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a b s t r a c t

We study how far it is possible to reconstruct a graph from various Banach algebras
associated to its universal covering, and extensions thereof to quantum statistical
mechanical systems. It turns out thatmost the boundary operator algebras reconstruct only
topological information, but the statistical mechanical point of view allows for complete
reconstruction of multigraphs with minimal degree three.
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1. Introduction

In this paper, we treat reconstruction problems for graphs from operator algebras. This fits into a broader area of research
into reconstruction questions, such as the isospectrality problem in differential geometry [1], and the arithmetic equivalence
problem in number theory [2,3]. In recent years, a new philosophy has emerged, stating roughly that mathematical objects
that obey some form of measure-theoretic rigidity can be reconstructed up to suitable isomorphism from an associated
quantum statistical mechanical system, in the sense of noncommutative geometry. A prime example is given by the case
of number fields under the dynamics of abelian class field theory [3], as in the Bost–Connes system [4,5]. In this paper,
we study a ‘‘baby case’’, namely, that of graphs. Ultimately, we hope our work provides a measure-theoretic or functional
analytic handle on reconstruction problems for graph invariants from their decks (compare [6]).

1.1. We first set up basic notations and definitions that allow us to formulate the main theorem. By a graph X we mean
a finite, unoriented multigraph, allowing loops and multiple edges. We assume throughout that all vertices of X have
degree (= valency, i.e., twice the number of loops plus the number of non-loops emanating from the vertex) at least three.
In particular, the graph has no sinks. Let TX denote the universal covering tree, and ΓX the fundamental group. Choose
generators γ1, . . . , γgX for ΓX . Let ΛX denote the boundary of TX (equivalence classes of rays, as a Cantor set).
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1.2. We will use dynamical systems in two slightly different forms, one involving groups, and one involving specific
generators. We now outline these concepts.

We call a pair (X,G) consisting of a topological space X and a (topological) group G acting on the space by
homeomorphisms a dynamical system, and say that two such systems (X,G) and (Y ,H) are isomorphic if there is a
homeomorphism

Φ : X
∼
→ Y

equivariant w.r.t. a group isomorphism α : G
∼
→H , i.e., such that

Φ(gx) = α(g)Φ(x)

for all x ∈ X and g ∈ G.
We say two such systems are locally isomorphic if there is a homeomorphism Φ : X

∼
→ Y and group isomorphisms

αx : G
∼
→H for any x ∈ X , such that

Φ(gx) = αx(g)Φ(x)

for all x ∈ X and g ∈ G, and such that

αx : X × G → H

is locally constant in x. Of course, isomorphism implies local isomorphism, but the converse need not be true.

1.3. The second concept depends on a choice of generators for the group. If the group G is finitely generated, we can instead
consider a multivariable dynamical system (X, {gi}), consisting of the space X and given generators gi of G. We say two such
systems (X, {gi}) and (Y , {hj}) are conjugate if there is a homeomorphism Φ : X

∼
→ Y , {gi} and {hj} have the same number n

of elements, and there is a permutation σ ∈ Sn such that

Φ(gix) = hσ(i)Φ(x)

for all x ∈ X and i = 1, . . . , n.
We say two such systems are piecewise conjugate if there is an open cover

{Xσ }σ∈Sn of X

such that

Φ(gix) = hσ(i)Φ(x)

for all x ∈ Xσ . If two systems are conjugate for chosen sets of generators, then they are isomorphic, but the converse need
not be true. The relation between local isomorphism and piecewise conjugacy is less clear. (However, in the case we study
below, it turns out all these concepts are equivalent.)

