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Motivation N.1: Nontrivial Homology

Kathryn Hess’ applied topology group at EPFL: topological
analysis of neocortical microcircuitry (Blue Brain Project)

formation of large number of high dimensional cliques of
neurons (complete graphs on N vertices with a directed
structure) accompanying response to stimuli
formation of these structures is responsible for an increasing
amount of nontrivial Betti numbers and Euler characteristics,
which reaches a peak of topological complexity and then fades
proposed functional interpretation: this peak of non-trivial
homology is necessary for the processing of stimuli in the
brain cortex... but why?
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Motivation N.2: Computational Role of Nontrivial Homology

mathematical theory of concurrent and distributed computing
(Fajstrup, Gaucher, Goubault, Herlihy, Rajsbaum, ...)

initial, final states of processes vertices, d + 1 mutually
compatible initial/final process states d-simplex

distributed algorithms: simplicial sets and simplicial maps

certain distributed algorithms require “enough non-trivial
homology” to successfully complete their tasks
(Herlihy–Rajsbaum)

this suggests: functional role of non-trivial homology to carry
out some concurrent/distributed computation
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Motivation N.3: Neural Codes and Homotopy Types

Carina Curto and collaborators: geometry of stimulus space
can be reconstructed up to homotopy from binary structure of
the neural code

overlaps between place fields of neurons and the associated
simplicial complex of the open covering has the same
homotopy type as the stimulus space

this suggests: the neural code represents the stimulus space
through homotopy types, hence homotopy theory is a natural
mathematical setting
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Motivation N.4: Informational and Metabolic Constraints

neural codes: rate codes (firing rate of a neuron), spike timing
codes (timing of spikes), neural coding capacity for given
firing rate, output entropy

metabolic efficiency of a transmission channel ratio
ε = I (X ,Y )/E of the mutual information of output and input
X and energy cost E per unit of time

optimization of information transmission in terms of
connection weights maximizing mutual information I (X ,Y )

requirement for homotopy theoretic modelling: need to
incorporate constraints on resources and information
(mathematical theory of resources: Tobias Fritz and
collaborators, categorical setting for a theory of resources and
constraints)
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Motivation N.5: Informational Complexity

measures of informational complexity of a neural system have
been proposed, such as integrated information: over all
splittings X = A∪B of a system and compute minimal mutual
information across the two subsystems, over all such splittings

controversial proposal (Tononi) of integrated information as
measure of consciousness (but simple mathematical systems
from error correcting codes with very high integrated
information!)

some better mathematical description of organization of
neural system over subsystems from which integrated
information follows?
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Main Idea for a homotopy theoretic modeling of neural information
networks

Want a space (topological) that describes all consistent ways
of assigning to a population of neurons with a network of
synaptic connections a concurrent/distributed computational
architecture (“consistent” means with respect to all possible
subsystems)
Want this space to also keep track of constraints on resources
and information and conversion of resources and transmission
of information (and information loss) across all subsystems
Want this description to also keep track of homotopy types
(have homotopy invariants, associated homotopy groups):
topological robustness
Why use category theory as mathematical language? because
especially suitable to express “consistency over subsystems”
and ”constraints over resources”
also categorical language is a main tool in homotopy theory
(mathematical theory of concurrent/distributed computing
already knows this!)
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Categories of Resources

mathematical theory of resources

B. Coecke, T. Fritz, R.W. Spekkens, A mathematical theory of
resources, Information and Computation 250 (2016), 59–86.
[arXiv:1409.5531]

Resources modelled by a symmetric monoidal category
(R, ◦,⊗, I)
objects A ∈ Obj(R) represent resources, product A⊗ B
represents combination of resources, unit object I empty
resource

morphisms f : A→ B in MorR(A,B) represent possible
conversions of resource A into resource B

convertibility of resources when MorR(A,B) 6= ∅
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Measuring semigroups of categories of resources (Coecke, Fritz,
Spekkens)

preordered abelian semigroup (R,+,�, 0) on set R of
isomorphism classes of Obj(R) with A + B the class of A⊗ B
with unit 0 given by the unit object I and with A � B iff
MorR(A,B) 6= ∅
(same for category C with sum and zero object)

maximal conversion rate ρA→B of resources

ρA→B := sup{m
n
| n · A � m · B, m, n ∈ N}

number of copies of resource A are needed on average to
produce B

measuring semigroup: abelian semigroup with partial ordering
and semigroup homomorphism M : (R,+)→ (S , ∗) with
M(A) ≥ M(B) in S when A � B in R

satisfy ρA→B ·M(B) ≤ M(A)
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Summing functors

