Math.Comput.Sci. (2015) 9:391-408 @ CrossMark
DOI 10.1007/511786-015-0236-y Mathematics in Computer Science

Graph Grammars, Insertion Lie Algebras, and Quantum
Field Theory

Matilde Marcolli - Alexander Port

Received: 11 March 2015 / Accepted: 14 May 2015 / Published online: 13 August 2015
© Springer Basel 2015

Abstract Graph grammars extend the theory of formal languages in order to model distributed parallelism in
theoretical computer science. We show here that to certain classes of context-free and context-sensitive graph
grammars one can associate a Lie algebra, whose structure is reminiscent of the insertion Lie algebras of quantum
field theory. We also show that the Feynman graphs of quantum field theories are graph languages generated by a
theory dependent graph grammar.

Keywords Lie algebras - pre-Lie operators - Graph Languages - Production rules - Feynman graphs

Mathematics Subject Classification 68Q45 - 68Q42 - 81T18

1 Introduction

Graph Languages and Graph Grammars were introduced in theoretical computer science as an extension of the
theory of formal languages (linear languages), in order to model various types of parallelism in computation,
[10,11,19,21]. Instead of replacing nonterminal symbols with combinations of nonterminals and terminals in a
linear string of characters, the production rules of graph grammars replace a subgraph of a graph with a new graph.
The latter is obtained either by gluing along a common subgraph, or by first performing an excision of a subgraph and
then replacing it with a new graph. An analog of the Chomsky hierarchy of grammars exists for Graph Languages,
see [19]. In particular, the context-free Graph Grammars are those where the left-hand-side of the production rules is
always a single vertex. Namely, no “context” in the graph is taken into consideration in deciding when a production
rule can be applied: it just applies to any vertex. In this context-free case the production rules then consist of inserting
a new graph at a vertex of another graph. This operation is reminiscent of the insertion operation that defines the
Lie algebras of Feynman graphs in the algebraic approach to renormalization in quantum field theory pioneered in
[5] (see also [6,7,9]). In this paper we show that, indeed, to certain classes of Graph Grammars (both context-free
and context-sensitive) it is possible to associate a Lie algebra, obtained by constructing a pre-Lie insertion operator

M. Marcolli (<) - A. Port
Mathematics Department, Caltech, 1200 E. California Blvd, Pasadena, CA 91125, USA
e-mail: matilde @caltech.edu

A. Port
e-mail: aport@caltech.edu

W Birkhiuser

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-015-0236-y&domain=pdf

392 M. Marcolli, A. Port

using the production rules of the grammar. We also show that the Feynman graphs of a given quantum field theory
are a graph language in the sense of the theory of formal languages. This provides a new class of examples of
graph languages, in addition to those arising in the context of computer science (such as FFT networks, Petri nets,
distributed parallelism), see the articles in [11] for several examples. Relations between the formalism of algebraic
renormalization in quantum field theory and aspects of the theory of computation in theoretical computer science
have already been investigated in [18], see also the formulation of Dyson—Schwinger equations in the Hopf algebra
of flow charts in [8]. it would be interesting to see if a theory of Dyson—Schwinger equations can be formulated for
Graph Languages, using the Lie theoretic approach of [12].

1.1 The Insertion Lie Algebra of Quantum Field Theory

In perturbative quantum field theory, one computes expectation values as a formal series of Feynman amplitudes
labeled by Feynman graphs. These graphs are finite and the allowed valencies are constrained to match the exponents
in the interaction monomial in the Lagrangian of the field theory. Graphs have a number of internal edges (connecting
pairs of vertices) and external edges (half edges). The corresponding Feynman amplitude is a finite dimensional
integral over a space of momenta flowing through the graph, with assigned external momenta carried by the external
edges, and with conservation laws at the vertices. These Feynman integrals are typically divergent, which leads to
the crucial problem of renormalization. The goal of a renormalization procedure is a consistent extraction of finite
values from all these integrals that takes into account the combinatorics of how divergent subgraphs are nested inside
larger graphs. Since the work of Kreimer [15] and Connes—Kreimer [5], it has become clear that the renormalization
procedure can be formulated algebraically in terms of a Hopf algebra of Feynman graphs. The algebraic Feynman
rules are seen as algebra homomorphisms to a target commutative algebra determined by a choice of regularization
procedure, and endowed with a “pole-subtraction” operation (Rota—Baxter algebra). See §1 of [7] for an overview.

The Hopf algebra H of Feynman graphs is a graded connected commutative Hopf algebra generated by the 1PI
Feynman graphs of the given quantum field theory. The 1PI (one-particle irreducible) condition means that the
graphs are connected and cannot be disconnected by removal of a single edge. A standard argument in quantum
field theory reduces the combinatorics of Feynman graphs to the connected case, and further to the 1PI case, see
[13]. The coproduct in the Hopf algebra is not co-commutative. It is given by

AG)=GR®1+1®G+ Y y®G/y. (1.1)

where the sum is over all the (not necessarily connected) subgraphs ¥ C G, such that the quotient graph G/y
(obtained by shrinking each component of y to a vertex) is a IPI Feynman graph of the theory. The Hopf algebra
is dual to a pro-unipotent affine group scheme that is entirely determined by its Lie algebra. Connes and Kreimer
gave a very explicit geometric description of this insertion Lie algebra [6] (see also §1 of [7]). On the vector space
spanned by all 1PI Feynman graphs of the theory, one can define a Lie bracket by setting

[G1, G2l =D Gi1o,Ga— D Garoy Gy, (1.2)
v v

where the sums are over all vertices in G| and G,. The expression G o, G denotes the graph resulting from the
insertion of G, at the vertex v of G1. One can insert one graph into another by matching external edges to the edges
incident at the vertex. In the sum one counts all the possible inequivalent ways in which the graph can be inserted
at the given vertex. This bracket indeed satisfies the Jacobi identity and defines a Lie algebra, which can be related
to the primitive elements in the dual Hopf algebra of Feynman graphs [6] (see also §1 of [7]). A detailed survey
of the use of Lie algebra methods in Quantum Field Theory can be seen in [9]. The language of Lie algebras in
Quantum Field Theory provides an elegant formulation of the Dyson—Schwinger equations (the quantum equations
of motion of the theory), and a general method for solving them in the Lie algebra of Feynman graphs [12].

Graph Grammars, Insertion Lie Algebras... 393

2 Graph Grammars and Lie algebras
2.1 Two Descriptions of Graphs

It is convenient to consider two slightly different ways of assigning the data of a finite graph. The first is the one
most commonly used in Combinatorics, while the second is more frequently used in Physics.

