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General philosophy:

Zeta functions are counting devices: spectra of operators with
spectral multiplicities, counting ideals with given norm, number
of periodic orbits, rational points, etc.

Zeta function does not determine object: isospectral manifolds,
arithmetically equivalent number fields, isogeny

but ... sometimes a family of zeta functions does

Zeta functions occur as partition functions of physical systems
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Number fields: finite extensions K of the field of rational numbers Q.

zeta functions: Dedekind ζK(s) (for Q Riemann zeta)

symmetries: GK = Gal(K/K) absolute Galois group;
abelianized Gab

K
adeles AK and ideles A∗K, Artin map ϑK : A∗K → Gab

K
topology: analogies with 3-manifolds (arithmetic topology)

How well do we understand them?
Analogy with manifolds: are there complete invariants?
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Recovering a Number Field from invariants

Dedekind zeta function ζK(s) = ζL(s) arithmetic equivalence
Gaßmann examples:

K = Q(
8
√

3) and L = Q(
8
√

3 · 24)

not isomorphism K 6= L

Adeles rings AK ∼= AL adelic equivalence⇒ arithmetic
equivalence; Komatsu examples:

K = Q(
8
√

2 · 9) and L = Q(
8
√

25 · 9)

not isomorphism K 6= L
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Abelianized Galois groups: Gab
K
∼= Gab

L also not isomorphism;
Onabe examples:

K = Q(
√
−2) and L = Q(

√
−3)

not isomorphism K 6= L

But ... absolute Galois groups GK ∼= GL ⇒ isomorphism
K ∼= L: Neukirch–Uchida theorem
(Grothendieck’s anabelian geometry)
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Question: Can combine ζK(s), AK and Gab
K to something as strong

as GK that determines isomorphism class of K?

Answer: Yes! Combine as a Quantum Statistical Mechanical system
Main Idea:

Construct a QSM system associated to a number field

Time evolution and equilibrium states at various temperatures

Low temperature states are related to L-series

Extremal equilibrium states determine the system

System recovers the number field up to isomorphism

Purely number theoretic consequence:
An identity of all L-functions with Großencharakter gives an
isomorphism of number fields
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Quantum Statistical Mechanics (minimalist sketch)

A unital C∗-algebra of observables

σt time evolution, σ : R→ Aut(A )

states ω : A → C continuous, normalized ω(1) = 1, positive

ω(a∗a) ≥ 0

equilibrium states ω(σt(a)) = ω(a) all t ∈ R
representation π : A → B(H ), Hamiltonian H

π(σt(a)) = eitHπ(a)e−itH

partition function Z (β) = Tr(e−βH)

Gibbs states (equilibrium, inverse temperature β):

ωβ(a) =
Tr(π(a)e−βH)

Tr(e−βH)
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Generalization of Gibbs states: KMS states
(Kubo–Martin–Schwinger) ∀a, b ∈ A, ∃ holomorphic Fa,b on
strip Iβ = {0 < Im z < β}, bounded continuous on ∂Iβ ,

Fa,b(t) = ω(aσt(b)) and Fa,b(t + iβ) = ω(σt(b)a)

Im z = 

Im z = 0
F(t) = (a t(b))

F(t + i ) = ( t(b)a)

!

i

Fixed β > 0: KMSβ state convex simplex: extremal states
(like points in NCG)
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Isomorphism of QSM systems: ϕ : (A , σ)→ (B, τ)

ϕ : A
'→ B, ϕ ◦ σ = τ ◦ ϕ

C∗-algebra isomorphism intertwining time evolution

Algebraic subalgebras A † ⊂ A and B† ⊂ B: stronger
condition: QSM isomorphism also preserves “algebraic
structure”

ϕ : A †
'→ B†

Pullback of a state: ϕ∗ω(a) = ω(ϕ(a))
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Why QSM and Number theory? (a historical note)

1995: Bost–Connes QSM system ABC = C(Ẑ) oN
generators e(r), r ∈ Q/Z and µn, n ∈ N and relations

µnµm = µmµn, µ∗mµm = 1

µnµ
∗
m = µ∗mµn if (n,m) = 1

e(r + s) = e(r)e(s), e(0) = 1

µne(r)µ∗n =
1
n

∑
ns=r

e(s)

time evolution σt(f ) = f and σt(µn) = nitµn
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representations πρ : ABC → `2(N), ρ ∈ Ẑ∗