1.4. We now come to the definitions of the operator algebras that we will consider. Let

AX := C(ΛX ) o ΓX

denote the full crossed product boundary operator algebra generated as C∗-algebra by C(ΛX ) and group-like elements
µ1, . . . , µgX corresponding to the generators γi. Let A

Ď
X denote the (non-involutive) subalgebra generated by C(ΛX ) and

the group elements, but not their ∗-companions µ∗

i .
We assume throughout that all vertices of X have degree at least three. Since X is finite, this implies in particular that X

has first Betti number gX > 1. (We do remark that if gX = 0, then AX = C and if gX = 1, AX = C2
×Z, since the fundamental

group is abelian and the limit set consists of the two fixed points of the fundamental group.)
Our first main theorem says that for such graphs, all the above concepts essentially store the same amount of (limited)

topological information, namely, the number of independent cycles:

Theorem 1.5. Let X and Y denote two graphs, all of whose vertices have degree at least three. Then the following are equivalent:

(a) AX ∼= AY are strictly isomorphic as C∗-algebras;
(b) AX ∼= AY are stably isomorphic as C∗-algebras;
(c) AX ∼= AY are strongly Morita equivalent;
(d) AĎX ∼= AĎY are strictly isomorphic as Banach algebras (for any choice of generators of ΓX and ΓY );
(e) The multivariable dynamical systems (ΛX , {γX,i}) and (ΛY , {γY ,i}) are piecewise conjugate (for any choice of generators of

ΓX and ΓY );
(f) The multivariable dynamical systems (ΛX , {γX,i}) and (ΛY , {γY ,i}) are conjugate (for any choice of generators of ΓX and ΓY );
(g) The dynamical systems (ΛX , ΓX ) and (ΛY , ΓY ) are locally isomorphic;
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(h) The dynamical systems (ΛX , ΓX ) and (ΛY , ΓY ) are isomorphic;
(i) gX = gY .

The proof, given in the next section, combines the work of Robertson on boundary operator algebra K -theory [7] with
a result of Davidson and Katsoulis on the relations between piecewise conjugacy of dynamical systems and operator
algebras [8], and the theory of hyperbolic groups.

By stark contrast, if we allow for further noncommutative dynamics, implemented as a quantum statistical mechanical
system by a one-parameter group of automorphisms of the dagger algebra, the graph is uniquely determined up to
isomorphism.

Theorem 1.6. Let X and Y denote two graphs all of whose vertices have degree at least three. Then one can define a one-parameter
subgroup of automorphisms (‘‘time evolution’’)

σX : R → Aut(AĎX )

as follows: choose a base point x0 in the universal covering tree TX of X, and set

σt


γ

fγ (ξ)µγ


=


γ

exp

it

 lim
x3∈TX
x3→ξ

d(x0, x3) − d(γ −1x0, x3)

 fγ (ξ)µγ (1)

on elements


fγ µγ of the algebraic crossed product algebra (with fγ ∈ C(ΛX )). Then the quantum statisticalmechanical systems

(AĎX , σX ) ∼= (AĎY , σY )

are isomorphic if and only if X and Y are isomorphic as graphs.

The time evolution is defined in terms of Busemann functions as in the work of Coornaert and Lott [9], and the proof is
based on a classification of KMS-states for such algebras by Kumjian and Renault [10], combined with measure-theoretic
rigidity for trees from Paulin and Hersonsky [11]. The choice of a base point is irrelevant and relates to the fact that
Patterson–Sullivan measures naturally form a conformal density, rather than a measure.

Remark 1.7. This paper studies reconstruction of graphs from various structures related to the boundary operator algebra
AX . Similar questions can be asked for various Cuntz–Krieger algebras that are naturally associated to a graph, such as the one
associated to the vertex adjacency matrix of the graph (also known as the graph C∗-algebra), or the Cuntz–Krieger algebra
associated to the Bass–Hashimoto edge adjacency operator. We will comment on this problem at the appropriate place.

Remark 1.8. A different way of expressing condition (i) in Theorem 1.5 is that the (free) groups ΓX and ΓY are isomorphic
as abstract groups. Hence the result says in particular that for these crossed product algebras, isomorphism detects only
abstract group isomorphism of the groups involved, a very weak conclusion. We are not aware of a general structural result
that characterizes crossed product algebras for which this conclusion holds.

Remark 1.9. The results of this paper carry over one-to-one to the case of hyperbolic Riemann surfaces uniformized by
Schottky groups; we refrain from presenting details.

