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General Question: Language and Machines

• Natural Language Processing has made enormous progress in
problems like automated translation

• but can we use computational (mathematical) techniques to
better understand how the human brain processes language?

• some of the main questions:

Language acquisition (poverty of the stimulus): how does the
learning brain converge to one grammar?

How is language (in particular syntax) stored in the brain?

How do languages change and evolve in time? quantitative,
predictive modeling?

• Plan: approach these questions from a mathematical perspective,
using tools from geometry and theoretical physics

• focus on the “large scale structure” of language: syntax
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Syntax and Syntactic Parameters

• one of the key ideas of modern Generative Linguistics:
Principles and Parameters (Chomsky, 1981)

principles: general rules of grammar

parameters: binary variables (on/off switches) that distinguish
languages in terms of syntactic structures

• this idea is very appealing for a mathematician: at the level of
syntax a language can be described by a set of coordinates given
by binary variables

• however, surprisingly no mathematical model of Principles and
Parameters formulation of Linguistics has been developed so far
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What are the binary variables?

• Example of parameter: head-directionality
(head-initial versus head-final)
English is head-initial, Japanese is head-final

VP= verb phrase, TP= tense phrase, DP= determiner phrase

• Other examples of parameters:

Subject-side

Pro-drop

Null-subject
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Main Problems

• there is no complete classification of syntactic parameters

• there are hundreds of such binary syntactic variables, but not all
of them are “true” syntactic parameters (conflations of
deep/surface structure)

• Interdependencies between different syntactic parameters are
poorly understood: what is a good independent set of variables, a
good set of coordinates?

• syntactic parameters are dynamical: they change historically over
the course of language change and evolution

• collecting reliable data is hard! (there are thousands of world
languages and analyzing them at the level of syntax is much more
difficult for linguists than collecting lexical data; few ancient
languages have enough written texts)
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Databases of syntactic structures of world languages

1 Syntactic Structures of World Languages (SSWL)
http://sswl.railsplayground.net/

2 TerraLing http://www.terraling.com/

3 World Atlas of Language Structures (WALS)
http://wals.info/

4 another set of data from Longobardi–Guardiano, Lingua 119
(2009) 1679-1706

5 more complete set of data by Giuseppe Longobardi, 2016

• Data Analysis of syntax of world languages with various
mathematical tools (persistent topology, etc.)

• Goal: quantitively detect dependence relations between syntactic
parameters

Matilde Marcolli Syntatic Parameters in Kanerva Networks



Expression frequencies of parameters among languages

• Example: Word Order: SOV, SVO, VSO, VOS, OVS, OSV

Very unevenly distributed across world languages
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• Word order distribution: a neuroscience explanation?

- D. Kemmerer, The cross-linguistic prevalence of SOV and SVO
word orders reflects the sequential and hierarchical representation
of action in Broca’s area, Language and Linguistics Compass, 6
(2012) N.1, 50–66.

• Internal reasons for diachronic switch?

- F.Antinucci, A.Duranti, L.Gebert, Relative clause structure,
relative clause perception, and the change from SOV to SVO,
Cognition, Vol.7 (1979) N.2 145–176.
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Kanerva networks (sparse distributed memories)
• P. Kanerva, Sparse Distributed Memory, MIT Press, 1988.

• field F2 = {0, 1}, vector space FN
2 large N

• uniform random sample of 2k hard locations with 2k << 2N

• median Hamming distance between hard locations

• Hamming spheres of radius slightly larger than median value
(access sphere)

• writing to network: storing datum X ∈ FN
2 , each hard location in

access sphere of X gets i-th coordinate (initialized at zero)
incremented depending on i-th entry ot X

• reading at a location: i-th entry determined by majority rule of
i-th entries of all stored data in hard locations within access sphere

Kanerva networks are good at reconstructing corrupted data
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Memory items in SDM: most items unrelated but most pairs linked
by few intermediaries

illustration from: Ján Kvak, Creating and Recognizing Visual Words

Using Sparse Distributed Memory
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writing at ξ stores a copy at each hard location within the access
sphere of ξ; reading at x retrieves content of all hard locations in
the access sphere of x and averages them by majority rule

illustration from Jim Marshall’s lecture notes on SDM
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proposed as a realistic computational model of how information is
stored and retrieved in human memory

illustration from Jim Marshall’s lecture notes on SDM
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Procedure

• 165 data points (languages) stored in a Kanerva Network in F21
2

(choice of 21 parameters that are accurately mapped for all of
these languages and for which one knows there are relations)

• corrupting one parameter at a time: analyze recoverability

• language bit-string with a single corrupted bit used as read
location and resulting bit string compared to original bit-string
(Hamming distance)

• resulting average Hamming distance used as score of
recoverability (lowest = most easily recoverable parameter)
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Parameters and frequencies (as classified in SSWL)
01 Subject-Verb (0.64957267)

02 Verb-Subject (0.31623933)

03 Verb-Object (0.61538464)

04 Object-Verb (0.32478634)

05 Subject-Verb-Object (0.56837606)

06 Subject-Object-Verb (0.30769232)

07 Verb-Subject-Object (0.1923077)

08 Verb-Object-Subject (0.15811966)

09 Object-Subject-Verb (0.12393162)

10 Object-Verb-Subject (0.10683761)

11 Adposition-Noun-Phrase (0.58974361)

12 Noun-Phrase-Adposition (0.2905983)

13 Adjective-Noun (0.41025642)

14 Noun-Adjective (0.52564102)

15 Numeral-Noun (0.48290598)

16 Noun-Numeral (0.38034189)

17 Demonstrative-Noun (0.47435898)

18 Noun-Demonstrative (0.38461539)

19 Possessor-Noun (0.38034189)

20 Noun-Possessor (0.49145299)

A01 Attributive-Adjective-Agreement (0.46581197)
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Recoverability in Kanerva Networks

Specific effects due to individual parameters
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Overall effect related to relative prevalence of a parameter
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More refined effect after normalizing for prelavence
(extracting effect of syntactic dependencies)
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• Overall effect relating recoverability in a Kanerva Network to
prevalence of a certain parameter among languages (depends only
on frequencies: see in random data with assigned frequencies)

• Additional effects (that deviate from random case) which detect
possible dependencies among syntactic parameters: increased
recoverability beyond what effect based on frequency

• Possible neuroscience implications? Kanerva Networks as models
of human memory (parameter prevalence linked to neuroscience
models)

• More refined data if divided by language families?

. . . WORK IN PROGRESS
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