2.1.1 Version 1

A graph G consists of a set of vertices V(G) and a set of edges E(G) together with a boundary map 9 : E(G) —
V(G) x V(G) assigning to an edge e € E(G) its (unordered) pair of boundary vertices d(e) = {vy, v2}. The graph
can have looping edges if we allow v; = v and it can have multiple parallel edges if 8! (v1, v2) can consist of
more than one element. If the graph G is oriented (directed) then the boundary map consists of two maps (source
and target) s, 7 : E(G) — V(G). A system of vertex and edge labeling consists of two sets Xy, X of vertex and
edge labels, respectively, and functions Ly ¢ : V(G) — Xy and Lg g : E(G) — XE.

2.1.2 Version 2

A graph G consists of a set C(G) of corollas (vertices v with valence val(v) with val(v) half-edges attached to it)
and an involution Z : F(G) — F(G) on the set F(G) of all half-edges (flags) attached to all the corollas. The
set E;,; (G) of internal edges of G corresponds to all the pairs { f, f'} with f # f/in F(G) and with f' = Z(f).
The set E.«:(G) of external (half)edges of G consists of all the f € F(G) such that Z(f) = f. A labeling system
is given by a set X of flag labels and a set Xy of vertex labels together with maps Lr ¢ : F(G) — Xx and
Ly :C(G) — Xy with L.’F,G ol = L]:,G-

Notice that the objects defined by Version 1 and Version 2 are not exactly the same: the graphs defined in Version
2 can have external (unmatched) half-edges, unlike the graphs in Version 1, which only have full edges.

2.2 Insertion Graph Grammars
Using the first description of graphs, we define an Insertion Graph Grammar as follows.

Definition 2.1 An Insertion Graph Grammar consists of data
(Ne,Nv, T, Tv, P, Gs)

where the set of edge labels of graphs is Xy = Ng U Tg, with Ng the nonterminal symbols and Tg the terminal
symbols, and the set of vertex labels is given by Xy = Ny U Ty, with non-terminal and terminal symbols
given respectively by Ny and Ty. The start graph is Gg and P is a finite set of production rules of the form
P = (G, H, Gg), with G, and G, labelled graphs (respectively, the left-hand-side and the right-hand-side of the
production) and with H a labelled graph with isomorphisms.

¢r:H > ¢pr(H) CGr, ¢r:H > ¢r(H) C Gr.

The isomorphism ¢, should be label preserving. The production rule P = (G, H, Gr) searches for a copy of G
inside a given graph G and glues in a copy of G g by identifying them along the common subgraph H, with new
labels matching those of ¢r(H).

394 M. Marcolli, A. Port

2.2.1 Context-Free Graph Grammars

We recall the notion of context-freeness for graph grammars from [19].

Definition 2.2 An Insertion Graph Grammar as in Definition 2.1 is context-free it G; = {v} (hence H = {v} also).
It is context-sensitive if G, # {v}. In the context-sensitive case G is called the context of the production rule.

A Chomsky hierarchy for graph grammars is described in [19].

2.2.2 Insertion Graph Grammars and Flags

If we consider the second version of the definition of graphs given above, we can formulate a slightly different
notion of Insertion Graph Grammars. For a subgraph G’ C G the set of external edges E..;(G'; G) is defined as
the union of the set Fg' N E.y;(G) and the set of pairs (f.f") € E(G) such that only one half-edge in the pair
belongs to F’ while the other belongs to Fg~\Fg'.

In this setting, we describe an Insertion Graph Grammar as follows.

Definition 2.3 An Insertion Graph Grammar consists of data (Nz, Ny, Tr, Ty, P, Gs), as in Definition 2.1, with
¥ = Nx U Tr the non-terminal and terminal labels for flags. The production rules P = (G, H, GR) are as in
Definition 2.1, with the additional requirement that ¢y (Eex;(H, GR)) C Eex:(GL, G) and ¢r(Ecx;(H, GL)) C
Ec.x:1(GR), where G is any graph the production rule is applied to, with Gy C G.

The reason for this modified definition is that the notion of gluing of two graphs G; Uy G along a common
subgraph H is formulated by taking as set of corollas
C6Luncr = Ca Ycy Cay,
identifying the corollas around each vertex of H in G and G and then matching half-edges by the involution
I(f) = f' with f' = Zp(f) when both f, /' € Fg,, with f # [/, and /' = Zgr(f) when f, ' € Fg,, with
f# L UL(f) = fand f € ¢r(Eexi(H,GR)) C Eexs(Gr, G) with f = ¢r(f"), when Z(f) = f' and
Similarly for ¢R(Eext(Hs GL)) C Eext(GRr).

In this setting, because vertices are always endowed with a corolla of half-edges, we cannot state the context-free
condition by requiring that G;, = H = {v}. An appropriate replacement of the context free condition is given by
the following.

Definition 2.4 An Insertion Graph Grammar as in Definition 2.3 is context-free ift Gy = H = C(v), the corolla
C(v) of a vertex v, and all the vertices of graphs in the graph language have the same valence.

In the case where graphs contain vertices of different valences, these would still be context-sensitive graph
grammars, with the context specified by the valence of C(v).

2.3 Insertion-Elimination Graph Grammars

We consider another variant of the definition of graph grammars, where the production rules consist of replacing
a subgraph by another one, instead of gluing them along a subgraph. While the version discussed above reflects
the notion of graph grammars considered for instance in [19], the version we discuss here reflects the use in other
references (see for instance [22]).

In order to formulate this version of graph grammars with the first notion of graphs, we need to define the
operation of removal of a subgraph from a graph. Let G’ C G be a subgraph. Let

EG(G") ={e € E(G)NE(G')|d(e) N V(G) # B}. (2.1)
We define GG’ as the subgraph of G with V(G\G’) = V(G)\V(G’) and with edges E(G)~(E(G)UE;(G")).
Thus, for example, removing a vertex G’ = {v} means removing the vertex v along with its star of edges. We then
define Insertion-elimination Graph Grammars as follows.

Graph Grammars, Insertion Lie Algebras... 395

Definition 2.5 An Insertion-elimination Graph Grammar consists of data
G=(Ng,Ny,Tg, Ty, P, Gs)

as in Definition 2.1, where the productionrule P = (G, H, G g) acts by searching for a copy of G in G, removing
G~ H and replacing it with the graph G glued along H.

Using the second description of graphs, the removal of a subgraph G’ C G is defined by cutting all edges in
E..:(G', G) into pairs of half-edges, one attached to G’ and one to G~\G’. Thus, the set of corollas C(G~\G) is
given by the difference C(G)~C(G’) and the set of flags is given by F(G~\G") = F(G)\F(G’), with involution
TZe-c(f) = Ig(f) if both f and Zg(f) are in F(G)NF(G') and Zg- ' (f) = f for f € F(G)~F(G') with
I (f) € F(G). Notice that the two notions of removal of subgraphs differ in the way the edges connecting a vertex
of the subgraph to a vertex of the complement are treated: in the first case they are removed, while in the second
case a half-edge remains as an external edge of the complement graph. We then have the following formulation.