πρ(µn)εm = εnm, πρ(e(r))εm = ζm
r εm

ζr = ρ(e(r)) root of unity

Hamiltonian Hεm = log(m) εm, partition function

Z (β) = Tr(e−βH) = ζQ(β)

Riemann zeta function

Low temperature KMS states: L-series normalized by zeta

Galois action on zero temperature states (class field theory)
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Further generalizations: other QSM’s with similar properties

Bost-Connes as GL1-case of QSM for moduli spaces of
Q-lattices up to commensurability (Connes-M.M. 2006)
⇒ GL2-case, modular curves and modular functions

QSM systems for imaginary quadratic fields (class field theory):
Connes-M.M.-Ramachandran

B.Jacob and Consani-M.M.: QSM systems for function fields
(Weil and Goss L-functions as partition functions)

Ha-Paugam: QSM systems for Shimura varieties⇒ QSM
systems for arbitrary number fields (Dedekind zeta function)
further studied by Laca-Larsen-Neshveyev

We use these QSM systems for number fields
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The Noncommutative Geometry viewpoint:
• Equivalence relation R on X : quotient Y = X/R. Even for very
good X ⇒ X/R pathological!
• Functions on the quotient A (Y ) := {f ∈ A (X) | fR − invariant}
⇒ often too few functions: A (Y ) = C only constants
• NCG: A (Y ) noncommutative algebra A (Y ) := A (ΓR) functions
on the graph ΓR ⊂ X × X of the equivalence relation with involution
f ∗(x , y) = f (y , x) and convolution product

(f1 ∗ f2)(x , y) =
∑

x∼u∼y

f1(x , u)f2(u, y)

• A (ΓR) associative noncommutative⇒ Y = X/R
noncommutative space (as good as X to do geometry, but new
phenomena: time evolutions, thermodynamics, quantum
phenomena)
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In the various cases QSM system semigroup action on a space:
Bost–Connes revisited (Connes–M.M. 2006)
• Q-lattices: (Λ, φ) Q-lattice in Rn: lattice Λ ⊂ Rn + group
homomorphism

φ : Qn/Zn −→ QΛ/Λ

• Commensurability: (Λ1, φ1) ∼ (Λ2, φ2) iff QΛ1 = QΛ2

and φ1 = φ2 mod Λ1 + Λ2

• Quotient Q-lattices/Commensurability⇒ NC space
• 1-dimensional Q-lattices up to scaling C(Ẑ)

(Λ, φ) = (λZ, λ ρ) λ > 0

ρ ∈ Hom(Q/Z,Q/Z) = lim←−n
Z/nZ = Ẑ

• with action of semigroup N commensurability

αn(f )(ρ) = f (n−1ρ) or zero

C(Ẑ) oN Bost–Connes algebra: moduli space
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QSM systems for number fields: algebra and time evolution (A, σ)

AK := C(XK) o J+
K , with XK := Gab

K ×Ô∗K
ÔK,

ÔK = ring of finite integral adeles, J+
K = is the semigroup of ideals,

acting on XK by Artin reciprocity

Crossed product algebra AK := C(XK) o J+
K , generators and

relations: f ∈ C(XK) and µn, n ∈ J+
K

µnµ
∗
n = en; µ∗nµn = 1; ρn(f ) = µnfµ∗n;

σn(f )en = µ∗nfµn; σn(ρn(f )) = f ; ρn(σn(f )) = fen
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Artin reciprocity map ϑK : A∗K → Gab
K, write ϑK(n) for ideal n

seen as idele by non-canonical section s of

A∗K,f // // JK
s

^^
: (xp)p 7→

∏
p finite

pvp(xp)

semigroup action: n ∈ J+
K acting on f ∈ C(XK) as

ρn(f )(γ, ρ) = f (ϑK(n)γ, s(n)−1ρ)en,

en = µnµ
∗
n projector onto [(γ, ρ)] with s(n)−1ρ ∈ ÔK

partial inverse of semigroup action:

σn(f )(x) = f (n ∗x) with n ∗[(γ, ρ)] = [(ϑK(n)−1γ, n ρ)]

Time evolution σK acts on J+
K as a phase factor N(n)it

σK,t(f ) = f and σK,t(µn) = N(n)it µn

for f ∈ C(Gab
K ×Ô∗K

ÔK) and for n ∈ J+
K
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Algebraic structure: covariance algebra

Algebraic subalgebra A†K of C∗-algebra AK := C(XK) o J+
K :

