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Question: Language and Machines

• Natural Language Processing has made enormous progress in
problems like automated translation

• but can we use computational (mathematical) techniques to
better understand how the human brain processes language?

• some of the main questions:

Language acquisition (poverty of the stimulus): how does the
learning brain converge to one grammar?

How is language (in particular syntax) stored in the brain?

How do languages change and evolve in time? quantitative,
predictive modeling?

• Plan: approach these questions from a mathematical perspective,
using tools from geometry and theoretical physics
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Language at different scales

units of sound (phonology)

words (morphology)

sentences (syntax)

global meaning (semantics)

Physics requires different mathematical models at different scales
(relativity/cosmology, classical physics, quantum physics, string theory,...)

Expect different mathematical models of Linguistics at different scales

• focus on the “large scale structure” of language: syntax
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Syntax and Syntactic Parameters

• one of the key ideas of modern Generative Linguistics:
Principles and Parameters (Chomsky, 1981)

principles: general rules of grammar

parameters: binary variables (on/off switches) that distinguish
languages in terms of syntactic structures

• this idea is very appealing for a mathematician: at the level of
syntax a language can be described by a set of coordinates given
by binary variables

• however, surprisingly no mathematical model of Principles and
Parameters formulation of Linguistics has been developed so far
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What are the binary variables?

• Example of parameter: head-directionality
(head-initial versus head-final)
English is head-initial, Japanese is head-final

VP= verb phrase, TP= tense phrase, DP= determiner phrase

• Other examples of parameters:

Subject-side

Pro-drop

Null-subject
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Main Problems

• there is no complete classification of syntactic parameters

• there are hundreds of such binary syntactic variables, but not all
of them are “true” syntactic parameters (conflations of
deep/surface structure)

• Interdependencies between different syntactic parameters are
poorly understood: what is a good independent set of variables, a
good set of coordinates?

• syntactic parameters are dynamical: they change historically over
the course of language change and evolution

• collecting reliable data is hard! (there are thousands of world
languages and analyzing them at the level of syntax is much more
difficult for linguists than collecting lexical data; few ancient
languages have enough written texts)
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Databases of syntactic structures of world languages

1 Syntactic Structures of World Languages (SSWL)
http://sswl.railsplayground.net/

2 TerraLing http://www.terraling.com/

3 World Atlas of Language Structures (WALS)
http://wals.info/

4 another set of data from Longobardi–Guardiano, Lingua 119
(2009) 1679-1706

5 more complete set of data announced by Longobardi, not yet
available

• First Step: data analysis of syntax of world languages with
various mathematical tools (persistent topology, etc.)

• we used the most extensive database currently available: SSWL
with 116 “variables” (syntactic “parameters”) and 253 world
languages (but... some problems with SSWL)
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Problems of SSWL data

Very non-uniformly mapped across the languages of the
database: some are 100% mapped, while for some only very
few of the 116 parameters are mapped

Linguists criticize the choice of binary variable (not all of
them should count as “true” parameters)

• the data of Longobardi–Guardiano are more reliable, but only 28
languages (almost all of them Indo-European) and 63 parameters

• linguistic question: can languages that are far away in terms of
historical linguistics end up being close in terms of syntactic
parameters?

• Guideline: given what is available at present, use SSWL data,
but keeping limitations in mind
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Phylogenetic Algebraic Geometry of Languages

• Linguistics has studied in depth how languages change over time
(Philology, Historical Linguistics)

• Usually via lexical and morphological analysis

• Goal: understand the historical relatedness of different
languages, subdivisions into families and sub-families, phylogenetic
trees of language families

• Historical Linguistics techniques work best for language families
where enough ancient languages are known (Indo-European and
very few other families)

• Can one reconstruct phylogenetic trees computationally using
only information on the modern languages?