Definition 2.6 An Insertion-elimination Graph Grammar consists of data
G=(Ng,Nv,Tr, Ty, P, Gs)

as in Definition 2.3, with the requirement that

Eex((¢r(H), G) = Eex/(pr(H), GL) = Eexi (¢r(H), GR) = Eexi(GR).

The production rule P(Gp, H, Gg) acts by searching for a copy of G inside G, removing G ~¢r(H)
and replacing it with a copy of Gr~¢r(H), by matching the half-edges of E,.;(Gg) to the half-edges of
Eext (GLv G)

2.4 Pre-Lie Structures

A (right) pre-Lie structure on a vector space V is a bilinear map
<:VV->V

satisfying the identity of associators under the exchange y < z,

(xay)<z—x<(y<z)=@x<z)ay—x<(z<y), Vx,y,zeV. 2.2)
A Lie algebra is a vector space V endowed with a bilinear bracket [-, -] satisfying antisymmetry [x, y] = —[y, x]

and the Jacobi identity

[x, [y, 2]l + [z, [x, Yl + [y, [z, x]] =0, Vx,y,ze€ V. (2.3)

A pre-Lie structure determines a Lie algebra by setting
[x,y] i =x<y—y<x. 24

The pre-Lie identity ensures that the Jacobi identity is satisfied. A detailed survey of occurrences of pre-Lie algebras
in geometry, physics, and the theory of formal languages can be found in [4].
One can obtain a group structure from a pre-Lie algebra structure (see [2] and [16]) by considering formal series

1 1
Wi(x) =x+§x<1x+6(x<1x)<1x+--~
with the multiplication operation

W(x) » W(y) = W(C(x, y)),

where C(x, y) is the Baker—Campbell-Hausdorff formula

1 1
Cx,y)=x+y+ E[x, yl+ E([& Lo, yIT+ [y, [y, x1D + - -

396 M. Marcolli, A. Port

2.5 Lie Algebras of Context-Free Grammars of Directed Acyclic Graphs

Consider the case of a context-free Insertion Graph Grammar G as in Definitions 2.1 and 2.2, where the start graph
G is a single vertex and all the graphs G are directed acyclic with a marked (root) source vertex. The production
rules are of the form P (v, v, G3), where v; is the root vertex of G and v is a vertex of the graph G, to which the
rule is applied. The resulting graph

Gi <y G2 = P(v,v2,G2)(G1) = G Uy=y, G2

obtained by applying the production rule to G is also a directed acyclic graph with root vertex the root vy of G.
Let V be the vector space spanned by the set JVg all the graphs obtained by repeated application of production
rules, starting with Gg. The set Wg is different from the graph language Lg, as it also contains graphs whose
vertices and edges are labelled by non-terminal symbols.
We then define the insertion operator<: V. ® V — V as

Gi<Ga= D, P,n,G)Gn= > Gi<G. (2.5)
veV(Gy) veV(Gr)

Proposition 2.7 Given a context-free Insertion Graph Grammar G as above, the insertion operator (2.5) defines a
pre-Lie structure on the vector space V.

Proof We need to check that (2.2) is satisfied. We have
(G1<1Gy)<aGy = Z Z (G1 < G2) <y G3
veV(Gy) v eV(Gi<,Gy)

where v and v’ are glued, respectively, to the root source vertices v, and vs of G, and G3. The choice of v’ can be
subdivided into the two cases where v’ is a vertex of G, or v’ is a vertex of G, including the case v’ = v. Thus, we
have

(Gi<G)<Gy= D, D> (Gi<wG)awGs+ D, (Gi<yGa)<yGs.
veV(Gy) veV(Gy) v,v'eV(Gy)
Similarly, we have
Gi<(G2<Gy)= D > Gi<y(GrayGy),
veV(G1) VeV (Gr)
where v is glued to is the base vertex vy of G» <,y G3, which is the same as the base vertex of G;. Thus, we obtain
(G1<G2) <G3—-G1<(G2<G3) = D, GiUymy, G2 Uy, G3
v,v'eV(Gy)
and similarly
(G1<9G3) Gy =G <(G32G) = D GiUymy G3 Uy, Go.,
v,v'eV(Gy)
which proves (2.2). |

We then obtain the associated Lie algebra.

Corollary 2.8 Let G be a context-free Insertion Graph Grammar of rooted directed acyclic graphs, with start graph
Gs = {v} and production rules P (v, va, G2), with v the source of Gy. Then there is an associated Lie algebra
Lieg given by the vector space V spanned by the graphs of Wg with the Lie bracket [G1, G2] = G1<G2 — G2 <G.

Remark 2.9 A variant of the above construction that makes it (very mildly) context sensitive is obtained by requiring
that the marked source vertex of the graph G» in a production rule P (v, vz, G2) is glued to a sink vertex of the graph
G, to which the rule is applied. The argument is exactly as before, and one obtains a pre-Lie insertion operator and
a Lie algebra. We will generalize this context-sensitive version to more general gluing data in Propositions 2.10
and 2.11 below.

Graph Grammars, Insertion Lie Algebras... 397

2.6 Some Lie Algebras of Context-Sensitive Grammars of Directed Graphs

We now consider a variant of the case of Proposition 2.7 where we consider an example of context-sensitive graph
grammars. We still assume, as above, that G is an Insertion Graph Grammar G as in Definition 2.1, with start graph
G s a single vertex, and where all the graphs G € Wy are directed. We no longer require that they are acyclic, hence
graphs will generally have oriented loops. An oriented loop y in a graph G is an attractor if all the edges in Eg(y)
(defined as in (2.1)) are incoming, that is, d(e) N V(y) = t(e). It is a repeller if all edges in Eg(y) are outgoing,
d(e) NV (y) = s(e). In general, there will be also oriented loops that are neither attractors not repellers. We modify
the previous context-free construction by considering, in addition to the production rules that glue a vertex of one
graph to a source vertex of another, also context-sensitive production rules that glue an attractor loop of the first
graph to a repeller loop of the second,

G1<y Gy := P(y, y2,G2)(G1) = G Uy=y, Go, (2.6)

where the two graphs are glued by identifying the two oriented loops y and y» (which necessarily have to have the
same number of edges). The insertion operator is then defined as

Gi1<Gy = E Gi<, Gy = E P(y,y2, G2)(GY). (2.7)
yCGy yCGy
y attractor loop y attractor loop
Y=y2 Y=Y2

Proposition 2.10 Given a context-sensitive Insertion Graph Grammar G as above, the insertion operator (2.5)
defines a pre-Lie structure on the vector space V spanned by the graphs in Wg.

