right)$ as

$$
\rho_{\mathfrak{n}}(f)(\gamma, \rho)=f\left(\vartheta_{\mathbb{K}}(\mathfrak{n}) \gamma, s(\mathfrak{n})^{-1} \rho\right) e_{\mathfrak{n}}
$$

$e_{\mathfrak{n}}=\mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^{*}$ projector onto $[(\gamma, \rho)]$ with $s(\mathfrak{n})^{-1} \rho \in \hat{\mathscr{O}}_{\mathbb{K}}$

- partial inverse of semigroup action:

$$
\sigma_{\mathfrak{n}}(f)(x)=f(\mathfrak{n} * x) \quad \text { with } \quad \mathfrak{n} *[(\gamma, \rho)]=\left[\left(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1} \gamma, \mathfrak{n} \rho\right)\right]
$$

- Time evolution $\sigma_{\mathbb{K}}$ acts on $J_{\mathbb{K}}^{+}$as a phase factor $N(\mathfrak{n})^{i t}$

$$
\sigma_{\mathbb{K}, t}(f)=f \quad \text { and } \quad \sigma_{\mathbb{K}, t}\left(\mu_{\mathfrak{n}}\right)=N(\mathfrak{n})^{i t} \mu_{\mathfrak{n}}
$$

for $f \in C\left(G_{\mathbb{K}}^{\text {ab }} \times{ }_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}}\right)$ and for $\mathfrak{n} \in J_{\mathbb{K}}^{+}$

Algebraic structure: covariance algebra
Algebraic subalgebra $A_{\mathbb{K}}^{\dagger}$ of C^{*}-algebra $A_{\mathbb{K}}:=C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}$:
$A_{\mathbb{K}}^{\dagger}$ unital, non-involutive algebra generated by $C\left(X_{\mathbb{K}}\right)$ and the $\mu_{\mathfrak{n}}$, $\mathfrak{n} \in J_{\mathbb{K}}^{+}$(but not $\mu_{\mathfrak{n}}^{*}$), with relations

$$
\left(\text { using } \mu_{\mathfrak{n}}^{*} \mu_{\mathfrak{n}}=1\right) \quad f \mu_{\mathfrak{n}}=\mu_{\mathfrak{n}} \sigma_{\mathfrak{n}}(f), \quad \mu_{\mathfrak{n}} f=\rho_{\mathfrak{n}}(f) \mu_{\mathfrak{n}}
$$

Comment: presence of an algebraic subalgebra also in previous examples of arithmetic QSM

Comment: similar NCG interpretation as moduli spaces of \mathbb{K}-lattices up to commensurability

QSM isomorphism: two number fields \mathbb{K} and \mathbb{L}

$$
\varphi: A_{\mathbb{K}} \xrightarrow{\sim} A_{\mathbb{L}}
$$

C^{*}-algebra isomorphism

$$
\varphi \circ \sigma_{\mathbb{K}}=\sigma_{\mathbb{L}} \circ \varphi
$$

intertwines the time evolutions

$$
\varphi: A_{\mathbb{K}}^{\dagger} \xrightarrow{\sim} A_{\mathbb{L}}^{\dagger}
$$

preserves the covariance algebras

Theorem The following are equivalent:
(1) $\mathbb{K} \cong \mathbb{L}$ are isomorphic number fields
(2) Quantum Statistical Mechanical systems are isomorphic

$$
\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \simeq\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right)
$$

C^{*}-algebra isomorphism $\varphi: A_{\mathbb{K}} \rightarrow A_{\mathbb{L}}$ compatible with time evolution, $\sigma_{\mathbb{L}} \circ \varphi=\varphi \circ \sigma_{\mathbb{K}}$ and covariance $\varphi: A_{\mathbb{K}}^{\dagger} \xrightarrow{\sim} A_{\mathbb{L}}^{\dagger}$
(3) There is a group isomorphism $\psi: \hat{G}_{\mathbb{K}}^{a b} \rightarrow \hat{G}_{\mathbb{L}}^{a b}$ of Pontrjagin duals of abelianized Galois groups with

$$
L_{\mathbb{K}}(\chi, s)=L_{\mathbb{L}}(\psi(\chi), s)
$$

identity of all L-functions with Großencharakter

Comments:

- Generalization of arithmetic equivalence:

$$
\chi=1 \text { gives } \zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)
$$

- Now also a purely number theoretic proof of $(3) \Rightarrow(1)$ available by Hendrik Lenstra and Bart de Smit
- L-functions $L(\chi, s)$, for $s=\beta>1$ is product of $\zeta_{\mathbb{K}}(\beta)$ and evaluation of an extremal KMS_{β} state of the QSM system $\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ at a test function $f_{\chi} \in C\left(X_{\mathbb{K}}\right)$

Scheme of proof: (2) \Rightarrow (1)