C a category with sum and zero-object (binary codes,
transition systems, resources, etc)

(X , x0) a pointed finite set and P(X ) a category with objects
the pointed subsets A ⊆ X and morphisms the inclusions
j : A ⊆ A′

a functor ΦX : P(X )→ C summing functor if

ΦX (A ∪ A′) = ΦX (A)⊕ ΦX (A′) when A ∩ A′ = {x0}

and ΦX ({x0}) is zero-object of C
ΣC(X ) category of summing functors ΦX : P(X )→ C,
morphisms are invertible natural transformations

• Key idea: a summing functor is a consistent assignment of
resources of type C to all subsystems of X so that a combination
of independent subsystems corresponds to combined resources
• ΣC(X ) parameterizes all possible such assignments
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Segal’s Gamma Spaces

construction introduced in homotopy theory in the ’70s: a
general construction of (connective) spectra (generalized
homology theories)

a Gamma space is a functor Γ : F → ∆ from finite (pointed)
sets to (pointed) simplicial sets

a category C with sum and zero-object determines a Gamma
space ΓC : F → ∆

for a finite set X take category of summing functors ΣC(X )
and simplicial set given by nerve N (ΣC(X )) of this category
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Meaning in our setting

nerve N (ΣC(X )) of category of summing functors organizes
all assignments of C-resources to X -subsystems and their
transformations into a single topological structure that keeps
track of equivalence relations between them (invertible natural
transformations as morphisms of ΣC(X ) and their
compositions become simplexes of the nerve)

view N (ΣC(X )) as a topological parameterizing space for all
such consistent assignments of resources of type C to subsets
of X

all connective spectra are obtained through this construction
for C a symmetric monoidal category (Thomason)

hence nerves N (ΣC(X )) are topologically very nontrivial
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From finite sets to networks: directed graphs

category 2 has two objects V ,E and two morphisms
s, t ∈ Mor(E ,V )

F category of finite sets: objects finite sets, morphisms
functions between finite sets

a directed graph is a functor G : 2→ F
G (E ) is the set of edges of the directed graph
G (V ) is the set of vertices of the directed graph
G (s) : G (E )→ G (V ) and G (t) : G (E )→ G (V ) are the usual
source and target maps of the directed graph

category of directed graphs Func(2,F) objects are functors
and morphisms are natural transformations
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Systems organized according to networks

instead of finite set X want a directed graph (network) and its
subsystems

directed graph as functor G : 2→ F and functorial
assignment X 7→ ΣC(X )

ΣC(EG ) summing functors ΦE : P(EG )→ C for sets of edges
and ΣC(VG ) summing functors ΦV : P(VG )→ C for sets of
vertices

source and target maps s, t : EG → VG transform summing
functors ΦE ∈ ΣC(EG ) to summing functors in ΣC(VG )

Φs
VG

(A) := ΦEG
(s−1(A)) Φt

VG
(A) := ΦEG

(t−1(A))

assigns to a set of vertices C-resources of in/out edges

categorical statement: source and target maps s, t : EG → VG

determine functors between categories ΣC(EG ) and ΣC(VG ) of
summing functors, hence map between their nerves
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Conservation laws at vertices

source and target functors s, t : ΣC(EG ) ⇒ ΣC(VG )

equalizer category ΣC(G ) with functor ι : ΣC(G )→ ΣC(EG )
such that s ◦ ι = t ◦ ι with universal property

ΣC(G )
ι // ΣC(EG ) s //

t
// ΣC(VG )

A

∃u

OO
q

99

this is category of summing functors ΦE : P(EG )→ C with
conservation law at vertives: for all A ∈ P(VG )

ΦE (s−1(A)) = ΦE (t−1(A))

in particular for all v ∈ VG have inflow of C-resources equal
outflow

⊕e:s(e)=vΦE (e) = ⊕e:t(e)=vΦE (e)

another kind of conservation law expressed by coequalizer
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Gamma spaces for networks