Proof The composition G| < (G2 < G3) is given by

G1<(G2<G3)= > > Gi<y (G2, G3)
yCG1 y'CG2

while the composition (G| < G) < G3 is

(G1<Gy)aGs= D, > (Gi<y, Gy)ay G
yCl't y'CGi1<y Gy

In the last sum, the choice of ¥’ C G <, G2 can be broken down into the case where y' C Gy, the case where
y’ C Ga~\vy, and the case where it intersects both, ' N G # @ and ¥’ N Ga~\y # @. In fact, because of our
assumptions on the production rules, only the first two possibilities can occur, and the first one can occur only with
vy’ Ny = . To see this, suppose y’ intersects both sets. Then it must intersect y, since y’ is connected and y is
the frontier between G| and G,. Under our assumptions, y’ is an attractor loop for G <y G2, hence all edges in
EG 4,6, (y’) must be incoming to y’. On the other hand, y is an attractor loop for G and a repeller loop for G,
so inside G| <1, G2, there are vertices of y that have both incoming and outgoing edges in E¢, 4, G, (). Consider
a vertex v in the intersection y’ N y. Either y’ and y have an adjacent edge in common, or they cross each other
transversely at v. If they are transverse, then the incoming and outgoing edges of y at v show that 3’ cannot be an
attractor loop for G| <, G». If y and y’ have at least one edge adjacent to v in common, then that edge is either
incoming or outgoing at v. If it is incoming, then the next edge of y is outgoing and that suffices to show y’ is not
an attractive loop. If it is outgoing, then one can argue the same way with the next vertex. Thus, we can rewrite the
sum above as

(G1<9Gy)aGs= D > (Gi<,G)ayGi+ >, > (G, Gy) <y G

yCI't y'CcGi~\y yCI't y'cGa~y

Notice that, in the sum describing G < (G2 < G3) we also have ¥’ Ny = @ because y’' C G» <, G3 isnot a
repelling loop so it cannot intersect the repelling loop y» that is glued to y. We then obtain

398 M. Marcolli, A. Port

(G1G2)2G3 = G1(G22Gy) = Z G1Uy=y, G2 Uy, G3
y.y'CGi
.,y attractor loops

and similarly

(G1<9G3)<Gr, —G1<(G3<Gr) = Z G1 U=y G3 Uyey, Ga,
v.y'CGi
.y’ attractor loops

which proves (2.2). |

We obtain an associated Lie algebra Lieg, as in Corollary 2.8. This construction can be further generalized to
other context-sensitive grammars, in the following way. Assume again that G is an Insertion Graph Grammar G
as in Definition 2.1, with start graph G a single vertex, and where all the graphs are oriented. In addition to the
production rules that glue a vertex of one graph to a source vertex of another, as in Proposition 2.7, we also allow
for context-sensitive production rules of the form P(Gr, H, Gr) where H is a connected, oriented graph with no
sources or sinks. Moreover, we require that all the edges in E¢, (H) are incoming to H and all the edges in Eg, (H)
are outgoing from H. We define the insertion operator by setting

Gi1<6,,0H G2 :=P(G, H,G2)(G1) =G Uy G2 (2.8)

to be the gluing of G| and G, along H, whenever G contains a pair of subgraphs isomorphic to H C G, with
the orientation requirements as specified above. We then have

G1<Gy:= > P(GL, H,G)(G), (2.9)
GLCGl

where the sum is over all the production rules and over all the possible ways of identifying G with a subgraph
of G1. The result is zero if G| does not contain any subgraph isomorphic to G. We then have the following
straightforward generalization of Proposition 2.10.

Proposition 2.11 Given a context-sensitive Insertion Graph Grammar G as above, the insertion operator (2.9)
defines a pre-Lie structure on the vector space V spanned by the graphs in Wg.

Proof The argument follows along the same lines as the previous cases. Observe that, since H is a directed graphs
with neither sinks nor sources, at every vertex v € V (H) there are at least one incoming and one outgoing edge in
E(H). We then argue exactly as in Proposition 2.10. In the composition

(G1<G2) <Gz = Z Z (G196,.1 G2) <G, n G3.
HCGLCT1 H'CGCGi<g, nG2

if the subgraph H' C G| <, .z G2 has nontrivial intersection with both G| and G2~ H, then it must intersect
H. Then the conditions on the orientations imply that H' cannot have only incoming edges in EGiag, nG,(H N,
which contradicts the orientation requirements for H’'. So the only compositions that give non-trivial terms are the
ones where H' is fully contained in either G (in fact G{~ H) or in G~ H. We then write the composition above
by separating out the sums for these two cases, and the rest of the argument follows exactly as in the previous
proposition. O

2.7 Lie Algebras and Gluing Along Half-Edges

We now consider Insertion Graph Grammars G as in Definition 2.3 and we consider the case where the left-hand-side
of the production rules are corollas C(v), though we do not require that they are all of the same valence, so that we
include grammars that are (mildly) context-sensitive. Graphs are not necessarily oriented, but we assume that they

Graph Grammars, Insertion Lie Algebras... 399

have a base vertex. For a graph G and a vertex v € V(G) we write E.; (G, v) C E.x;(G) for the subset of external
edges of G that are attached to the vertex v. The condition on external edges in Definition 2.3 corresponds in this
case to the requirement that the number of external edges E.y;(G2, v2) attached to the base vertex v is at least
equal to the valence of C(v). These external edges of G, are identified by the production rule with the half-edges
of the corolla C(v) C G, where G is the graph the production is applied to. The argument is then exactly as in
Proposition 2.7. The base vertex of a production P(C (v), C(v2), G2)(G1) is the base vertex vy of Gj.

Proposition 2.12 Let G be an Insertion Graph Grammars G as in Definition 2.3, where all the production rules are
of the form P(C(v), C(v2), G2) with val(C(v)) = val(C(v2)) and E¢,;(C(v)) C E¢x: (G2, v2). Assume the start
graph Gs of G is also a corolla C (v). The insertion operator

Gi<Gy= D> P(CWL.Cw).GNGN= > Gi<cw G (2.10)
veV(Gy) veV(Gr)
val(v)=val(C(v3)) val(v)=val(C(v2))

defines a pre-Lie structure on the vector space V generated by the graphs in Wg.