- QSM isomorphism \Rightarrow arithmetic equivalence $\zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$
- $A_{\mathbb{K}}^{\dagger} \simeq A_{\mathbb{L}}^{\dagger}$ gives homeomorphism $X_{\mathbb{K}} \simeq X_{\mathbb{L}}$ and compatible semigroup isomorphism $J_{\mathbb{K}}^{+} \simeq J_{\mathbb{L}}^{+}$
- Group isomorphism $G_{\mathbb{K}}^{a b} \simeq G_{\mathbb{L}}^{a b}$
- This preserves ramification \Rightarrow isomorphism of local units $\hat{\mathscr{O}}_{\wp}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\varphi(\wp)}^{*}$ and products $\varphi: \hat{\mathscr{O}}_{\mathbb{K}}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\mathbb{L}}^{*}$
- Semigroup isomorphism $\mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}} \xrightarrow{\sim} \mathbb{A}_{\mathbb{L}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{L}}$
- Endomorphism action of these \Rightarrow inner: $\mathscr{O}_{\mathbb{K},+}^{\times} \xrightarrow{\sim} \mathscr{O}_{\mathbb{L},+}^{\times}$ (tot pos non-zero integers)
- Recover additive structure (mod any totally split prime) $\varphi(x+y)=\varphi(x)+\varphi(y) \bmod p$
$\Rightarrow \mathscr{O}_{\mathbb{K}} \simeq \mathscr{O}_{\mathbb{L}} \Rightarrow \mathbb{K} \simeq \mathbb{L}$

Scheme of proof: (2) \Rightarrow (3)

- QSM isomorphism $\Rightarrow G_{\mathbb{K}}^{a b} \simeq G_{\mathbb{L}}^{a b}$ preserving ramification (as above)
- character groups $\psi: \hat{G}_{\mathbb{K}}^{a b} \xrightarrow{\sim} \hat{G}_{\mathbb{L}}^{a b}$
- character χ to function $f_{\chi} \in C\left(X_{\mathbb{K}}\right)$, matching $\varphi\left(f_{\chi}\right)=f_{\psi(\chi)}$
- $\chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)=\psi(\chi)\left(\vartheta_{\mathbb{L}}(\varphi(\mathfrak{n}))\right)$
- Matching KMS_{β} states: $\omega_{\gamma, \beta}^{\mathbb{L}}(\varphi(f))=\omega_{\widetilde{\gamma}, \beta}^{\mathbb{K}}(f)$
- using arithmetic equivalence: $L_{\mathbb{K}}(\chi, s)=L_{\mathbb{L}}(\psi(\chi), s)$

QSM isomorphism \Rightarrow matching of L-series

Scheme of proof: $(3) \Rightarrow(1)$

- need compatible isomorphisms $J_{\mathbb{K}}^{+} \xrightarrow{\sim} J_{\mathbb{L}}^{+}$and $C\left(X_{\mathbb{K}}\right) \xrightarrow{\sim} C\left(X_{\mathbb{L}}\right)$
- know same number of primes \wp above same p with inertia degree f want to match compatibly with Artin map
- use combinations of L-series as counting functions: on finite quotients $\pi_{G}: G_{\mathbb{K}}^{a b} \rightarrow G$

$$
\begin{gathered}
\sum_{\substack{n \in J_{\mathbb{K}}^{+} \\
N_{\mathbb{K}}(\mathfrak{n})}}\left(\sum_{\widehat{G}} \chi\left(\pi_{G}(\gamma)^{-1}\right) \chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)\right)=b_{\mathbb{K}, G, n}(\gamma) \\
b_{\mathbb{K}, G, n}(\gamma)=\#\left\{\mathfrak{n} \in J_{\mathbb{K}}^{+}: N_{\mathbb{K}}(\mathfrak{n})=n \text { and } \pi_{G}\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)=\pi_{G}(\gamma)\right\}
\end{gathered}
$$

- For $G_{\mathbb{L}, n}^{\text {ab }}=G a l$ of max ab ext unram over n, get unique $\mathfrak{m} \in J_{\mathbb{L}}^{+}$ with $N_{\mathbb{L}}(\mathfrak{m})=N_{\mathbb{K}}(\mathfrak{n})$ and

$$
\pi_{G_{\mathbb{K}, n}^{\mathrm{ab}}}\left(\vartheta_{\mathbb{L}}(\mathfrak{m})\right)=\pi_{G_{\mathbb{L}, n}^{\mathrm{ab}}}\left(\left(\psi^{-1}\right)^{*}\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right)\right)
$$

- Use stratification of $X_{\mathbb{K}}$ to extend $\psi: C\left(G_{\mathbb{K}}^{a b}\right) \xrightarrow{\sim} C\left(G_{\mathbb{L}}^{a b}\right)$ to $\varphi: C\left(X_{\mathbb{K}}\right) \xrightarrow{\sim} C\left(X_{\mathbb{L}}\right)$ compatibly with semigroup actions

One more equivalent formulation: \mathbb{K} and \mathbb{L} isomorphic iff \exists