2. Proof of Theorem 1.5

In this first section, we consider the various natural ‘‘isomorphism’’ conditions on the boundary operator algebras
associated to a graph, and discuss how far they (do not) determine the graph. We keep the notations from the introduction.
A schematic representation of the structure of the proof is given below:

(g)

2.3
��

oo 2.3 (h) oo 2.3 (f)

2.3
��

66
2.3

nnnnnnnnnnnnnnn
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2.2

(d)

(b) oo 2.1 // (a)
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2.1 (C∗-Algebra Isomorphism). The boundary ΛX of the tree TX is the set of equivalence classes of half-rays in TX , with
equivalent rays being equal up to finitely many edges. The full crossed product algebra C(ΛX ) o ΓX is the universal
C∗-algebra generated by the commutative C∗-algebra C(ΛX ) and the image of a unitary representation π of Γ , satisfying
the covariance relation

π(γ )fπ(γ )−1
= f ◦ γ −1

for f ∈ C(ΛX ), γ ∈ Γ and x ∈ ΛX . It is also strictly isomorphic as C∗-algebra to the Cuntz–Krieger algebra of the edge
adjacency matrix (= Bass–Hashimoto operator, cf. [12]) of a graph with one vertex and gX loops, i.e., the Cuntz–Krieger
algebra corresponding to the matrix

1 1 − 1
1 − 1 1


where 1 is a square gX -size matrix all of whose entries are one, and 1 is the gX × gX -unit matrix cf. [7]. Since this algebra
fits into the Kirchberg–Phillips classification, it is determined by its K0-group and the position of the unit (cf. Rørdam [13]),
which are easily computed for this matrix to be

K0 = ZgX × Z/(gX − 1),

and the class of the unit being a generator for the finite cyclic part. Thus, both strict isomorphism andMorita equivalence of
such algebras is equivalent to equality of the Betti numbers of the graphs: gX = gY . Also, since the algebras are separable,
strong Morita equivalence is the same as stable isomorphism (i.e., isomorphism after tensoring with the algebra of compact
operators). This proves the equivalence of (a)–(c) and (i) of Theorem 1.5.

2.2 (Non-Involutive Boundary Algebra Isomorphism). We now switch to the non-involutive subalgebra AĎX of AX . As a
subalgebra of the universal crossed product C∗-algebraAX , the algebraA

Ď
X can be described as the semicrossed product algebra

of the chosen generators of the free group ΓX acting on the (totally discontinuous space) ΛX . This algebra is universal for
the equivariance relation given by the group action with the group generator elements of the free group being contractions
or isometries (which is the same, by a suitable dilation theorem, cf. [8]). Then one of the main results (Theorem 9.2) in [8]
states that AĎX ∼= AĎY implies a piecewise topological conjugacy of the dynamical systems (ΛX , {γX,i}) and (ΛY , {γY ,j}) (hence
in our situation, it says that (d) implies (e)).

Piecewise conjugacy implies that the ranks of the group ΓX and ΓY are equal, whence gX = gY , so that (e) implies (i).

2.3 (Betti Number Condition).Nowwe prove that two such dynamical systems are conjugate (for any choice of generators of
ΓX and ΓY ) precisely if gX = gY . We use the fact that the group ΓX is hyperbolic (since we assume gX > 1), and the action of
ΓX on TX is properly discontinuous with compact quotient. These conditions imply that there is a canonical ΓX -equivariant
homeomorphism

ϕX : ∂Cay(ΓX , {γX,i})
∼
→ ΛX ,

cf. [14, Theorem 4.1], where ∂Cay(ΓX , {γX,i}) is the boundary of a Cayley graph

Cay(ΓX , {γX,i})

for the free group ΓX of rank gX for the symmetrization of the chosen set of generators {γX,i}. Namely, the map

ϕX : Cay(ΓX , {γX,i}) → TX : γ → γ x0

is a quasi-isometry for the usual tree distances, so it will induce a homeomorphism of boundaries. Observe that a different
choice of generators also changes the metric to a Lipschitz-equivalent one, inducing the same homeomorphism in the
boundary.

Since ϕX is equivariant w.r.t. the action by left multiplication of ΓX , the resulting boundary map is indeed equivariant.
Now suppose that gX = gY . Then we can choose a group isomorphism

α : ΓX ∼= ΓY ,

with α(γX,i) = γY ,i (so extending a bijection between the given sets of generators). Then α induces a corresponding
equivariant boundary map, and this implies that we have a composed homeomorphism

Φ : ΛX
ϕ−1
X

−−→ ∂Cay(ΓX , {γX,i})
α∗

−→ ∂Cay(ΓY , {γY ,i})
ϕY
−→ ΛY ,

which intertwines the actions of ΓX and ΓY with

Φ(γX,ix) = α(γY ,i)Φ(x).