Proof We have

G1<(G2<G3) = > > G1 <cw) (G2 <) G3)
vCV(G1) v'CV(Ga)
val(V) <#Eex1 (G290 () G3.02) val(v') <#E,;(G3,v3)
(G129G2)<G3 = Z Z (G1 <cw) G2) <cw) G-
vCV(Gy) U/CV(G1<1sz)

VaAl)=#Eext (G2,02) val(0) <#Eexs (G3,v3)

In the first sum E.y; (G2 <cy G3, v2) is Eqx; (G2, v2) since the base vertex vy of G2 <¢c(yy G3 is the base vertex
of G,. We then separate out the last sum of the second expression into the cases where v’ € V(G) or v’ € V(G»).
We obtain, as in the previous cases,

(G1<1G2)<G3 —G1<(G2aG3) = Z G1Ucw) G2Ucwy G3 =(G1<1G3) <Gy — G < (G3 < Gy).
v,v'eV(Gy)
o

Again we obtain an associated Lie algebra Lieg. One can also similarly extend the case of gluing along oriented
loops, by assigning orientations to the attached half-edges, with incoming/outgoing requirements as in Proposition
2.10, or in the case of gluing along more general graphs H with orientation requirements as in Proposition 2.11,
reformulated in terms of half-edges. These analogs of Propositions 2.10 and 2.11 are completely straightforward and
are proved by essentially the same argument, so we will not state them explicitly here. Within this setting, however,
one cannot further extend the construction to more general context-sensitive cases, beyond what we have seen in
Proposition 2.11, because the cases where the gluing data graph H' intersects both G| and Go~H in G| <y G;
creates terms that do not cancel in the difference (G| <G2) <Gz — G1 < (G < G3) and that are not symmetric with
respect to exchanging G, and G3. To see more precisely where the difficulty lies, we can write out the expression
above, as before, in the form

(G19G2)<G3~G1a(G2aG3) = > (GiUy G)Up G3— > GiUpy (G2 Up Ga).
HCG, HCG;

H'CG <Gy H'CG,
We can separate out, in the first sum, the cases where H’ is completely contained in G| or completely contained in
G», and where it intersects both graphs. The latter case, in general, cannot be decomposed further, because it is not
necessarily true that, if a certain graph H’ is the gluing data of a production rule, subgraphs G; N H and G, N H'
would also occur in production rules. Thus, the term involving subgraphs H’ intersecting both G and G, does not
cancel in the difference between (G| < G3) < G3 and G| < (G < G3) and at the same time is not symmetric with
respect to interchanging G, and G3, hence one would not obtain a pre-Lie insertion operator.

400 M. Marcolli, A. Port

We conclude this section by discussing a special example, which we will return to in our application to Feynman
graphs. We denote by G, the graph consisting of a single edge e, identified with the union of two half-edges
e = {f, f'} glued together by an involution Z(f) = f.

Definition 2.13 Let G be an Insertion Graph Grammars G as in Definition 2.3, with start graph G and with
production rules:

() P(Gs., {f, f'} C Fgg. Ge), where the single edge graph G, is glued onto a pair { f, f'} of external half-edges
of Gg,

(2) P(Gs,{f} C Fggs, Gs Uy G.), where the copy of Gy in the right-hand-side of the production is glued to
the one on the left-hand-side by matching the remaining external half-edge of G, to the half-edge f to form a
graph Gs U.— (s, sy G5 consisting of two copies of G s glued together along an edge.

Proposition 2.14 Let G be an Insertion Graph Grammar as in Definition 2.13 above. Then the insertion operator

G1<1G2:ZP(G5,}"GS,G2)(G1) (2.11)

defines a pre-Lie structure on the vector space V spanned by the graphs in Wg.

Proof 1Tt suffices to notice that, by the form of the production rules, in the composition (G| < G») < G3 the gluing
of G3 to G1 < G happens along some of the external half-edges of G| < G». The previous gluing of G, to G1, in
turn, glues some external half-edges of G, to some external half-edges of G;. Thus, the remaining half-edges of
G1 < G are either in G;\H or in Go~\ H, where H is the set of half-edges along which the gluing of G, to G4
happened (which are no longer external edges in G| < G2). This suffices then to get the pre-Lie condition, exactly
as in the cases discussed previously. O

Applying (2.11) with P a production rule of the first type listed in Definition 2.13 corresponds to the operation
of gluing together a pair of external edges of Gg to form a single edge. This operation can easily be modified to
include the possibility of valence two vertices, as is customary in quantum field theory, by redefining the graph G,
in the production rule, so that it consists of a valence two vertex with two half-edges, which are matched to the half
edges {f, f'}. Applying (2.11) with P a production rule of the second type listed in Definition 2.13, on the other
hand, results in two copies of the same graph G glued along a pair of external edges. We return to discuss more
explicitly these two operations in §3 below, where we will see that this provides a different way of constructing
of Lie algebras of Feynman graphs. The Lie algebras obtained in this way are not equivalent to the insertion Lie
algebra of [6,9]. More notably, we will show that the set of Feynman graphs of a given quantum field theory is a
graph language in the sense of the theory of formal languages.

2.8 Lie Algebras of Insertion-Elimination Graph Grammars

We now consider the case of insertion-elimination graph grammars, as in Definitions 2.5 and 2.6.
Let G be an insertion-elimination graph grammar as in Definition 2.6. We assume the following hypotheses:

(1) In all the production rules P(G, H, Gg) the graph G, is connected and we have H C Fg,, a set of flags
(half-edges), with H = E.;(GR).

(2) All the graphs in W are oriented and in all production rules the half-edges in H are incoming to both G, and
Gg.

Proposition 2.15 Ler G be an insertion-elimination graph grammar satisfying the two conditions above. Then the
insertion operator

Gi<Gy= Y P(G, H, G)(G)) (2.12)
GCGy

is a pre-Lie operator.

Graph Grammars, Insertion Lie Algebras... 401

Proof With the notation G| <G,y G2 = P(G, H, G2)(G1), we have
G1<(G2<G3) = D Gi<6.1 (Gr<g.u G3),
G,G’

with G C Gy and H C Fg,, H = E¢x (G2 <g g G3), and with G' C Gy, H C Fc, and H' = E.t(G3).
Since all the external edges of G3 are glued to flags of G, in the identification along H' = E,y;(G3), we have
H = E. 1 (G2 <g' 1’ G3) = E¢x(G2). When composing in the opposite order, we have

(G1<G2) <Gz = D (Gi <. G2) <g'.n G3,
G,G’

with G C G, H C -7:G1, H = E,;(G>), and with G C G <G,H Go, H' C ‘/TGI<|G,HG2’ H = E.;(G3). If the
graph G’ intersects nontrivially both G|~ (G~ H) and G, then by connectedness H' N H # , but the orientation
conditions on the edges of H and of H' are incompatible, so G’ must be contained in either G|\ G or in G,. We
then obtain

(G1<G2)<G3 = G1<(G2<G3) = Z (GIN((GNH) U(G'\H"))) Uy G2 Upr G3

G,G'cG,
GNG'=f

which is symmetric in exchanging G, and G3. O

We obtain an associated Lie algebra Lieg.
2.8.1 Grading

The Connes—Kreimer Hopf algebra of Feynman graphs and the corresponding insertion Lie algebra are naturally
graded, either by loop number (if one does not include valence two vertices) or by number of internal edges. The
key property that makes such numbering a good grading is the additivity

g =gy)+gT/y),

of the grading function, over decompositions into a subgraph y C I' and the quotient graph I'/y. In terms of
insertions, this corresponds to the additivity

g(G1oy G2) = g(Gy) + g(G2)

over insertions of one graph into another at a vertex. These additivity relations can be seen as a special case of
inclusion-exclusion relations

g(G1 oy G2) = g(G1) + g(G2) — g(v),

where the function satisfies g(v) = 0, as is the case for loop number or number of internal edges. In the case of
Lie algebras obtained from graph grammars, one can similarly consider a Z_ -valued function on the set of graphs
belonging to the graph language, satisfying the inclusion-exclusion property

8(G1Un G2) = g(G1) +8(G2) — g(H).