- topological group isomorphism $\hat{\psi}: G_{\mathbb{K}}^{a b} \xrightarrow{\sim} G_{\mathbb{L}}^{a b}$
- semigroup isomorphism $\Psi: J_{\mathbb{K}}^{+} \xrightarrow{\sim} J_{\mathbb{L}}^{+}$ with compatibility conditions
- Norm compatibility: $N_{\mathbb{L}}(\Psi(\mathfrak{n}))=N_{\mathbb{K}}(\mathfrak{n})$ for all $\mathfrak{n} \in J_{\mathbb{K}}^{+}$
- Artin map compatibility: for every finite abelian extension $\mathbb{K}^{\prime}=\left(\mathbb{K}^{a b}\right)^{N} / \mathbb{K}$, with $N \subset G_{\mathbb{K}}^{a b}$: prime \mathfrak{p} of \mathbb{K} unramified in \mathbb{K}^{\prime} \Rightarrow prime $\Psi(\mathfrak{p})$ unramified in $\mathbb{L}^{\prime}=\left(\mathbb{L}^{a b}\right)^{\hat{\psi}(N)} / \mathbb{L}$ and

$$
\hat{\psi}\left(\operatorname{Frob}_{\mathfrak{p}}\right)=\operatorname{Frob}_{\Psi(\mathfrak{p})}
$$

- Is Quantum Statistical Mechanics a "noncommutative version" of anabelian geometry?
- What about function fields? QSM systems exist, purely NT proof seems not to work, but this QSM proof may work

General philosophy L-functions as coordinates determining underlying geometry

Examples:

- Cornelissen-M.M.: zeta functions of a spectral triple on limit set of Schottky uniformized Riemann surface determine conformal structure
- Cornelissen-J.W.de Jong: family of zeta functions of spectral triple of Riemannian manifold determine manifold up to isometry
- Anabelian geometry describes a number field \mathbb{K} in terms of the absolute Galois group $G_{\mathbb{K}}$
- But... no description of $G_{\mathbb{K}}$ in terms of internal data of \mathbb{K} only (Kronecker's hope)
- Langlands: relate to internal data via automorphic forms
- For abelian extensions yes: $G_{\mathbb{K}}^{a b}$ in terms of internal data: adeles, ideles (class field theory)
- But... $G_{\mathbb{K}}^{a b}$ does not recover \mathbb{K}
- Noncommutative geometry replaces $G_{\mathbb{K}}$ with the QSM system $\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ to reconstruct \mathbb{K}
- $A_{\mathbb{K}}=C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+}$is built only from internal data of \mathbb{K} (primes, adeles, $\left.G_{\mathbb{K}}^{a b}\right)$

More details on the proof of $(2) \Rightarrow(1)$: Stratification of $X_{\mathbb{K}}$

- $\hat{\mathscr{O}}_{\mathbb{K}, n}:=\prod_{\mathfrak{p} \mid n} \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}$ and

$$
X_{\mathbb{K}, n}:=G_{\mathbb{K}}^{\mathrm{ab}} \times{\hat{\hat{O}_{\mathbb{K}}^{*}}}^{\hat{\mathscr{O}}_{\mathbb{K}, n}} \quad \text { with } \quad X_{\mathbb{K}}=\underset{n}{\lim _{n}} X_{\mathbb{K}, n}
$$

- Topological groups

$$
G_{\mathbb{K}}^{\mathrm{ab}} \times_{\hat{\mathscr{O}}_{\mathbb{K}}^{*}} \hat{\mathscr{O}}_{\mathbb{K}, n}^{*} \simeq G_{\mathbb{K}}^{\mathrm{ab}} / \vartheta_{\mathbb{K}}\left(\hat{\mathscr{O}}_{\mathbb{K}, n}^{*}\right)=G_{\mathbb{K}, n}^{\mathrm{ab}}
$$

Gal of max ab ext unramified at primes dividing n

- $J_{\mathbb{K}, n}^{+} \subset J_{\mathbb{K}}^{+}$subsemigroup gen by prime ideals dividing n
- Decompose $X_{\mathbb{K}, n}=X_{\mathbb{K}, n}^{1} \amalg X_{\mathbb{K}, n}^{2}$

$$
X_{\mathbb{K}, n}^{1}:=\bigcup_{\mathfrak{n} \in J_{\mathbb{K}, n}^{+}} \vartheta_{\mathbb{K}}(\mathfrak{n}) G_{\mathbb{K}, n}^{\mathrm{ab}} \quad \text { and } \quad X_{\mathbb{K}, n}^{2}:=\bigcup_{\mathfrak{p} \mid n} Y_{\mathbb{K}, \mathfrak{p}}
$$

where $Y_{\mathbb{K}, \mathfrak{p}}=\left\{(\gamma, \rho) \in X_{\mathbb{K}, n}: \rho_{\mathfrak{p}}=0\right\}$

- $X_{\mathbb{K}, n}^{1}$ dense in $X_{\mathbb{K}, n}$ and $X_{\mathbb{K}, n}^{2}$ has $\mu_{\mathbb{K}}$-measure zero
- Algebra $C\left(X_{\mathbb{K}, n}\right)$ is generated by functions

$$
f_{\chi, \mathfrak{n}}: \gamma \mapsto \chi\left(\vartheta_{\mathbb{K}}(\mathfrak{n})\right) \chi(\gamma), \quad \chi \in \widehat{G}_{\mathbb{K}, n}^{\mathrm{ab}}, \quad \mathfrak{n} \in J_{\mathbb{K}, n}^{+}
$$