• controversial results about the Indo-European tree based on
lexical data: Swadesh lists of lexical items compared on the
existence of cognate words (many problems: synonyms, loan
words, false positives)
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• Some phylogenetic tree reconstructions using syntactic
parameters by Longobardi–Guardiano using their parameter data

• Hamming distance between binary string of parameter values +
neighborhood joining method
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Expect problems: SSWL data and phylogenetic reconstructions

known problems related to the use of Hamming metric for
phylogenetic reconstruction

SSWL problems mentioned above
(especially non-uniform mapping)

dependence among parameters
(not independent random variables)

syntactic proximity of some unrelated languages

• Phylogeny Programs for trees and networks

PHYLIP

Splittree 4

Network 5
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Checking on the Indo-European tree where good Historical-Linguistics
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Indeed Problems

misplacement of languages within the correct family subtree

placement of languages in the wrong subfamily tree

proximity of languages from unrelated families (all SSWL)

incorrect position of the ancient languages

• different approach: subdivide into subfamilies (some a priori
knowledge from morpholexical linguistic data) and use
Phylogenetic Algebraic Geometry (Sturmfels et al.) for
statistical inference of phylogenetic reconstruction
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General Idea of Phylogenetic Algebraic Geometry

• Markov process on a binary rooted tree (Jukes-Cantor model)

• probability distribution at the root (π, 1− π)
(frequency of 0/1 for parameters at root vertex) and transition
matrices along edges Me bistochastic

• observed distribution at the n leaves polynomial function

Φ : C4n−5 → C2n , Φ(π,Me) = pi1,...,in

defines an algebraic variety

VT = Φ(C4n−5) ⊂ C2n

• (Allman–Rhodes theorem) ideal IT defining VT generated by all
3× 3 minors of all edge flattenings of tensor P = (pi1,...,in):
2r × 2n−r -matrix Flate,T (P)

Flate,T (P)(u, v) = P(u1, . . . , ur , v1, . . . , vn−r )

where edge e removal separates boundary distribution into 2r

variable and 2n−r variables
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Procedure

set of languages L = {`1, . . . , `n} (selected subfamily)

set of SSWL syntactic parameters mapped for all: πi ,
i = 1, . . . ,N

gives vectors πi = (πi (`j)) ∈ Fn
2

compute frequencies

P = {pi1,...,in =
Ni1,...,in

N
}

with Ni1,...,in = number of occurrences of binary string
(i1, . . . , in) ∈ Fn

2 among the {πi}Ni=1

Given a candidate tree T , compute all 3× 3 minors of each
flattening matrix Flate,T (P), for each edge

evaluate φT (P) minimum absolute value of these minors

smallest φT (P) selects best among candidate trees
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Simple examples

• PHYLIP and Splittree 4 misplace the position of Portuguese
among the Latin languages, but phylogenetic invariants identify
the correct tree (`1 = French, `2 = Italian, `3 = Latin, `4 = Spanish,
`5 = Portuguese)
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• PHYLIP and Splittree 4 misplace the relative position of
sub-branches of the Germanic languages, but phylogenetic
invariants identify the correct tree (similar computation)

with correct subdivision into North Germanic and West Germanic
sub-branches

Conclusion: work with smaller subfamilies, then paste together
subtrees; use PHYLIP to generate candidate subtrees and
phylogenetic algebraic geometry to select among them
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Persistent Topology of Syntax

• Alexander Port, Iulia Gheorghita, Daniel Guth, John M.Clark, Crystal

Liang, Shival Dasu, Matilde Marcolli, Persistent Topology of Syntax,

arXiv:1507.05134

Persistent Topology of Data Sets

how data cluster around topological shapes at different scales
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Vietoris–Rips complexes

• set X = {xα} of points in Euclidean space EN , distance
d(x , y) = ‖x − y‖ = (

∑N
j=1(xj − yj)

2)1/2

• Vietoris-Rips complex R(X , ε) of scale ε over field K:

Rn(X , ε) is K-vector space spanned by all unordered (n + 1)-tuples
of points {xα0 , xα1 , . . . , xαn} in X where all pairs have distances
d(xαi , xαj ) ≤ ε

(image by Jeff Erickson)
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• inclusion maps R(X , ε1) ↪→ R(X , ε2) for ε1 < ε2 induce maps in
homology by functoriality Hn(X , ε1)→ Hn(X , ε2)

(image by forty.to)

barcode diagrams: births and deaths of persistent generators

Matilde Marcolli and Doris Tsao Geometric Models for Linguistics



Persistent Topology of Syntactic Parameters

• Data: 253 languages from SSWL with 116 parameters

• if consider all world languages together too much noise in the
persistent topology: subdivide by language families

• Principal Component Analysis: reduce dimensionality of data

• Compute Vietoris–Rips complex and barcode diagrams

Persistent H0: clustering of data in components
– language subfamilies

Persistent H1: clustering of data along closed curves (circles)
– linguistic meaning?
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Persistent Topology of Indo-European Languages

• Two persistent generators of H0 (Indo-Iranian, European)
• One persistent generator of H1
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Persistent Topology of Niger–Congo Languages

• Three persistent components of H0

(Mande, Atlantic-Congo, Kordofanian)
• No persistent H1
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What is the Indo-European H1?