EC : Func(2,F)→ ∆ with EC(G ) = N (ΣC(G )) nerve of
equalizer of s, t : ΣC(EG ) ⇒ ΣC(VG ) (equalizer of nerves)

more general types of Gamma networks besides equalizers
Σeq
C (G ) (and coequalizers)

for G ∈ Func(2,F) take category P(G ) with objects (pointed)
subgraphs G ′∗ of G∗ and morphisms (pointed) inclusions
ι : G ′∗ ↪→ G ′′∗
category ΣC(G ) of summing functors ΦG : P(G )→ C
now value of functor ΦG ∈ ΣC(G ) on a subnetwork G ′ ⊂ G
not just sum of values on edges in the subnetwork
possible more complicated dependence on network structure
(beyond conservation at vertices): general inclusion-exclusion
type properties

focus on equalizer case for simplicity
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neural codes

T > 0 time interval of observation, subdivided into some
basic units of time, ∆t

code length n = T/∆t: number of basic time intervals
considered

number of nontrivial code words: neurons oberved

each code word: firing pattern of that neuron, digit 1 for each
time intervals ∆t that contained a spike and 0 otherwise

zero-word baseline of no activity (for comparison)

a neural code for N neurons is a sum C1 ∨ · · · ∨ CN with
Ci = {c0, c} with zero-word c0 and firing pattern c of i-th
neuron
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Category of weighted codes

category of weighted binary codes WCodesn,∗

objects pairs (C , ω) of a code C of length n containing
zero-word c0 and function ω : C → R assigning (signed)
weight to each code word, with ω(c0) = 0

morphisms φ = (f , λ) : (C , ω)→ (C ′, ω′) with f : C → C ′

mapping the zero-word to itself and f (supp(ω)) ⊂ supp(ω′)
and weights λc ′(c) for c ∈ f −1(c ′)

sum (C , ω)⊕ (C ′, ω′) = (C ∨ C ′, ω ∨ ω′) with ω ∨ ω′|C = ω
and ω ∨ ω′|C ′ = ω′

zero object ({c0}, 0)
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Equalizer: linear model

a summing functor Φ in the equalizer of source and target
functors

Σeq
WCodesn,∗

(G ) := eq(s, t : ΣWCodesn,∗(EG ) ⇒ ΣWCodesn,∗(VG ))

is a summing functor Φ ∈ ΣWCodesn,∗(EG ) with conservation
laws Φ(s−1(A)) = Φ(t−1(A)) for A ⊂ VG

If directed graph G has a single outgoing edge at each vertex,
{e ∈ EG | s(e) = v} = {out(v)}, then equalizer condition

(Cout(v), ωout(v)) = ⊕t(e)=v (Ce , ωe),

can be seen as a kind of categorical version of linear neuron
model
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Discrete and continuous Hopfield dynamics

discrete version (binary neurons)

νj(n + 1) =

{
1 if

∑
k Tjkνk(n) + ηj > 0

0 otherwise

continuous version (neuron firing rates as variables and
threshold-linear dynamics)

dxj
dt

= −xj +

(∑
k

Wjkxj + θj

)
+

Wjk real-valued connection strengths, θj constant external
inputs, and (·)+ = max{0, ·} threshold function

finite difference version

xj(t + ∆t)− xj(t)

∆t
= −xj + (

∑
k

Wjkxk(t) + θj)+

(versions with or without “leak term” −xj on r.h.s.)
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Categorical Hopfield dynamics: Step 1

as above Σeq
C (G ) for a network G and category of resources C

ρ : C → R functor to another category of resources (maybe
same) with respect to which dynamics is measured

(R,+,�) preordered semigroup of category R
will use relation rC � 0 for class of ρ(C ) for
threshold-dynamics

E(C) = Func(C, C) category of monoidal endofunctors of C,
morphisms natural transformations

sum of endofunctors defined pointwise
(F ⊕ F ′)(C ) = F (C )⊕ F ′(C ) for all C ∈ Obj(C).
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Categorical Hopfield dynamics: Step 2

bisumming functors T : P(E )× P(E )→ E(C) summing in
both arguments

coordinates: Tee′ with TA,B = ⊕e∈A,e′∈BTee′

Σ
(2)
E(C)(E ) category of bisumming functors with invertible

natural transformations

Σ
(2)
E(C)(G ) equalizer of functors

s, t : Σ
(2)
E(C)(E ) ⇒ Σ

(2)
E(C)(V )
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Categorical Hopfield dynamics: Step 3

initial condition Φ0 ∈ Σeq
C (G ): set XA(0) := Φ0(A)