First Step of $(2) \Rightarrow(1):\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \simeq\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right) \Rightarrow \zeta_{\mathbb{K}}(s)=\zeta_{\mathbb{L}}(s)$

- $\operatorname{QSM}(A, \sigma)$ and representation $\pi: A \rightarrow B(\mathscr{H})$ gives Hamiltonian

$$
\begin{aligned}
\pi\left(\sigma_{t}(a)\right) & =e^{i t H} \pi(a) e^{-i t H} \\
H_{\sigma_{\mathbb{K}}} \varepsilon_{\mathfrak{n}} & =\log N(\mathfrak{n}) \varepsilon_{\mathfrak{n}}
\end{aligned}
$$

Partition function $\mathscr{H}=\ell^{2}\left(J_{\mathbb{K}}^{+}\right)$

$$
Z(\beta)=\operatorname{Tr}\left(e^{-\beta H}\right)=\zeta_{\mathbb{K}}(\beta)
$$

- Isomorphism $\varphi:\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right) \simeq\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right) \Rightarrow$ homeomorphism of sets of extremal KMS_{β} states by pullback $\omega \mapsto \varphi^{*}(\omega)$
- KMS_{β} states for $\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ classified [LLN]: $\beta>1$

$$
\omega_{\gamma, \beta}(f)=\frac{1}{\zeta_{\mathbb{K}}(\beta)} \sum_{\mathfrak{m} \in J_{\mathbb{K}}^{+}} \frac{f\left(\vartheta_{\mathbb{K}}(\mathfrak{m}) \gamma\right)}{N_{\mathbb{K}}(\mathfrak{m})^{\beta}}
$$

parameterized by $\gamma \in G_{\mathbb{K}}^{\text {ab }} / \vartheta_{\mathbb{K}}\left(\widehat{O}_{\mathbb{K}}^{*}\right)$

- Comparing GNS representations of $\omega \in \operatorname{KMS}_{\beta}\left(A_{\mathbb{L}}, \sigma_{\mathbb{L}}\right)$ and $\varphi^{*}(\omega) \in \operatorname{KMS}_{\beta}\left(A_{\mathbb{K}}, \sigma_{\mathbb{K}}\right)$ find Hamiltonians

$$
H_{\mathbb{K}}=U H_{\mathbb{L}} U^{*}+\log \lambda
$$

for some U unitary and $\lambda \in \mathbb{R}_{+}^{*}$

- Then partition functions give

$$
\zeta_{\mathbb{L}}(\beta)=\lambda^{-\beta} \zeta_{\mathbb{K}}(\beta)
$$

identity of Dirichlet series

$$
\sum_{n \geq 1} \frac{a_{n}}{n^{\beta}} \text { and } \sum_{n \geq 1} \frac{b_{n}}{(\lambda n)^{\beta}}
$$

with $a_{1}=b_{1}=1$, taking limit as $\beta \rightarrow \infty$

$$
a_{1}=\lim _{\beta \rightarrow \infty} b_{1} \lambda^{-\beta} \Rightarrow \lambda=1
$$

Conclusion of first step: arithmetic equivalence $\zeta_{\mathbb{L}}(\beta)=\zeta_{\mathbb{K}}(\beta)$
Consequences:
From arithmetic equivalence already know \mathbb{K} and \mathbb{L} have same degree over \mathbb{Q}, discriminant, normal closure, unit groups, archimedean places.

But... not class group (or class number)

Second Step of $(2) \Rightarrow(1)$: unraveling the crossed product

$$
\varphi: C\left(X_{\mathbb{K}}\right) \rtimes J_{\mathbb{K}}^{+} \xrightarrow{\sim} C\left(X_{\mathbb{L}}\right) \rtimes J_{\mathbb{L}}^{+} \quad \text { with } \quad \sigma_{\mathbb{L}} \circ \varphi=\varphi \circ \sigma_{\mathbb{K}}
$$

and preserving the covariance algebra $\varphi: A_{\mathbb{K}}^{\dagger} \xrightarrow{\sim} A_{\mathbb{L}}^{\dagger}$