A†K unital, non-involutive algebra generated by C(XK) and the µn,
n ∈ J+

K (but not µ∗n), with relations

(using µ∗nµn = 1) fµn = µnσn(f ), µnf = ρn(f )µn

Comment: presence of an algebraic subalgebra also in previous
examples of arithmetic QSM

Comment: similar NCG interpretation as moduli spaces of K-lattices
up to commensurability
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QSM isomorphism: two number fields K and L

ϕ : AK
∼→ AL

C∗-algebra isomorphism

ϕ ◦ σK = σL ◦ ϕ

intertwines the time evolutions

ϕ : A†K
∼→ A†L

preserves the covariance algebras
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Theorem The following are equivalent:
1 K ∼= L are isomorphic number fields
2 Quantum Statistical Mechanical systems are isomorphic

(AK, σK) ' (AL, σL)

C∗-algebra isomorphism ϕ : AK → AL compatible with time
evolution, σL ◦ ϕ = ϕ ◦ σK and covariance ϕ : A†K

∼→ A†L
3 There is a group isomorphism ψ : Ĝab

K → Ĝab
L of Pontrjagin

duals of abelianized Galois groups with

LK(χ, s) = LL(ψ(χ), s)

identity of all L-functions with Großencharakter

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry



Comments:

Generalization of arithmetic equivalence:
χ = 1 gives ζK(s) = ζL(s)

Now also a purely number theoretic proof of (3)⇒ (1) available
by Hendrik Lenstra and Bart de Smit

L-functions L(χ, s), for s = β > 1 is product of ζK(β) and
evaluation of an extremal KMSβ state of the QSM system
(AK, σK) at a test function fχ ∈ C(XK)

Matilde Marcolli Quantum statistical mechanics, L-series, Anabelian Geometry



Scheme of proof: (2)⇒ (1)

QSM isomorphism⇒ arithmetic equivalence ζK(s) = ζL(s)

A†K ' A†L gives homeomorphism XK ' XL and compatible
semigroup isomorphism J+

K ' J+
L

Group isomorphism Gab
K ' Gab

L
This preserves ramification⇒ isomorphism of local units
Ô∗℘

∼→ Ô∗ϕ(℘) and products ϕ : Ô∗K
∼→ Ô∗L

Semigroup isomorphism A∗K,f ∩ ÔK
∼→ A∗L,f ∩ ÔL

Endomorphism action of these⇒ inner: O×K,+
∼→ O×L,+

(tot pos non-zero integers)

Recover additive structure (mod any totally split prime)
ϕ(x + y) = ϕ(x) + ϕ(y) mod p

⇒ OK ' OL ⇒ K ' L
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Scheme of proof: (2)⇒ (3)

QSM isomorphism⇒ Gab
K ' Gab

L preserving ramification (as
above)

character groups ψ : Ĝab
K
∼→ Ĝab

L
character χ to function fχ ∈ C(XK), matching ϕ(fχ) = fψ(χ)

χ(ϑK(n)) = ψ(χ)(ϑL(ϕ(n)))

Matching KMSβ states: ωL
γ,β(ϕ(f )) = ωK

γ̃,β(f )

using arithmetic equivalence: LK(χ, s) = LL(ψ(χ), s)

QSM isomorphism⇒ matching of L-series
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Scheme of proof: (3)⇒ (1)
need compatible isomorphisms J+

K
∼→ J+

L and C(XK)
∼→ C(XL)

know same number of primes ℘ above same p with inertia
degree f want to match compatibly with Artin map
use combinations of L-series as counting functions: on finite
quotients πG : Gab

K → G

∑
n∈J+

K
NK(n)

∑
Ĝ

χ(πG(γ)−1)χ(ϑK(n))

 = bK,G,n(γ)

bK,G,n(γ) = #{n ∈ J+
K : NK(n) = n and πG(ϑK(n)) = πG(γ)}

For Gab
L,n = Gal of max ab ext unram over n, get unique m ∈ J+

L
with NL(m) = NK(n) and

πGab
K,n

(ϑL(m)) = πGab
L,n

((ψ−1)∗(ϑK(n)))

Use stratification of XK to extend ψ : C(Gab
K )

∼→ C(Gab
L ) to

ϕ : C(XK)
∼→ C(XL) compatibly with semigroup actions
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One more equivalent formulation: K and L isomorphic iff ∃
topological group isomorphism ψ̂ : Gab

K
∼→ Gab

L

semigroup isomorphism Ψ : J+
K
∼→ J+

L
with compatibility conditions

Norm compatibility: NL(Ψ(n)) = NK(n) for all n ∈ J+
K

Artin map compatibility: for every finite abelian extension
K′ = (Kab)N/K, with N ⊂ Gab

K : prime p of K unramified in K′

⇒ prime Ψ(p) unramified in L′ = (Lab)ψ̂(N)/L and

ψ̂(Frobp) = FrobΨ(p)
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Conclusions

Is Quantum Statistical Mechanics a “noncommutative version"
of anabelian geometry?