• naive guess: is it the Anglo-Norman bridge?
(but... lexical not syntactic!)

• No, definitely not the Anglo-Norman bridge!

Persistent topology of the Germanic+Latin languages

Matilde Marcolli and Doris Tsao Geometric Models for Linguistics



Answer: It’s all because of Ancient Greek!

Persistent topology with Hellenic (and Indo-Iranic) branch removed

• it is related to influences (at the syntactic level) of the Hellenic
branch on some Slavic languages (consistent with independent

observations in new data by Longobardi, not analyzed yet topologically)
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So, what does topology tell us?

• it captures known historical-linguistics phenomena (clustering of
syntactic structures by language families and sub-families)

• it is sensitive to more subtle phenomena, which are not seen in
“phylogenetic trees” of languages: influences across different
language sub-families (H1 persistent generators)

• it can provide additional useful information on understanding
how language (at the syntactic level) evolves

Matilde Marcolli and Doris Tsao Geometric Models for Linguistics



Syntactic Parameters in Kanerva Networks

• Jeong Joon Park, Ronnel Boettcher, Andrew Zhao, Alex Mun, Kevin

Yuh, Vibhor Kumar, Matilde Marcolli, Prevalence and recoverability of

syntactic parameters in sparse distributed memories, arXiv:1510.06342

– Address two issues: relative prevalence of different syntactic
parameters and “degree of recoverability” (as sign of underlying
relations between parameters)
– If corrupt information about one parameter in data of group of
languages can recover it from the data of the other parameters?
– Answer: different parameters have different degrees of
recoverability
– Used 21 parameters and 165 languages from SSWL database

• Towards a possible model of how syntax is stored in the brain
(Kanerva networks as models of associative memory)
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Kanerva networks (sparse distributed memories)
• P. Kanerva, Sparse Distributed Memory, MIT Press, 1988.

• field F2 = {0, 1}, vector space FN
2 large N

• uniform random sample of 2k hard locations with 2k << 2N

• median Hamming distance between hard locations

• Hamming spheres of radius slightly larger than median value
(access sphere)

• writing to network: storing datum X ∈ FN
2 , each hard location in

access sphere of X gets i-th coordinate (initialized at zero)
incremented depending on i-th entry ot X

• reading at a location: i-th entry determined by majority rule of
i-th entries of all stored data in hard locations within access sphere

Kanerva networks are good at reconstructing corrupted data

Matilde Marcolli and Doris Tsao Geometric Models for Linguistics



Procedure

• 165 data points (languages) stored in a Kanerva Network in F21
2

(choice of 21 parameters)

• corrupting one parameter at a time: analyze recoverability

• language bit-string with a single corrupted bit used as read
location and resulting bit string compared to original bit-string
(Hamming distance)

• resulting average Hamming distance used as score of
recoverability (lowest = most easily recoverable parameter)
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Parameters and frequencies
01 Subject-Verb (0.64957267)

02 Verb-Subject (0.31623933)

03 Verb-Object (0.61538464)

04 Object-Verb (0.32478634)

05 Subject-Verb-Object (0.56837606)

06 Subject-Object-Verb (0.30769232)

07 Verb-Subject-Object (0.1923077)

08 Verb-Object-Subject (0.15811966)

09 Object-Subject-Verb (0.12393162)

10 Object-Verb-Subject (0.10683761)

11 Adposition-Noun-Phrase (0.58974361)

12 Noun-Phrase-Adposition (0.2905983)

13 Adjective-Noun (0.41025642)

14 Noun-Adjective (0.52564102)

15 Numeral-Noun (0.48290598)

16 Noun-Numeral (0.38034189)

17 Demonstrative-Noun (0.47435898)

18 Noun-Demonstrative (0.38461539)

19 Possessor-Noun (0.38034189)

20 Noun-Possessor (0.49145299)

A01 Attributive-Adjective-Agreement (0.46581197)
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Specific effects due to individual parameter
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Overall effect related to relative prevalence of a parameter
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More refined effect after normalizing for prelavence (syntactic
dependencies)

What does this tell us? some SSWL syntactic variables have a
much higher degree of recoverability than others: consider them
dependent variables; does this reflect how syntax is in fact stored
in the human brain?