(or just Xe(0) := Φ0(e))

fixed summing functor Ψ ∈ Σeq
C (G ): set Θe = Ψ(e)

take Ye(n) := ⊕e′∈ETee′(Xe′(n))⊕Θe

rYe(n) the class in (R,+,�) of the object ρ(Ye(n)) in R
threshold (·)+: (Ye(n))+ = ⊕e′∈ETee′(Xe′(n))⊕Θe if
rYe(n) � 0 and zero-object of C otherwise

equation

Xe(n + 1) = Xe(n)⊕ (⊕e′∈ETee′(Xe′(n))⊕Θe)+

or variant Xe(n + 1) = (⊕e′∈ETee′(Xe′(n))⊕Θe)+ (leaking
term or not)
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Some properties of the dynamics

XA(n) =: Φn(A) defines a sequence of summing functors in
Σeq
C (G )

assignment T : Φn 7→ Φn+1 defined by solution defines
endofunctor T : Σeq

C (G )→ Σeq
C (G )

induced discrete topological dynamical system τ on realization
|N (Σeq

C (G ))| = BΣeq
C (G )

for C =WCodesn,∗ with a measuring semigroup, categorical
Hopfield dynamics induces usual (finite difference) Hopfield
dynamics on the weights

Question: general results in categorical setting about
existence of solutions and behavior?
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Category of concurrent/distributed computing architectures

category of transition systems

G. Winskel, M. Nielsen, Categories in concurrency, in
“Semantics and logics of computation (Cambridge, 1995)”,
pp. 299–354, Publ. Newton Inst., 14, Cambridge Univ. Press,
1997.

models of computation that involve parallel and distributed
processing

objects τ = (S , ι,L, T ) with S set of possible states of the
system, ι initial state, L set of labels, T set of possible
transitions, T ⊆ S × L× S (specified by initial state, label of
transition, final state)

directed graph with vertex set S and with set of labelled
directed edges T
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MorC(τ, τ ′) of transition systems pairs (σ, λ), function
σ : S → S ′ with σ(ι) = ι′ and (partially defined) function
λ : L → L′ of labeling sets such that, for any transition

sin
`→ sout in T , if λ(`) ∈ L′ is defined, then σ(sin)

λ(`)→ σ(sout)
is a transition in T ′

categorical sum

(S , ι,L, T )⊕(S ′, ι′,L′, T ′) = (S×{ι′}∪{ι}×S ′, (ι, ι′),L∪L′, T tT ′)

T t T ′ := {(sin, `, sout) ∈ T } ∪ {(s ′in, `′, s ′out) ∈ T ′}

where both sets are seen as subsets of

(S × {ι′} ∪ {ι} × S ′)× (L ∪ L′)× (S × {ι′} ∪ {ι} × S ′)

zero object is given by the stationary single state system
S = {ι} with empty labels and transitions
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Grafting

τi = (Si , ιi ,Li , Ti ) for i = 1, 2 objects in category C of
transition systems

a choice of two states s ∈ S1 and s ′ ∈ S2

grafting τs,s′ = (S , ι,L, T ) in C with S = S1 ∪ S2, ι = ι1,
L = L1 ∪ L2 ∪ {e} and T = T1 ∪ T2 ∪ {(s, e, s ′)}
C′ ⊂ C subcategory of transition systems τ with a single final
state q ∈ S

then grafting τ1 ? τ2 given by τq1,ι2 with final state of τ1

grafted to initial state of τ2

G finite acyclic directed graph and ω a topological ordering
vertex set VG then given {τv}v∈V objects of C′ there is a well
defined grafting τG ,ω of the τv that is also an object in C′
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Strongly connected components, condensation graph, and
computational architecture functor

finite directed graph G : subset V ′ ⊂ VG is a strongly
connected component if each vertex in V ′ reachable through
oriented path in G from any other

condensation graph Ḡ is a directed acyclic graph: obtained
from G by contracting each subgraph of a strongly connected
component to a single vertex