- Restrict to finitely many isometries $\mu_{\wp}, N_{\mathbb{K}}(\wp)=p$
- $A_{\mathbb{K}}$ generated by $\mu_{\mathfrak{n}} f \mu_{\mathfrak{m}}^{*}$; in $A_{\mathbb{K}}^{\dagger}$ only $\mu_{\mathfrak{n}} f$
- Eigenspaces of time evolution in $A_{\mathbb{K}}^{\dagger}$ preserved: so $C\left(X_{\mathbb{K}}\right) \xrightarrow{\sim} C\left(X_{\mathbb{L}}\right)$ and $\varphi\left(\mu_{\mathfrak{n}}\right)=\sum \mu_{\mathfrak{m}} f_{\mathfrak{n}, \mathfrak{m}}$
- Commutators $\left[f, \mu_{\mathfrak{n}}\right]=\left(f-\rho_{\mathfrak{n}}(f)\right) \mu_{\mathfrak{n}}$: match maximal ideals (mod commutators) so that homeomorphism $\Phi: X_{\mathbb{K}} \xrightarrow{\sim} X_{\mathbb{L}}$ compatible with semigroup actions $\gamma_{\alpha_{x}(\mathfrak{n})}(\Phi(x))=\Phi\left(\gamma_{\mathfrak{n}}(x)\right)$ with locally constant $\alpha_{x}: J_{\mathbb{K}}^{+} \rightarrow J_{\mathbb{L}}^{+}$ (that is, $\varphi\left(\mu_{\mathfrak{n}}\right)=\sum \delta_{\mathfrak{m}, \alpha_{x}(\mathfrak{n})} \mu_{\mathfrak{n}}$)
- $\alpha_{x}=\alpha$ constant: know [LLN] ergodic action of $J_{\mathbb{K}}^{+}$on $X_{\mathbb{K}}$, level sets would be clopen invariant subsets

Third Step of $(2) \Rightarrow(1)$: isomorphism $G_{\mathbb{K}}^{a b} \xrightarrow{\sim} G_{\mathbb{L}}^{a b}$

- Projectors $e_{\mathbb{K}, \mathfrak{n}}=\mu_{\mathfrak{n}} \mu_{\mathfrak{n}}^{*}$ mapped to projector $e_{\mathbb{L}, \varphi(\mathfrak{n})}$
- Fix $\mathfrak{m} \in J_{\mathbb{K}}^{+}$and $\hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{m}}=\prod_{\mathfrak{p} \mid \mathfrak{m}} \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}$, then

$$
\begin{aligned}
& V_{\mathbb{K}, \mathfrak{m}}:=\bigcap_{(\mathfrak{m}, \mathfrak{n})=1} \operatorname{Range}\left(e_{\mathbb{K}, \mathfrak{n}}\right)=G_{\mathbb{K}}^{\text {ab }} \times{ }_{\hat{O}_{\mathbb{K}}^{*}}\left\{\left(0, \ldots, 0, \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{m}}, 0, \ldots, 0\right)\right\} \\
& \begin{aligned}
\Phi\left(V_{\mathbb{K}, \mathfrak{m}}\right) & =\bigcap_{(\mathfrak{m}, \mathfrak{n})=1} \Phi\left(\operatorname{Range}\left(e_{\mathbb{K}, \mathfrak{n}}\right)\right)=\bigcap_{(\varphi(\mathfrak{m}), \varphi(\mathfrak{n}))=1} \operatorname{Range}\left(e_{\mathbb{L}, \varphi(\mathfrak{n})}\right) \\
& =G_{\mathbb{L}}^{\text {ab }} \times{ }_{\hat{\mathscr{O}}_{\mathbb{L}}^{*}}\left\{\left(0, \ldots, 0, \hat{\mathscr{O}}_{\mathbb{L}, \varphi}(\mathfrak{m}), 0, \ldots, 0\right)\right\}=V_{\mathbb{L}, \varphi(\mathfrak{m})}
\end{aligned}
\end{aligned}
$$

- $1_{\mathfrak{m}}$ integral adele $=1$ at the prime divisors of \mathfrak{m}, zero elsewhere

$$
H_{\mathbb{K}, \mathfrak{m}}:=G_{\mathbb{K}}^{\mathrm{ab}} \times_{\hat{\theta}_{\mathbb{K}}^{*}}\left\{1_{\mathfrak{m}}\right\} \subseteq X_{\mathbb{K}} \xrightarrow{\varphi} G_{\mathbb{L}}^{\mathrm{ab}} \times_{\hat{\theta}_{\mathbb{L}}^{*}}\left\{y_{\varphi(\mathfrak{m})}\right\} \subseteq X_{\mathbb{L}}
$$

- check that $y \in \hat{\mathscr{O}}_{\mathbb{L}, \mathfrak{m}}^{*}$ is a unit
- then $H_{\mathbb{K}, \mathfrak{m}}$ classes $\left[\left(\gamma, 1_{\mathfrak{m}}\right)\right] \sim\left[\left(\gamma^{\prime}, 1_{\mathfrak{m}}\right)\right] \Longleftrightarrow \exists u \in \hat{\mathscr{O}}_{\mathbb{K}}^{*}$ with $\gamma^{\prime}=\vartheta_{\mathbb{K}}(u)^{-1} \gamma$ and $1_{\mathfrak{m}}=u 1_{\mathfrak{m}}$
- then for $\dot{G}_{\mathbb{K}, \mathfrak{m}}^{\text {ab }}$ Gal of max ab ext unram outside prime div of \mathfrak{m}

$$
H_{\mathbb{K}, \mathfrak{m}} \cong G_{\mathbb{K}}^{\mathrm{ab}} / \vartheta_{\mathbb{K}}\left(\prod_{\mathfrak{q} \nmid \mathfrak{m}} \hat{\mathscr{O}}_{\mathfrak{q}}^{*}\right) \cong \dot{G}_{\mathbb{K}, \mathfrak{m}}^{\mathrm{ab}}
$$