Matilde Marcolli and Doris Tsao Geometric Models for Linguistics



Spin Glass Models of Language Evolution

• Karthik Siva, Jim Tao, Matilde Marcolli, Spin Glass Models of Syntax

and Language Evolution, arXiv:1508.00504

• syntactic parameters are dynamical: change over time, effects of
interaction between languages (Ancient Greek switched SOV to SVO

from Homeric to Classical; Sanskrit also switched by influence of

Dravidian languages; also Old English to Middle English)

• physicist viewpoint: binary variables (up/down spins) that flip by
effect of interactions: Spin Glass Model

• graph: vertices = languages, edges = language interaction
(strength proportional to bilingual population)

• over each vertex a set of spin variables (syntactic parameters)

• if all syntactic parameters independent: uncoupled Ising models
(low temperature: converge to more prevalent up/down state in
initial configuration; high temperature fluctuations around zero
magnetization state)
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Example: Single parameter dynamics Subject-Verb parameter

Initial configuration: most languages in SSWL have +1 for
Subject-Verb; use interaction energies from MediaLab data
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Equilibrium: low temperature all aligned to +1; high temperature:

Temperature: fluctuations in bilingual users between different
structures (“code-switching” in Linguistics)
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Entailment relations among parameters

• relations recorded in the Longobardi-Guardiano data: cases where
one state of a parameter can make another parameter undefined

• Example: {p1, p2} = {Strong Deixis, Strong Anaphoricity}

p1 p2
`1 +1 +1

`2 −1 0

`3 +1 +1

`4 +1 −1

{`1, `2, `3, `4} = {English,Welsh,Russian,Bulgarian}
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Modeling Entailment

• variables: S`,p1 = exp(πiX`,p1) ∈ {±1}, S`,p2 ∈ {±1, 0} and
Y`,p2 = |S`,p2 | ∈ {0, 1}

• Hamiltonian H = HE + HV

HE = Hp1 + Hp2 = −
∑

`,`′∈languages
J``′

(
δS`,p1 ,S`′,p1

+ δS`,p2 ,S`′,p2

)

HV =
∑
`

HV ,` =
∑
`

J` δX`,p1
,Y`,p2

J` > 0 anti-ferromagnetic

• two parameters: temperature as before and coupling energy of
entailment

• if freeze p1 and evolution for p2: Potts model with external
magnetic field
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Acceptance probabilities Metropolis–Hastings dynamics (some
binary some ternary variables)

πA(s → s ± 1 (mod 3)) =

{
1 if ∆H ≤ 0
exp(−β∆H) if ∆H > 0.

∆H := min{H(s + 1 (mod 3)),H(s − 1 (mod 3))} − H(s)

Equilibrium configuration

(p1, p2) HT/HE HT/LE LT/HE LT/LE

`1 (+1, 0) (+1,−1) (+1,+1) (+1,−1)

`2 (+1,−1) (−1,−1) (+1,+1) (+1,−1)

`3 (−1, 0) (−1,+1) (+1,+1) (−1, 0)

`4 (+1,+1) (−1,−1) (+1,+1) (−1, 0)
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Average value of spin

p1 left and p2 right in low entailment energy case
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• when consider more realistic models (28 languages and 63
parameters of Longobardi–Guardiano with all the entailment
relations) very slow convergence of the Metropolis–Hastings
dynamics even for low temperature

• how to get better information on the dynamics? consider set of
languages as codes and an induced dynamics in the space of code
parameters
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Coding Theory to study how syntactic structures differ across the
landscape of human languages

• Kevin Shu, Matilde Marcolli, Syntactic Structures and Code
Parameters, arXiv:1610.00311