In the case of an Insertion Graph Grammar, this would assign

8(P(GL, H,G2)(G1)) = g(G1 Un G2) = g(G1) +8(G2) — g(H),

and for an Insertion-Elimination Graph Grammar, it would assign

8(P(GL, H,G2)(G1) = g(Gi~(GL~H)) Uy G2) = g(G1) + g(G2) — g(GL).

For such a function g to define a grading, it suffices that it vanishes on all the graphs H (respectively G) that
appear in the (finitely many) production rules of the graph language. A possible way to approach the question of
the existence of a grading is then to reformulate it as the question of the existence of such functions.

402 M. Marcolli, A. Port

The enveloping algebra of a pre-Lie algebra can be constructed explicitly, using the construction of [20]. In the
graded connected case, this also gives a dual commutative Hopf algebra. For example, the Connes—Kreimer Hopf
algebra of Feynman graphs and the insertion Lie algebra are related to one another in this way. In the cases of
pre-Lie algebras obtained from Graph Grammars, one can similarly construct the enveloping algebra, as in [20].
However, notice that in cases where a grading is obtained as described above, via an inclusion-exclusion function
that vanishes on the graphs H (or G) of the production rules, the connected property would not be satisfied, since
all these graphs would be in the degree zero component, which would then be of dimension greater than one.

A related question is whether other well-known pre-Lie algebras of graphs have a Graph Grammar interpretation,
such as the pre-Lie algebra of rooted trees with grafting, or the pre-Lie algebras of [17]. We do not investigate this
further in this paper, but we expect that interesting pre-Lie algebras related to rooted trees may arise from the class
of Tree Adjoining Grammars, whose production rules include grafting operations, [1].

2.9 The Insertion Lie Algebra of Quantum Field Theory and Primitive Graphs

In the previous sections we have shown that one can associate to certain classes of graph grammars an insertion Lie
algebra, that behaves very similarly to the insertion Lie algebra of Quantum Field Theory of [6,9]. It is then natural
to ask whether the insertion Lie algebra of Quantum Field Theory is itself obtained from a Graph Grammar via the
same procedure discussed above. This is not the case, because it would violate the property that graph grammars
have a finite number of production rules. In fact, the Lie algebra of Feynman graphs is generated by the primitive
elements of the Hopf algebra. We would like to obtain all 1PI Feynman graphs of the theory from a graph grammar
that has a single start graph G s and a finite number of production rules P(Gr, H, Gg), in such a way that the Lie
bracket [G1, G»] of the Lie algebra of quantum field theory would agree with the Lie bracket defined by the graph
grammar,

[G1.G2l= D>, P(GL. H.G2)(G)—~ D, P(GL. H.G1)(Go).
G LC G 1 G LC G2

For this to be the case, we see that we would need a production rule for each insertion of a primitive graph G of
the Hopf algebra of the theory into a vertex with valence equal to the number of external edges of G. Since there
are infinitely many primitive graphs, this would violate the requirement that the graph grammar has only finitely
many production rules. We will see in §3 that, despite this negative result, the Feynman graphs of a given quantum
field theory are a graph language, obtained from a graph grammar with finitely many production rules. These graph
grammars in turn define Lie algebras, by the procedure discussed in the previous sections, which are in general not
equivalent to the insertion Lie algebra of [6,9].

3 Feynman Diagrams as Graph Languages

Motivated by the insertion Lie algebra of quantum field theory, [6,9], we have shown in the previous section that,
under certain conditions on the production rules, one can associate Lie algebras to Graph Grammars. In this section,
we return to the motivating example of Feynman graphs and we show that the Feynman graphs of certain quantum
field theories are examples of graph languages. Our generative description of Feynman graphs in terms of graph
grammars can be seen as “reading in reverse” the procedure described in [3, 14], that generates all Feynman graphs
starting with the vacuum bubbles (no external edges) and progressively cutting internal edges into pairs of external
half-edges.

3.1 The ¢* Graph Language

We first analyze the example of the ¢*-theory. This is the scalar quantum field theory with (Euclidean) Lagrangian
density

Graph Grammars, Insertion Lie Algebras... 403

> (X = OO

PARSaN
/>©<\OQ</@
%\@/ koo
\O O/

Fig. 1 Generative grammar for Feynman graphs: ¢*-theory

_loza 20 1, 4
L(§) = 5(0¢)" + 5m* ¢* + 126", 3.1)

The Feynman graphs of this theory have all vertices of valence four. More precisely, we should also include valence
two vertices that correspond to the mass and kinetic terms, but we will not mark them explicitly in the diagrams.

Proposition 3.1 The Feynman graphs of the ¢*-theory are the elements of the graph language Lg generated by a
graph grammar G as in Definition 2.13 and Proposition 2.14, with start graph G s given by a 4-valent corolla, and
two production rules: one of the form P(Gs, {f, f'} C Fay, Ge), which glues together two external edges of G s
and one of the form P(Gg, {f} C Fgg, Gs Uy Ge), which glues together two copies of G s along an edge. At each
stage in the application of one of the production rules, the external edges of the resulting graph are marked either
with a terminal or with a non-terminal symbol.

Proof Whenever the external edges of a graph in W are marked by non-terminal symbols one can continue to
apply production rules to them, while if all the external edges are marked by terminals the resulting graph is in Lg.
Thus, a graph is in Lg if either it has no more external edges, in which case it is a vacuum bubble of the ¢*-theory,
or if all the external edges are marked by terminals, in which case, it can be identified with the result of cutting a
number of edges of a vacuum bubble into half edges. This produces all Feynman graphs of the ¢* theory, [14]. O

The production procedure is illustrated in Fig. 1. The graph in the upper left-hand corner is G s for this theory.
Single arrows indicate the first type of production gluing external edges to make a loop. Double arrows indicate
the second type of production joining base graphs along an edge to make a new graph with no loops. the graphs
with no external edges are represented on the right, while the graphs with as many external edges as possible are
on the left. Note that the latter type of graphs are trees. It is clear that for this theory, any allowed Feynman graph
can be transformed into a tree such as the ones above. Consider the graphs on one internal vertex. They all can be
constructed by gluing the edges of the base graph G g, via repeated application of the production rule represented
by the single arrows. A similar statement can be made of the graphs on two internal vertices, except that, after
cutting all edges into pairs of half edges, one is now left with a disjoint union of two copies of the base graph G.
In general, any (connected) ¢* graph with k valence four vertices can be constructed by gluing together pairs of
half-edges, starting from k copies of G g, hence by repeated applications of the two types of production rules.