- $\dot{G}_{\mathbb{K}, \mathfrak{m}}^{a b}$ has dense subgroup gen by $\vartheta_{\mathbb{K}}(\mathfrak{n})$, ideals coprime to \mathfrak{m} $\Rightarrow H_{\mathbb{K}, \mathfrak{m}}$ gen by these $\gamma_{\mathfrak{n}}:=\left[\left(\vartheta_{\mathbb{K}}(\mathfrak{n})^{-1}, 1_{\mathfrak{m}}\right)\right]$
- with $\mathbf{1}_{\mathfrak{m}}=\left[\left(1,1_{\mathfrak{m}}\right)\right]$ and $\Phi\left(\mathbf{1}_{\mathfrak{m}}\right)=\left[\left(x_{\mathfrak{m}}, y_{\mathfrak{m}}\right)\right]$ get

$$
\begin{gathered}
\Phi\left(\gamma_{\mathfrak{n}_{1}} \cdot \gamma_{\mathfrak{n}_{2}}\right)=\Phi\left(\left[\left(\vartheta_{\mathbb{K}}\left(\mathfrak{n}_{1} \mathfrak{n}_{2}\right)^{-1}, 1_{\mathfrak{m}}\right)\right]\right) \\
=\Phi\left(\left[\left(\vartheta_{\mathbb{K}}\left(\mathfrak{n}_{1} \mathfrak{n}_{2}\right)^{-1}, \mathfrak{n}_{1} \mathfrak{n}_{2} 1_{\mathfrak{m}}\right)\right]\right)\left(\text { since } \mathfrak{n}_{1}, \mathfrak{n}_{2} \text { coprime to } \mathfrak{m}\right) \\
=\Phi\left(\mathfrak{n}_{1} \mathfrak{n}_{2} * \mathbf{1}_{\mathfrak{m}}\right)=\varphi\left(\mathfrak{n}_{1} \mathfrak{n}_{2}\right) * \Phi\left(\mathbf{1}_{\mathfrak{m}}\right)=\left[\left(\vartheta_{\mathbb{L}}\left(\varphi\left(\mathfrak{n}_{1} \mathfrak{n}_{2}\right)\right)^{-1} x_{\mathfrak{m}}, \varphi\left(\mathfrak{n}_{1} \mathfrak{n}_{2}\right) y_{\mathfrak{m}}\right)\right]
\end{gathered}
$$

- $\lim _{m \rightarrow+\infty} \mathbf{1}_{m}=1 \Rightarrow \lim _{m \rightarrow+\infty} \Phi\left(\mathbf{1}_{m}\right)=\Phi(1)$ and get
$\widetilde{\Phi}\left(\gamma_{1} \gamma_{2}\right)=\Phi\left(\gamma_{1} \cdot \gamma_{2}\right) \Phi(1)^{-1}=\Phi\left(\gamma_{1}\right) \Phi\left(\gamma_{2}\right) \Phi(1)^{-2}=\widetilde{\Phi}\left(\gamma_{1}\right) \cdot \widetilde{\Phi}\left(\gamma_{2}\right)$

Fourth step of (2): Preserving ramification
$N \subset G_{\mathbb{K}}^{\text {ab }}$ subgroup, $G_{\mathbb{K}}^{\text {ab }} / N \xrightarrow{\sim} G_{\mathbb{L}}^{\text {ab }} / \Phi(N)$
\mathfrak{p} ramifies in $\mathbb{K}^{\prime} / \mathbb{K} \Longleftrightarrow \varphi(\mathfrak{p})$ ramifies in $\mathbb{L}^{\prime} / \mathbb{L}$
where $\mathbb{K}^{\prime}=\left(\mathbb{K}^{\mathrm{ab}}\right)^{N}$ finite extension and $\mathbb{L}^{\prime}:=\left(\mathbb{L}^{\mathrm{ab}}\right)^{\Phi(N)}$

- seen have isomorphism $\Phi: \stackrel{\circ}{G}_{\mathbb{K}, \mathfrak{m}}^{\text {ab }} \xrightarrow{\sim} \stackrel{\circ}{G}_{\mathbb{L}, \varphi(\mathfrak{m})}^{\text {ab }}$ (Gal of max ab ext $\mathbb{K}_{\mathfrak{m}}$ unram outside prime div of \mathfrak{m})
- $\mathbb{K}^{\prime}=\left(\mathbb{K}^{\text {ab }}\right)^{N}$ fin ext ramified precisely above $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r} \in J_{\mathbb{K}}^{+}$
- By previous $\mathbb{L}^{\prime}:=(\mathbb{L})^{\Phi(N)}$ contained in $\mathbb{L}_{\varphi\left(\mathfrak{p}_{1}\right) \cdots \varphi\left(\mathfrak{p}_{r}\right)}$ but not in any $\mathbb{L}_{\varphi\left(\mathfrak{p}_{1}\right) \ldots \widehat{\left(\mathfrak{p}_{i}\right)} \ldots \varphi\left(\mathfrak{p}_{r}\right)} \Rightarrow \mathbb{L}^{\prime} / \mathbb{L}$ ramified precisely above $\varphi\left(\mathfrak{p}_{1}\right), \ldots, \varphi\left(\mathfrak{p}_{r}\right)$