G := Func(2,F) category of finite directed graphs

∆G category with objects pairs (G ,Φ) with G ∈ Obj(G) and
Φ ∈ ΣC(VG ), morphisms (α, α∗) with α : G → G ′ and
α∗(Φ)(A) = Φ(α−1

V (A))

∆′G subcategory of ∆G with objects (G ,Φ) where summing
functor Φ takes values in C′

functor Ξ0 : ∆′G → C′ assigning to an object (G ,Φ) the
grafting τḠ ,ω̄ along the condensation graph Ḡ of the Φ(VGi

)
with Gi the strongly connected components of G
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Modeling computational architectures of neuronal networks

local automata model (discretized) individual neurons with
pre-synaptic and post-synaptic activity

grafting of these automata where their inputs and outputs are
connected model connectivity of the network

can adapt this setting to model non-local neuromodulation
effects (distributed computing models of neuromodulation:
Potjans–Morrison–Diesmann)
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Integrated Information (Tononi)

1 G. Tononi G (2008) Consciousness as integrated information:
A provisional manifesto, Biol. Bull. 215 (2008) N.3, 216–242.

2 M. Oizumi, N. Tsuchiya, S. Amari, Unified framework for
information integration based on information geometry,
PNAS, Vol. 113 (2016) N. 51, 14817–14822.

want to measure amount of informational complexity in a
system that is not separately reducible to its individual parts

possibilities of causal relatedness among different parts of the
system
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Computing integrated information

consider all possible ways of splitting a given system into
subsystems

the state of the system at a given time t is described by a set
of observables Xt and the state at a near-future time by Xt+1

partition λ into N subsystems ⇒ splitting of these variables
Xt = {Xt,1, . . . ,Xt,N} and Xt+1 = {Xt+1,1, . . . ,Xt+1,N} into
variables describing the subsystems

all causal relations among the Xt,i or among the Xt+1,i , also
causal influence of the Xt,i on the Xt+1,j through time
evolution captured (statistically) by joint probability
distribution P(Xt+1,Xt)

compare information content of this joint distribution with
distribution where only causal dependencies between Xt+1 and
Xt through evolution within separate subsystem not across
subsystems
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set Mλ of probability distributions Q(Xt+1,Xt) with property
that

Q(Xt+1,i |Xt) = Q(Xt+1,i |Xt,i )

for each subset i = 1, . . . ,N of the partition λ

minimize Kullback-Leibler divergence between actual system
and its best approximation in Mλ over choice of partition λ

integrated information

Φ = min
λ

min
Q∈Mλ

KL(P(Xt+1,Xt)||Q(Xt+1,Xt))

value Φ represents additional information in the whole system
not reducible to smaller parts
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Cohomological view of information (Bennequin, Badot, Vigneaux)

abelian category describing probability data: category IS of
finite information structures with random variables and
simplicial set of associated probabilities, with functor to vector
spaces: real valued measurable functions; resulting abelian
category of modules over a sheaf of algebras

Hochschild cochain complex and associated cohomology

Shannon entropy, KL divergence, Tsallis entropy: all have
interpretation as nontrivial 1-homology generators

Use this setting to construct:

contravariant functor I : Codesn,∗ → IS
using above construction functor from Σeq

Codesn,∗
(G ) to

cochain complexes and cohomology

using Hochschild cocycle interpretation of KL divergence
obtain cohomological interpretation for integrated
information, with functorial map from Σeq

Codesn,∗
(G )
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Further steps

neural codes generate homotopy types, in the form of the
nerve simplicial set of an open covering associated to a
(convex) code (Curto et al.)

recover that homotopy type from the above setting with
information structures

combine the simplicial sets obtained in this way with those
obtained via Gamma spaces describing assignments of
resources to network

simplicial sets K (G ) given by clique complex of network G
also realized as special case finite information structures
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Conclusion: proposed view

working hypothesis: the brain represents the stimulus space
through a homotopy type

mathematical modeling of network architectures in the brain
should include mechanisms that generates homotopy types
(Gamma spaces, information structures)

higher topological complexity in these homotopy types implies
(but is not implies by) higher values of (cohomological)
integrated information

Question: is there a good model of a “qualia” in terms of
homotopy types?
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