• Matilde Marcolli, Syntactic Parameters and a Coding Theory

Perspective on Entropy and Complexity of Language Families, Entropy

2016, 18(4), 110

select a group of languages L = {`1, . . . , `N}
with the binary strings of n syntactic parameters form a code
C(L) ⊂ Fn

2

compute code parameters (R(C), δ(C)) code rate and relative
minimum distance

analyze position of (R, δ) in space of code parameters

get information about “syntactic complexity” of L
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code parameters C ⊂ Fn
2

• transmission rate (encoding)

R(C) =
k

n
, k = log2(#C) = log2(N)

for q-ary codes in Fn
q take k = logq(N)

• relative minimum distance (decoding)

δ(C) =
d

n
, d = min

`1 6=`2
dH(`1, `2)

Hamming distance of binary strings of `1 and `2

• error correcting codes: optimize for maximal R and δ but
constraints that make them inversely correlated

• bounds in the space of code parameters (R, δ)
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Bounds on code parameters

• Gilbert-Varshamov curve (q-ary codes)

R = 1−Hq(δ), Hq(δ) = δ logq(q−1)−δ logq δ−(1−δ) logq(1−δ)

q-ary Shannon entropy: asymptotic behavior of volumes of
Hamming balls for large n

• The Gilbert-Varshamov curve represents the typical behavior of
large random codes (Shannon Random Code Ensemble)

• Plotkin curve R = 1− δ/q: asymptotically codes below Plotkin
curve R ≤ 1− δ/q
• more significant asymptotic bound (Manin) between
Gilbert-Varshamov and Plotkin curve

1− Hq(δ) ≤ αq(δ) ≤ 1− δ/q

separates a region with dense code points with infinite
multipliciites (below) and one with isolated code points with finite
multiplicity (good codes above): difficult to find examples
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• asymptotic bound not explicitly computable (related to
Kolmogorov complexity of codes, Manin–Marcolli)

• difficult to construct codes above the asymptotic bound:
examples from algebro-geometric codes from curves (but only for
q ≥ 49 otherwise entirely below the GV curve)

• look at the distribution of code parameters for small sets of
languages (pairs or triples) and SSWL data
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• in lower region of code parameter space a superposition of two
Thomae functions (f (x) = 1/q for x = p/q coprime, zero on
irrationals)

and behaves like the case of random codes with fixed k = log2(N)
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• more interesting what happens in the upper regions of the code
parameter space

• take larger sets of randomly selected languages and syntactic
parameters in the SSWL database

codes better than algebro-geometric above GV, asymptotic, and Plotkin
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• Spin Glass Model dynamics for a set of languages L induces
dynamics on codes C(L) and on code parameters (R, δ)

• without entailment (independent parameters) fixed R and δ flows
towards zero (spoiling code)

• with entailment parameters dynamics can improve code making
δ larger (R fixed)

• in some cases can see better the dynamics on code parameter
than with average magnetization of spin glass model
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Further Related Work

• Algebro-Geometric Models of Computational Semantics

Yuri Manin, Matilde Marcolli, Semantic Spaces,
arXiv:1605.04238, to appear in Mathematics in Computer
Science

• Generative Grammars and Renormalization

Matilde Marcolli, Alexander Port, Graph Grammars, Insertion
Lie Algebras, and Quantum Field Theory, arXiv:1502.07796,
Math. Comput. Sci. 9 (2015), no. 4, 391–408

Colleen Delaney, Matilde Marcolli, Dyson-Schwinger equations
in the theory of computation, arXiv:1302.5040, in “Feynman
amplitudes, periods and motives”, pp.79–107, Contemp.
Math., 648, Amer. Math. Soc., 2015

Matilde Marcolli, Linguistic Merge and Dyson–Schwinger
equations in Renormalization, in preparation
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Conclusions (for now)

• import a set of different mathematical techniques (phylogenetic
algebraic geometry, persistent topology, coding theory, statistical
mechanics, geometric models of associative memory) in order to
study natural languages as dynamical objects

• longer term goals: create mathematical and computational
models of

1 how languages are acquired?

2 how languages are stored in the brain?

3 how languages change and evolve dynamically in time?

for human languages viewed at the level of their syntactic
structures
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