Fifth Step of $(2) \Rightarrow(1)$: from QSM isomorphism get also

- Isomorphism of local units

$$
\varphi: \hat{\mathscr{O}}_{\mathfrak{p}}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\varphi(\mathfrak{p})}^{*}
$$

max $a b$ ext where \mathfrak{p} unramified $=$ fixed field of inertia group $l_{\mathfrak{p}}^{\mathrm{ab}}$, by ramification preserving

$$
\Phi\left(l_{\mathfrak{p}}^{\mathrm{ab}}\right)=l_{\varphi(\mathfrak{p})}^{\mathrm{ab}}
$$

and by local class field theory $l_{\mathfrak{p}}^{\text {ab }} \simeq \hat{\mathscr{O}}_{\mathfrak{p}}^{*}$

- by product of the local units: isomorphism

$$
\varphi: \hat{\mathscr{O}}_{\mathbb{K}}^{*} \xrightarrow{\sim} \hat{\mathscr{O}}_{\mathbb{L}}^{*}
$$

- Semigroup isomorphism

$$
\varphi:\left(\mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}}, \times\right) \xrightarrow{\sim}\left(\mathbb{A}_{\mathbb{L}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{L}}, \times\right)
$$

by exact sequence

$$
0 \rightarrow \hat{\mathscr{O}}_{\mathbb{K}}^{*} \rightarrow \mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}} \rightarrow J_{\mathbb{K}}^{+} \rightarrow 0
$$

(non-canonically) split by choice of uniformizer $\pi_{\mathfrak{p}}$ at every place

Recover multiplicative structure of the field

- Endomorphism action of $\mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}}$

$$
\epsilon_{s}(f)(\gamma, \rho)=f\left(\gamma, s^{-1} \rho\right) e_{\tau}, \quad \epsilon_{s}\left(\mu_{\mathfrak{n}}\right)=\mu_{\mathfrak{n}} e_{\tau}
$$

e_{τ} char function of set $s^{-1} \rho \in \hat{\mathscr{O}}_{\mathbb{K}}$

- $\hat{\mathscr{O}}_{\mathbb{K}}^{*}=$ part acting by automorphisms
- $\overline{\mathscr{O}_{\mathbb{K},+}^{*}}$ (closure of tot pos units): trivial endomorphisms
- $\mathscr{O}_{\mathbb{K},+}^{\times}=\mathscr{O}_{\mathbb{K},+}-\{0\}$ (non-zero tot pos elements of ring of integers): inner endomorphisms (isometries in $A_{\mathbb{K}}^{\dagger}$ eigenv of time evolution)
- $\varphi\left(\varepsilon_{s}\right)=\varepsilon_{\varphi(s)}$ for all $s \in \mathbb{A}_{\mathbb{K}, f}^{*} \cap \hat{\mathscr{O}}_{\mathbb{K}}$

Conclusion: isom of multiplicative semigroups of tot pos non-zero elements of rings of integers

$$
\varphi:\left(\mathscr{O}_{\mathbb{K},+}^{\times}, \times\right) \xrightarrow{\sim}\left(\mathscr{O}_{\mathbb{L},+}^{\times}, \times\right)
$$

Last Step of $(2) \Rightarrow(1)$: Recover additive structure of the field Extend by $\varphi(0)=0$ the map $\varphi:\left(\mathscr{O}_{\mathbb{K},+}^{\times}, \times\right) \xrightarrow{\sim}\left(\mathscr{O}_{\mathbb{L},+}^{\times}, \times\right)$, Claim: it is additive

- Start with induced multipl map of local units $\varphi: \widehat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \xrightarrow{\sim} \widehat{\mathscr{O}}_{\mathbb{L}, \varphi(\mathfrak{p})}^{*}$ (from ramification preserving)
- set $1_{\mathfrak{p}}=(0, \ldots, 0,1,0, \ldots, 0)$ and $\mathbf{1}_{\mathfrak{p}}:=\left[\left(1,1_{\mathfrak{p}}\right)\right] \in X_{\mathbb{K}} ;$ for $u \in \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}$, integral idele $u_{\mathfrak{p}}:=(1, \ldots, 1, u, 1, \ldots, 1)$:

$$
\left.\left[\left(1, u_{\mathfrak{p}}\right)\right]=\left[\left(\vartheta_{\mathbb{K}}\left(u_{\mathfrak{p}}\right)^{-1}, 1\right)\right] \mapsto \Phi\left(\left[\left(\vartheta_{\mathbb{K}}\left(u_{\mathfrak{p}}\right)^{-1}\right), 1\right)\right]\right)=:\left[\left(1, \varphi(u)_{\varphi(\mathfrak{p})}\right)\right]
$$