This is precisely a conjugacy of themultivariable dynamical systems, and proves that (i) implies (f). Of course, (f) also implies
(e). Since (f) implies (h), which implies (g), which it its turn implies (i). We now prove that (f) implies (d): if the conjugacy
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is implemented by a homeomorphism Φ : ΛX
∼
→ ΛY with Φ(γX,ix) = γY ,σ (i)Φ(x), for some permutation σ ∈ SgX , then we

define the algebra isomorphism ϕ : AĎX
∼
→ AĎY on elements


fiµγX,i of the algebraic semicrossed product subalgebra by

ϕ


fiµγX,i


:=


fi ◦ Φ−1µγY ,σ (i) .

This finishes the proof of the theorem. �

Remark 2.4. We have proven that in our system, local isomorphism (g) implies isomorphism (h), but in a very indirect way.
One can also prove this directly, using only topological properties of the system, namely, the fact that the complement of
the fixed point set is dense in the space. Since this argument might be of independent interest, we present it here.

Lemma 2.5. Suppose that (ΛX , ΓX ) and (ΛY , ΓY ) are two locally isomorphic dynamical systems. Denote the total fixed point
set by

FX :=


γ∈ΓX−{1}

Fix(γ ),

with Fix(γ ) is the set of fixed points of γ . Then if the complement of the fixed point set ΛX \ FX is dense in ΛX , the systems
(ΛX , ΓX ) and (ΛY , ΓY ) are conjugate.

Proof. Suppose given the locally constant group isomorphisms αx that intertwine the actions. The equivariance implies on
the one hand

Φ(γ1γ2x) = αx(γ1γ2)Φ(x) = αx(γ1)αx(γ2)Φ(x) = αx(γ1)Φ(γ2x),

and on the other hand

Φ(γ1γ2x) = Φ(γ1(γ2x)) = αγ2x(γ1)Φ(γ2x).

We conclude that for all x ∈ ΛX and for all γ1, γ2 ∈ ΓX , we have

[αγ2x(γ1)
−1αx(γ1)]Φ(γ2x) = Φ(γ2x). (2)

Now choose x such that

x ∈ ΛX \ FX , (3)

where FX is the fixed point set. This implies that γ2x ∈ ΛX \ FX , and then in turn we find Φ(γ2x) ∈ ΛY \ FY , since if γ x = x
for some γ ∈ ΓX , then Φ(γ x) = Φ(x), and equivariance gives αx(γ )Φ(x) = Φ(x), i.e., there is an element (namely, αx(γ ))
in ΓY that fixes Φ(x). We conclude from (2) that for such xwith (3), it holds true that

αγ2x = αx for all γ2 ∈ ΓX ,

i.e., αx is locally constant on orbits of the non-fixed point set. Since αx is continuous in x, and constant on the dense subset
ΛX \ FX of its domain, we conclude that αx is constant, independent of x. �

The lemma applies in our case, since the set ΛX \ FX is dense in ΛX : indeed, if x ∈ FX is fixed by some γ ∈ ΓX , then there
exists y ∈ ΛX \ FX , but the γ -orbit of y accumulates at x (being one of the fixed points of γ ). Hence x belongs to the closure
of ΛX \ FX . This proves that the closure of FX belongs to the closure of ΛX \ FX , and the proof is finished since the closure of
FX is all of ΛX .

Remark 2.6 (Other C∗-Algebras of Graphs). Alternatively, one might want to study directly the relation between (stable)
isomorphism of the Cuntz–Krieger algebras associated to the vertex adjacency matrix of two (oriented) graphs. Again, the
results of Rørdam et al. imply that the K0-group of the algebra determine such isomorphism, and those are given by

Z|VX |/im(1 − AX )

for a graph X with vertex set VX and adjacency operator AX . Recently, Sørensen [15] characterized isomorphism of such
algebras purely in terms of the existence of a sequence of elementary operations that transforms one graph into the other, so
that one now has a graph theoretical characterization of stable isomorphism. It would be interesting to have such a description
also for strict isomorphism.