What about function fields? QSM systems exist, purely NT proof
seems not to work, but this QSM proof may work

General philosophy L-functions as coordinates determining
underlying geometry

Examples:

Cornelissen-M.M.: zeta functions of a spectral triple on limit set
of Schottky uniformized Riemann surface determine conformal
structure

Cornelissen–J.W.de Jong: family of zeta functions of spectral
triple of Riemannian manifold determine manifold up to isometry
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Anabelian versus Noncommutative

Anabelian geometry describes a number field K in terms of the
absolute Galois group GK

But... no description of GK in terms of internal data of K only
(Kronecker’s hope)

Langlands: relate to internal data via automorphic forms

For abelian extensions yes: Gab
K in terms of internal data:

adeles, ideles (class field theory)

But... Gab
K does not recover K

Noncommutative geometry replaces GK with the QSM system
(AK, σK) to reconstruct K
AK = C(XK) o J+

K is built only from internal data of K (primes,
adeles, Gab

K )
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More details on the proof of (2)⇒ (1): Stratification of XK
ÔK,n :=

∏
p|n ÔK,p and

XK,n := Gab
K ×Ô∗K

ÔK,n with XK = lim−→
n

XK,n

Topological groups

Gab
K ×Ô∗K

Ô∗K,n ' Gab
K/ϑK(Ô∗K,n) = Gab

K,n

Gal of max ab ext unramified at primes dividing n
J+
K,n ⊂ J+

K subsemigroup gen by prime ideals dividing n
Decompose XK,n = X 1

K,n
∐

X 2
K,n

X 1
K,n :=

⋃
n∈J+

K,n

ϑK(n)Gab
K,n and X 2

K,n :=
⋃
p|n

YK,p

where YK,p = {(γ, ρ) ∈ XK,n : ρp = 0}
X 1
K,n dense in XK,n and X 2

K,n has µK-measure zero
Algebra C(XK,n) is generated by functions

fχ,n : γ 7→ χ(ϑK(n))χ(γ), χ ∈ Ĝab
K,n, n ∈ J+

K,n
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First Step of (2)⇒ (1): (AK, σK) ' (AL, σL)⇒ ζK(s) = ζL(s)

QSM (A, σ) and representation π : A→ B(H ) gives
Hamiltonian

π(σt(a)) = eitHπ(a)e−itH

HσKεn = log N(n) εn

Partition function H = `2(J+
K )

Z (β) = Tr(e−βH) = ζK(β)

Isomorphism ϕ : (AK, σK) ' (AL, σL)⇒ homeomorphism of
sets of extremal KMSβ states by pullback ω 7→ ϕ∗(ω)

KMSβ states for (AK, σK) classified [LLN]: β > 1

ωγ,β(f ) =
1

ζK(β)

∑
m∈J+

K

f (ϑK(m)γ)

NK(m)β

parameterized by γ ∈ Gab
K/ϑK(Ô∗K)
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Comparing GNS representations of ω ∈ KMSβ(AL, σL) and
ϕ∗(ω) ∈ KMSβ(AK, σK) find Hamiltonians

HK = U HL U∗ + logλ

for some U unitary and λ ∈ R∗+

Then partition functions give

ζL(β) = λ−βζK(β)

identity of Dirichlet series∑
n≥1

an

nβ
and

∑
n≥1

bn

(λn)β

with a1 = b1 = 1, taking limit as β →∞

a1 = lim
β→∞

b1λ
−β ⇒ λ = 1
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Conclusion of first step: arithmetic equivalence ζL(β) = ζK(β)

Consequences:
From arithmetic equivalence already know K and L have same
degree over Q, discriminant, normal closure, unit groups,
archimedean places.