404 M. Marcolli, A. Port

Example 3.2 To see that the Lie algebra constructed in this way is not the same as the usual insertion Lie algebra
of quantum field theory, consider the ¢* graphs

6= X 4-X 40X

In the usual insertion Lie algebra of quantum field theory, the graph G3 appears in the bracket [G1, G2] as the
insertion of G at the vertex of G,, while in the Lie algebra associated to the Graph Grammar of Proposition 1, the
graph G3 does not appear in the bracket [G1, G7] since, as one can see from Fig. 1, the graph G3 is not obtained
from G and G, by application of a production rule of the grammar.

3.2 Graph Grammar for ¢*-Theories

The case discussed above of the ¢*-theory can easily be generalized to the case of (Euclidean) Lagrangian densities
1 1

L@) =509+ 5m* ¢* + P(9) (3.2)

where the interaction term is a single monomial P(¢) = %X k.

Proposition 3.3 The Feynman graphs of the ¢*-theory are the elements of the graph language Lg generated by
a graph grammar G as in Proposition 2.14, with start graph G g given by a k-valent corolla, and two production
rules: one of the form P(Gs, {f, f'} C Fgs, Ge), which glues together two external edges of Gs and one of the
form P(Gs,{f} C Fgg, Gs Uy Ge), which glues together two copies of Gs along an edge. At each stage in
the application of one of the production rules, the external edges of the resulting graph are marked either with a
terminal or with a non-terminal symbol.

Proof Let G be a connected graph of the o theory. Thus, all vertices v € V(G) have valence val(v) = k. We
neglect for the moment the possible presence of valence 2 vertices associated to the kinetic and mass terms in £(¢).
Consider all possible ways of cutting internal edges, so that they are replaced by a pair of external half-edges, that
leave the graph connected. The number of possible such cuts is the degree of edge-connectedness of the graph.
Stop when no further such cuts remain. If we denote the resulting graph by G’, then it is clear that G is obtained
from G’ by repeatedly applying the first production rule. Every connected graph has a decomposition into a tree
with insertions at the vertices of 1PI graphs (one particle irreducible, also known as 2-edge-connected) that have
a number of external edges equal to the valence of the tree vertex. By repeatedly cutting non-disconnecting edges,
and using this decomposition, it is clear that the resulting graph G’ is a tree. Since all the vertices of G have valence
val(v) = k, the tree can be constructed by repeated application of the second production rule. O

Remark 3.4 One can consider also the presence of valence two vertices, with each gluing of a copy of G, in the
production rules involving a valence two vertex inserted in the middle of an edge connecting two valence k vertices,
and the argument remains essentially the same. The difference between valence two vertices coming from the kinetic
and the mass terms can be taken care of by using two different terminal symbols labeling the vertices.

3.3 Graph Grammars for Arbitrary Scalar Field Theories

We then consider the case of a scalar field theory with Lagrangian density (3.2) where the interaction term is a
polynomial

A
P) = " (3.3)

k>3

Graph Grammars, Insertion Lie Algebras... 405

Proposition 3.5 The Feynman graphs of a scalar field theory with interaction polynomian P(¢) as in (3.3) of
degree N are the elements of the graph language Lg generated by a graph grammar G as in Proposition 2.14, with
start graph G g given by a k-valent corolla, where k is the smallest term in (3.3) with Ay # 0 and three production
rules:

(1) The first kind of production rules is of the form P(Gs, {f, f'} C Fgg. Ge), which glues together two external
edges of Gg.

(2) The second kind of production rule P(Gs, G., Gs, r) glues a copy of G, to the start graph G by identifying
one half edge of G, with one of the half-edges of G s and leaving the other half edge f as a new external edge,
thus creating a corolla of valence k + 1. If Axy1 # O the vertex of the resulting graph G, ¢ can be labeled by
either a terminal or a nonterminal symbol, if A1 = 0 it is labeled by a nonterminal symbol. Production rules
P(Gs.fi,...f,» Ges Gs 1,..., 1,) can be further applied to previously produced corollas G, 1, ..., f, with vertex
labeled by nonterminals, untilval(Gs 7. f,) = N — 1. in this case the vertex in the resulting Gs 1.y, y can
only be labelled by a terminal.

(3) The third kind of production rules P(Gys ... 1. {fi} C Fcs.Gs f,...f, Ufl:f} GS,f{,..v,fX’)’ which glues
together along an edge two corollas Ggs ¢, ..., and G S fl v f! produced by the previous type of production
rules.

,,,,,

At each stage in the application of one of the production rules, the external edges of the resulting graph are marked
either with a terminal or with a non-terminal symbol.

Proof The argument is similar to the previous case: one starts from an arbitrary connected Feynman graph G of
the theory and performs the maximal number of cuts of internal edges into pairs of external half-edges that leaves
the graph connected. The only difference in the argument is that the resulting graph G’ is now a tree with vertices
of valences ranging among the values 3 < k < N for which A; # 0 in (3.3). These are then obtained by repeated
application of the production rules of the second and third type that produce corollas of the right valences and glue
them together along edges to form the tree G'. O

Figure 2 illustrates the generative grammar of Proposition 3.5 for the scalar field theory with
1

Aa Pt
7 4P

1 1 1
L(¢) = 5<a¢>2 + Emz ¢+ o ¢+

3.4 Graph Grammar for the ¢ A-Theory

This theory has two different propagators for the fields ¢ and A, which one represents by drawing straight edges
for the ¢-propagator and wavy edges for the A-propagator. The cubic interaction terms implies that the Feynman
graphs have vertices of valence 3 with two straight and one wavy external half-edges. The Feynman graphs of
this theory were analyzed in [14], with ¢ representing fermions and A the photon. Note that in this theory edges
representing photons are always internal, unlike what happens in quantum electrodynamics, where photons can be
external, [3].

Proposition 3.6 The Feynman graphs of the ¢ A-theory are the elements of the graph language Lg generated
by a graph grammar G as in Proposition 2.14. The start graph Gs has two trivalent vertices, one internal wavy
edge connecting them, and four external straight half-edges. There are two kinds of production rules: one of the
form P(Gs, {f, f'} C Fagg. Ge), which glues together two external edges of G s and one of the form P(Gs, {f} C
Fag, Gs Uypr Ge), which glues together two copies of G s along an external edge. At each stage in the application
of one of the production rules, the external edges of the resulting graph are marked either with a terminal or with
a non-terminal symbol.