Remark 2.7. The situation becomesmuch simpler if one instead studies (stable) isomorphism of the Cuntz–Krieger algebras
associated to the edge adjacency matrix (Bass–Hashimoto operator) of the graph. This operator TX is defined as follows
(compare with [16] or [12]). Choose a random orientation of the edged {e1, . . . , en} of X and let {e1, . . . , en, e1, . . . , en}
denote the set of all edges of X and their inverses. The operator TX is the 2n × 2n-matrix given by T (e, f ) = 1 if and only if
the terminal vertex of e is the initial vertex of f , but f ≠ e. Otherwise, T (e, f ) = 0. This operator is very natural for counting
non-backtracking paths in the graph (relating to the Ihara zeta function).
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In [12], one finds a geometric study of this classification problem, and the answer is that stable isomorphism of such
algebras for graphs X and Y is the same as equality of Betti numbers gX = gY , and strict isomorphism means that we also
have and equality

(|EX |, gX − 1) = (|EY |, gY − 1)

of greatest common divisors of the Euler characteristic of the graphs with their number of edges.

3. Proof of Theorem 1.6

3.1 (Quantum Statistical Mechanical System and Busemann Function). The dynamics σX = σX,x0 on AĎX is given in terms of the
Busemann function (compare with Coornaert [17], or Lott [9] for the similar case of Kleinian groups), defined for x1, x2 ∈ TX
and x ∈ ΛX by

B(x1, x2, x) = lim
x3∈TX
x3→x

d(x1, x3) − d(x2, x3),

with d the tree distance. The automorphisms σt are defined on elements of the algebraic crossed product, i.e., finite sums of
the form

f =


γ∈ΓX

fγ µγ

with fγ ∈ C(ΛX ), and then extended to the full C∗-algebra (full = reduced in this case). Choose a ‘‘base point’’ x0 ∈ TX . Then
one defines σ : R → Aut(AĎX ) : t → σt by

σX,x0,t


γ

fγ µγ


=


γ

eitB(x0,γ
−1x0,−)fγ µγ . (4)

This indeed defines a strongly continuous one-parameter subgroup of automorphisms of AX (respecting AĎX ); the proof is the
same as that of Proposition 4.2 in [9]. Actually, it defines a field of such automorphisms groups, by varying the base point
x0, but when no confusion can arise, we will leave out the base point from the notation and simply write σX = σX,x0 .

One calls (AĎX , σX ) the quantum statistical mechanical system associated to the graph X and σX the time evolution of the
system (cf. [18] for background on this terminology). An isomorphism of two such systems (AĎX , σX ) and (AĎY , σY ) is a Banach
algebra isomorphism ϕ : AĎX

∼
→ AĎY that intertwines the time evolutions: ϕ ◦ σX = σY ◦ ϕ.

Remark 3.2. We have defined the system in terms of the non-involutive algebra AĎX . The above time evolution extends
easily to the full C∗-algebra AX and is seen to respect the subalgebra AĎX , and traditionally, a quantum statistical mechanical
systems consists of such a C∗-algebra AX with time evolution σX . One may also describe our notion of isomorphism as an
isomorphism of these ‘‘involutive’’ systems (AX , σX )

∼
→(AY , σY ) that furthermore maps AĎX to AĎY .

Continuing with the proof of Theorem 1.6, suppose given an isomorphism

ϕ : (AĎX , σX )
≃

−→ (AĎY , σY ) (5)

of quantum statistical mechanical systems. The first thing to observe is that such an isomorphism induces (by pull-
back) a homeomorphism between the Choquet-complexes of KMSβ-states of the systems (AX , σX ) and (AY , σY ) (for any
‘‘temperature’’ β), cf. [3, Lemma 1.7].

The second observation is the fact that the system (AX , σX ) has a unique β for which the space of KMSβ-states is non-
empty. The reason is that there is a correspondence between KMSβ-states and conformal measures (compare with [9]
5.11 for the case of Kleinian groups). Namely, since the dynamical system (ΛX , ΓX ) is the same as the full shift space on
chosen generators for the free group, and left shift is an expansive map on this space, we can use the work of Kumjian and
Renault [10]: the C∗-algebra AX is the reduced C∗-algebra of the transformation groupoid ΛX × ΓX . To the base point, we
associate a one-cocycle cx0 ∈ Z1(ΛX × ΓX ,R) by

cx0(ξ , γ ) := B(x0, x0γ −1, ξ).