But... not class group (or class number)
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Second Step of (2)⇒ (1): unraveling the crossed product

ϕ : C(XK) o J+
K
'→ C(XL) o J+

L with σL ◦ ϕ = ϕ ◦ σK

and preserving the covariance algebra ϕ : A†K
∼→ A†L

Restrict to finitely many isometries µ℘, NK(℘) = p

AK generated by µnfµ∗m; in A†K only µnf

Eigenspaces of time evolution in A†K preserved:
so C(XK)

∼→ C(XL) and ϕ(µn) =
∑
µm fn,m

Commutators [f , µn] = (f − ρn(f ))µn: match maximal ideals
(mod commutators) so that homeomorphism Φ : XK

∼→ XL
compatible with semigroup actions γαx (n)(Φ(x)) = Φ(γn(x))

with locally constant αx : J+
K → J+

L
(that is, ϕ(µn) =

∑
δm,αx (n)µn)

αx = α constant: know [LLN] ergodic action of J+
K on XK, level

sets would be clopen invariant subsets
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Third Step of (2)⇒ (1): isomorphism Gab
K
∼→ Gab

L
Projectors eK,n = µnµ

∗
n mapped to projector eL,ϕ(n)

Fix m ∈ J+
K and ÔK,m =

∏
p|m ÔK,p, then

VK,m :=
⋂

(m,n)=1

Range(eK,n) = Gab
K×Ô∗K

{(0, . . . , 0, ÔK,m, 0, . . . , 0)}

Φ(VK,m) =
⋂

(m,n)=1

Φ(Range(eK,n)) =
⋂

(ϕ(m),ϕ(n))=1

Range(eL,ϕ(n))

= Gab
L ×Ô∗L

{(0, . . . , 0, ÔL,ϕ(m), 0, . . . , 0)} = VL,ϕ(m)

1m integral adele = 1 at the prime divisors of m, zero elsewhere

HK,m := Gab
K ×Ô∗K

{1m} ⊆ XK
ϕ→ Gab

L ×Ô∗L
{yϕ(m)} ⊆ XL

check that y ∈ Ô∗L,m is a unit

then HK,m classes [(γ, 1m)] ∼ [(γ′, 1m)] ⇐⇒ ∃u ∈ Ô∗K with
γ′ = ϑK(u)−1γ and 1m = u1m
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then for G̊ab
K,m Gal of max ab ext unram outside prime div of m

HK,m ∼= Gab
K/ϑK

∏
q-m

Ô∗q

 ∼= G̊ab
K,m

G̊ab
K,m has dense subgroup gen by ϑK(n), ideals coprime to m

⇒ HK,m gen by these γn := [(ϑK(n)−1, 1m)]

with 1m = [(1, 1m)] and Φ(1m) = [(xm, ym)] get

Φ(γn1 · γn2 ) = Φ([(ϑK(n1 n2)−1, 1m)])

= Φ([(ϑK(n1 n2)−1, n1 n2 1m)]) (since n1, n2 coprime to m)

= Φ(n1 n2 ∗ 1m) = ϕ(n1 n2)∗Φ(1m) = [(ϑL(ϕ(n1 n2))−1xm, ϕ(n1 n2)ym)]

lim
m→+∞

1m = 1⇒ lim
m→+∞

Φ(1m) = Φ(1) and get

Φ̃(γ1γ2) = Φ(γ1·γ2)Φ(1)−1 = Φ(γ1)Φ(γ2)Φ(1)−2 = Φ̃(γ1)·Φ̃(γ2)
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Fourth step of (2): Preserving ramification
N ⊂ Gab

K subgroup, Gab
K/N ∼→ Gab

L/Φ(N)

p ramifies in K′/K ⇐⇒ ϕ(p) ramifies in L′/L

where K′ = (Kab)N finite extension and L′ := (Lab)Φ(N)

seen have isomorphism Φ : G̊ab
K,m

∼→ G̊ab
L,ϕ(m) (Gal of max ab ext

Km unram outside prime div of m)

K′ = (Kab)N fin ext ramified precisely above p1, . . . , pr ∈ J+
K

By previous L′ := (L)Φ(N) contained in Lϕ(p1)···ϕ(pr ) but not in
any L

ϕ(p1)···ϕ̂(pi )···ϕ(pr )
⇒ L′/L ramified precisely above

ϕ(p1), . . . , ϕ(pr )
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Fifth Step of (2)⇒ (1): from QSM isomorphism get also
Isomorphism of local units

ϕ : Ô∗p
∼→ Ô∗ϕ(p)

max ab ext where p unramified = fixed field of inertia group Iab
p ,

by ramification preserving

Φ(Iab
p ) = Iab

ϕ(p)

and by local class field theory Iab
p ' Ô∗p

by product of the local units: isomorphism

ϕ : Ô∗K
∼→ Ô∗L

Semigroup isomorphism

ϕ : (A∗K,f ∩ ÔK,×)
∼→ (A∗L,f ∩ ÔL,×)

by exact sequence

0→ Ô∗K → A∗K,f ∩ ÔK → J+
K → 0

(non-canonically) split by choice of uniformizer πp at every place
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Recover multiplicative structure of the field