- Group isom to image $\lambda_{\mathbb{K}, \mathfrak{p}}: \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \rightarrow X_{\mathbb{K}} \xrightarrow{\left[\cdot 1_{\mathfrak{p}}\right]} Z_{\mathbb{K}, \mathfrak{p}} \subset X_{\mathbb{K}}$

$$
u \mapsto\left[\left(1, u_{\mathfrak{p}}\right)\right] \mapsto\left[\left(1, u_{\mathfrak{p}} \cdot 1_{\mathfrak{p}}\right)\right]=[(1,(0, \ldots, 0, u, 0, \ldots, 0)]
$$

- Commutative diagram
- Fix rational prime p totally split in \mathbb{K} (hence unramified) \Rightarrow arithm equiv: p tot split in \mathbb{L}
- Set $\mathbb{Z}_{(p \Delta)}$ integers coprime to $p \Delta$ with $\Delta=\Delta_{\mathbb{K}}=\Delta_{\mathbb{L}}$ discriminant
- map $\varpi_{\mathbb{K}, \mathfrak{p}}: \mathbb{Z}_{(p \Delta)} \hookrightarrow \widehat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \rightarrow Z_{\mathbb{K}, \mathfrak{p}}$ with $\varpi_{\mathbb{K}, \mathfrak{p}}: a \mapsto\left[\left(1, a \cdot 1_{\mathfrak{p}}\right)\right]$
- $a=\mathfrak{p}_{1} \ldots \mathfrak{p}_{r}$ rational prime unramified \Rightarrow permute factors $\alpha_{X}((a))=\mathfrak{p}_{\sigma(1)} \ldots \mathfrak{p}_{\sigma(r)}$ so $\alpha_{x}((a))=\left(\right.$ a) fixes ideals $(a) \in J_{\mathbb{Q}}^{+}$
$\Phi\left(\varpi_{\mathbb{K}, \mathfrak{p}}(a)\right)=\Phi\left((a) * \mathbf{1}_{\mathfrak{p}}\right)=\alpha_{\mathbf{1}_{\mathfrak{p}}}((a)) * \Phi\left(\mathbf{1}_{\mathfrak{p}}\right)=(a) * \mathbf{1}_{\varphi(\mathfrak{p})}=\varpi_{\mathbb{L}, \varphi(\mathfrak{p})}(a)$
- so $\varphi: \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \xrightarrow{\sim} \widehat{\mathscr{O}}_{\mathbb{L}, \varphi(\mathfrak{p})}^{*}$ constant on $\mathbb{Z}_{(p \Delta)}$
- As above fix ational prime p totally split in \mathbb{K} (hence in \mathbb{L}) and $\mathfrak{p} \in J_{\mathbb{K}}^{+}$above p with $f(\mathfrak{p} \mid \mathbb{K})=1$ (hence $f(\varphi(\mathfrak{p}) \mid \mathbb{L})=1$)
- Use $\varphi: \widehat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \xrightarrow{\sim} \widehat{\mathscr{O}}_{\mathbb{L}, \varphi(\mathfrak{p})}^{*}$ to get multiplicative map of residue fields by Teichmüller lift $\tau_{\mathbb{K}, p}: \overline{\mathbb{K}}_{p}^{*} \cong \mathbb{F}_{p}^{*} \hookrightarrow \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \cong \mathbb{Q}_{p}^{*}$
- Show its extension by zero additive (hence identity map $\widetilde{\varphi}: \mathbb{F}_{p}^{*} \rightarrow \mathbb{F}_{p}^{*}$) by extending $\tau_{\mathbb{K}, p}: \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*} \rightarrow \hat{\mathscr{O}}_{\mathbb{K}, \mathfrak{p}}^{*}$ with $x \mapsto \lim _{n \rightarrow+\infty} x^{p^{n}}$
- for \widetilde{a} residue class in $\overline{\mathbb{K}}_{\mathfrak{p}}^{*} \cong \mathbb{F}_{p}$, choose integer a congruent to \widetilde{a} $\bmod \mathfrak{p}$ and coprime to discriminant Δ (Chinese remainder thm)

$$
\begin{gathered}
\varphi\left(\tau_{\mathbb{K}, p}(a)\right)=\varphi\left(\lim _{n \rightarrow+\infty} a^{p^{n}}\right)=\lim _{n \rightarrow+\infty} \varphi(a)^{p^{n}}=\tau_{\mathbb{L}, p}(\varphi(a))=\tau_{\mathbb{L}, p}(a) \\
\widetilde{\varphi}(\widetilde{a})=\varphi\left(\tau_{\mathbb{K}, p}(a)\right) \bmod \varphi(\mathfrak{p})=\tau_{\mathbb{L}, p}(a) \bmod \varphi(\mathfrak{p})=\widetilde{a} \bmod \varphi(\mathfrak{p})
\end{gathered}
$$

- So φ identity mod any tot split prime, so for any $x, y \in \mathscr{O}_{\mathbb{K},+}$

$$
\varphi(x+y)=\varphi(x)+\varphi(y) \bmod \varphi(\mathfrak{p})
$$

- totally split primes of arbitrary large norm (Chebotarev)
$\Rightarrow \varphi$ additive