Now if γ ξ = ξ and cx0(ξ , γ ) = 0, then c−1
x0 (0) is a principal subgroupoid of the transformation groupoid. Indeed, since γ

is a hyperbolic isometry of the tree, the classification of Tits [19] implies that γ acts by a translation with amplitude am(γ )
along the double sided infinite path in the tree TX that connects the two fixed points of γ on the boundary, called the axis of
γ . One of these fixed points is ξ , and if we let x3 ∈ TX approach this point along the axis of γ , it is obvious from the definition
of the Busemann function that

B(x0, x0γ −1, ξ) = ±am(γ ).
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Hence if this cocycle is zero, we find am(γ ) = 0, and hence γ = 1. This means we can indeed apply the result of Kumjian
and Renault, and conclude that the KMSβ-states correspond to conformal measures of dimension β on ΛX , i.e., probability
measures µ on ΛX that satisfy the scaling condition

µ(γ ξ) = eβB(x0,x0γ −1,ξ)µ(ξ).

Now Coornaert [17, Section 8] has classified such conformal measures: they only occur for β = δ(ΛX ) the critical exponent
of the Poincaré series of Γ , and they are exactly the Patterson–Sullivan measures µx0 for varying base points x0 (and these
are normalized Hausdorff measures on ΛX ).

The conclusion is that (AX , σX,x0) has a unique β for which there exists a KMSβ-state. Actually, from the correspondence
between states and measures, this KMSβ-state is given by

τX,x0


γ

fγ µγ


=


ΛX

f1dµX,x0 .

Now to finish the proof, recall from the previous section that the Ď-algebra map ϕ induces a homeomorphism Φ : ΛX →

ΛY that is equivariant w.r.t. a group isomorphism α : ΓX → ΓY . Since the unique normalized KMSβ-state for Y (with β the
Hausdorff dimension of ΛY , and chosen base point y0) pulls back via ϕ to a KMSβ-state on X , and this (normalized) state is
unique and given by τX,x0 for some base point x0, and we find

ϕ∗τY ,y0 = τX,x0 ,

which translates into
ΛY

f1 ◦ Φ−1dµY ,y0 =


ΛX

f1dµX,x0 ,

for any function f1 ∈ C(ΛX ). This means that Φ is a measure-preserving (in particular, absolutely continuous)
homeomorphismof the limit sets in their respective Patterson–Sullivanmeasures based at the points x0, respectively y0, that
is equivariant for the given group isomorphism. Actually, since different Patterson–Sullivan measures for different choices
of base points are mutually absolutely continuous, we find that for any choice of suchmeasures, Φ is absolutely continuous.

Now the rigidity theorem for hyperbolic group actions implies thatΦ isMöbius on the boundary (meaning that it respects
the generalized ‘‘cross ratio’’ on the boundary [11, Theorem A]). Hence it extends to an isometry between the trees TX and
TY that intertwines the respective group actions (this extension is defined by coordinatizing a point in the tree as the unique
intersection of three half lines ending at points on the boundary, and defining the image point as the point coordinatized in
this way by the three image points under the boundary map of the original three boundary points; compare [20,21]). Hence
finally it induces a graph isomorphism

Φ : X
∼
→ ΓX \ TX

∼
→ ΓY \ TY

∼
→ Y .

This finishes the proof of the theorem.

Remark 3.3. We do not know whether one can relax the conditions in the theorem by leaving out the dagger algebra; is
it true that an isomorphism of quantum statistical mechanical systems (AX , σX )

∼
→(AY , σY ) suffices to conclude that the

graphs X and Y are isomorphic?

Remark 3.4. Analogously, one can try to define a time-evolution on the Cuntz–Krieger algebra (or a non-involutive
subalgebra of it) of the vertex-or edge-adjacency matrix of the graph, and study whether the resulting quantum statistical
mechanical system reconstructs the graph. We have not completed such a study.
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