Endomorphism action of A∗K,f ∩ ÔK

εs(f )(γ, ρ) = f (γ, s−1ρ)eτ , εs(µn) = µn eτ

eτ char function of set s−1ρ ∈ ÔK

Ô∗K = part acting by automorphisms

O∗K,+ (closure of tot pos units): trivial endomorphisms

O×K,+ = OK,+ − {0} (non-zero tot pos elements of ring of

integers): inner endomorphisms (isometries in A†K eigenv of
time evolution)

ϕ(εs) = εϕ(s) for all s ∈ A∗K,f ∩ ÔK

Conclusion: isom of multiplicative semigroups of tot pos non-zero
elements of rings of integers

ϕ : (O×K,+,×)
∼→ (O×L,+,×)
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Last Step of (2)⇒ (1): Recover additive structure of the field

Extend by ϕ(0) = 0 the map ϕ : (O×K,+,×)
∼→ (O×L,+,×), Claim: it

is additive

Start with induced multipl map of local units ϕ : Ô∗K,p
∼→ Ô∗L,ϕ(p)

(from ramification preserving)
set 1p = (0, . . . , 0, 1, 0, . . . , 0) and 1p := [(1, 1p)] ∈ XK; for
u ∈ ÔK,p, integral idele up := (1, . . . , 1, u, 1, . . . , 1):

[(1, up)] = [(ϑK(up)−1, 1)] 7→ Φ([(ϑK(up)−1), 1)]) =: [(1, ϕ(u)ϕ(p))]

Group isom to image λK,p : Ô∗K,p → XK
[· 1p]−−−→ ZK,p ⊂ XK

u 7→ [(1, up)] 7→ [(1, up · 1p)] = [(1, (0, . . . , 0, u, 0, . . . , 0)]

Commutative diagram

Ô∗K,p
λK,p // // ZK,p

Ô∗L,ϕ(p) λL,ϕ(p)

// //
��
ϕ

ZL,ϕ(p)

��
Φ
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Fix rational prime p totally split in K (hence unramified)⇒
arithm equiv: p tot split in L
Set Z(p∆) integers coprime to p∆ with ∆ = ∆K = ∆L
discriminant

map $K,p : Z(p∆) ↪→ Ô∗K,p → ZK,p with $K,p : a 7→ [(1, a · 1p)]

a = p1 . . . pr rational prime unramified⇒ permute factors
αx ((a)) = pσ(1) . . . pσ(r) so αx ((a)) = (a) fixes ideals (a) ∈ J+

Q

Φ($K,p(a)) = Φ((a)∗1p) = α1p
((a))∗Φ(1p) = (a)∗1ϕ(p) = $L,ϕ(p)(a)

so ϕ : Ô∗K,p
∼→ Ô∗L,ϕ(p) constant on Z(p∆)
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As above fix ational prime p totally split in K (hence in L) and
p ∈ J+

K above p with f (p |K) = 1 (hence f (ϕ(p)|L) = 1)
Use ϕ : Ô∗K,p

∼→ Ô∗L,ϕ(p) to get multiplicative map of residue

fields by Teichmüller lift τK,p : K∗p ∼= F∗p ↪→ Ô∗K,p
∼= Q∗p

Show its extension by zero additive (hence identity map
ϕ̃ : F∗p → F∗p) by extending τK,p : Ô∗K,p → Ô∗K,p with

x 7→ limn→+∞ xpn

for ã residue class in K∗p ∼= Fp, choose integer a congruent to ã
mod p and coprime to discriminant ∆ (Chinese remainder thm)

ϕ(τK,p(a)) = ϕ

(
lim

n→+∞
apn
)

= lim
n→+∞

ϕ(a)pn

= τL,p(ϕ(a)) = τL,p(a)

ϕ̃(ã) = ϕ(τK,p(a)) modϕ(p) = τL,p(a) modϕ(p) = ã modϕ(p)

So ϕ identity mod any tot split prime, so for any x , y ∈ OK,+

ϕ(x + y) = ϕ(x) + ϕ(y) modϕ(p)

totally split primes of arbitrary large norm (Chebotarev)

⇒ ϕ additive
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