Proof The graph grammar @ is illustrated in Fig. 3. Notice that, if photon edges were allowed to be external, then
the argument would be the same as in the ¢>-theory, except that the labeling of the edges as bosonic or fermionic

406 M. Marcolli, A. Port

\@

Fig. 2 Generative grammar for P(¢) = L3 o+ ﬁM ot

must be taken into account when inserting the base graph in the tree. The fact that we require bosonic edges to be
internal means that these edges cannot be cut in the process that leads from G to G’. Snce all vertices in G have
valence 3 with two fermion and one boson line, after all the internal fermion lines are cut, one still obtains a tree
G’, which we now view as being formed out of repeated application of the second production rule applied to the
start graph. O

The properties of external and internal edges of the ¢ A-theory discussed in [14] are reflected here in the fact
that, in the production rules, it is only possible to join base graphs along fermion edges. The fact that photon edges
are only internal is taken into account by the choice of the start graph having two vertices instead of one, with one
internal bosonic edge.

3.5 A General Procedure

We can summarize all the cases discussed above, for the different theories, in a common general procedure, as

follows.

e Fix n € Z*. This is the number of distinct conditions.

e Fix t € Z*. This is the number of edge types. Let v € {0, 1} where v(i) is 0 if type i edges cannot be external
and 1 otherwise.

e Foreachk € {1,...,n}:

— Let Cy € M; 2(Z) where Ci(i, 1) =i foralli € {1, ..., 1t} (the edge type) and with Ci (7, 2) the number of
edges of type i allowed by this condition at each vertex.

Graph Grammars, Insertion Lie Algebras... 407

Ar o6
RO ORION®

N
3

Fig. 3 Generative grammar for the ¢> A-theory

— Let G be the star graph with edges determined by Cy.

Let G be a connected graph that satisfies the conditions of v and each of the Cy.

There is a sequence of production rules that glue edges of finitely many copies of the graphs G to make G.
Any G that satisfies these conditions can be constructed from these initial graphs using the production rules.

In order to have a single start graph one needs to add further production rules that derive higher valence star
graphs Gy from lower valence ones, marking the vertex with a terminal label when the process should stop.

Example 3.7 Tna ¢ A theory,n = 1,7 = 2, v = (1,0) and C; = (; f)

Example 3.8 In a theory where P(¢) = 51¢° + 2¢*, n =2t = Lv=(1),C; =(13)and C; = (1 4).

Acknowledgments The first author is supported by NSF Grants DMS-1007207, DMS-1201512, PHY-1205440. The second author
was supported by a Summer Undergraduate Research Fellowship at Caltech.

408 M. Marcolli, A. Port

References

1. Abeille, A., Rambow, O.: Tree adjoining grammars, center for the study of language and information (2001)
2. Agrachev, A., Gamkrelidze, R.: Chronological algebras and nonstationary vector fields. J. Sov. Math. 17(1), 1650-1675 (1981)
3. Bachmann, M., Kleinert, H., Pelster, A.: Recursive graphical construction for Feynman diagrams of quantum electrodynam-
ics. Phys.Rev. D 61, 085017 (2000)
4. Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4(3), 323-357 (2006)
5. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure
of graphs and the main theorem. Commun. Math. Phys. 210(1), 249-273 (2000)
6. Connes, A., Kreimer, D.: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri
Poincaré 3(3), 411-433 (2002)
7. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Colloquium Publications, Vol. 55. American
Mathematical Society, Providence, RI (2008)
8. Delaney, C., Marcolli, M.: Dyson—Schwinger equations in the theory of computation. arXiv:1302.5040, to appear in “Periods and
Motives”, Clay Math Institute and AMS
9. Ebrahimi-Fard, K., Gracia-Bondia, J.M., Patras, F.: A Lie theoretic approach to renormalization. Commun. Math. Phys 276(2), 519-
549 (2007)
10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, New York (2010)
11. Ehrig, H., Kreowski, H.J., Rozenberg, G.: Graph-grammars and their application to computer science. Lecture Notes in Computer
Science, Vol. 532, Springer, New York (1990)
12. Foissy, L.: Lie algebras associated to systems of Dyson-Schwinger equations. Adv. Math. 226(6), 4702—4730 (2011)
13. Itzykson, C., Zuber, J.B.: Quantum Field Theory. Dover Publications, New York (2012)
14. Kleinert, H., Pelster, A., Kastening, B., Bachmann, M.: Recursive graphical construction of Feynman diagrams and their multi-
plicities in ¢* and in ¢> A theory. Phys. Rev. E 62, 1537-1559 (2000)
15. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2(2), 303-334 (1998)
16. Manchon, D.: A short survey on pre-Lie algebras, In: Noncommutative geometry and physics: renormalisation, motives, index
theory, pp. 89—-102, ESI Lect. Math. Phys., Eur. Math. Soc. (2011)
17. Manchon, D., Saidi, A.: Lois pré-Lie en interaction. Commun. Algebra 39(10), 3662-3680 (2011)
18. Manin, Y.L.: Infinities in quantum field theory and in classical computing: renormalization program. In: Programs, proofs, processes,
pp- 307-316. Lecture Notes in Computer Science, Vol. 6158, Springer, New York (2010)
19. Nagl, M.: Graph-Grammatiken: Theorie, Implementirung, Anwendung. Vieweg, Braunschweig (1979)
20. Oudom, J.M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K Theory 2(1), 147-167 (2008)
21. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. Volume 1: Foundations. World Scien-
tific, Singapore (1997)
22. Rozenberg, G.: An introduction to the NLC way of rewriting graphs, In: Graph-grammars and their application to computer science,
pp- 55-66. Lecture Notes in Computer Science, Vol. 532, Springer, New York (1990)

http://arxiv.org/abs/1302.5040

	Graph Grammars, Insertion Lie Algebras, and Quantum Field Theory
	Abstract
	1 Introduction
	1.1 The Insertion Lie Algebra of Quantum Field Theory

	2 Graph Grammars and Lie algebras
	2.1 Two Descriptions of Graphs
	2.1.1 Version 1
	2.1.2 Version 2

	2.2 Insertion Graph Grammars
	2.2.1 Context-Free Graph Grammars
	2.2.2 Insertion Graph Grammars and Flags

	2.3 Insertion-Elimination Graph Grammars
	2.4 Pre-Lie Structures
	2.5 Lie Algebras of Context-Free Grammars of Directed Acyclic Graphs
	2.6 Some Lie Algebras of Context-Sensitive Grammars of Directed Graphs
	2.7 Lie Algebras and Gluing Along Half-Edges
	2.8 Lie Algebras of Insertion-Elimination Graph Grammars
	2.8.1 Grading

	2.9 The Insertion Lie Algebra of Quantum Field Theory and Primitive Graphs

	3 Feynman Diagrams as Graph Languages
	3.1 The φ4 Graph Language
	3.2 Graph Grammar for φk-Theories
	3.3 Graph Grammars for Arbitrary Scalar Field Theories
	3.4 Graph Grammar for the φ2 A-Theory
	3.5 A General Procedure

	Acknowledgments
	References

