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1. Introduction

Starting with the seminal paper of J. Tits on the geometric construction of the analogues over any
field of all complex simple Lie groups (cf. [18]), the a priori vague idea that a suitable analogue of the
geometry over the finite fields Fq should make sense in the limit case “q = 1” has been taking more
and more substance and has given rise to a number of different approaches (cf. [9–12,15,16,19]). So
far, the relation between these constructions and the Riemann zeta function has remained elusive, in
spite of the hope of being able to consider the tensor product Z ⊗F1 Z as a nontrivial analogue of the
product of a curve by itself (see [12]).

It is known that the quantum statistical mechanical system of [1] (which we refer to as the BC-
system) gives, after passing to the dual system, a spectral realization of the zeros of the Riemann
zeta function, as well as a trace formula interpretation of the Riemann–Weil explicit formulas (see
[1,2,4,5,13]).

The main result of the present paper is that the BC-system and the associated algebraic endo-
motive as defined in [4] appear from first principles, by studying the algebraic extensions of F1 and
implementing the techniques developed in [11,16].

In this formalism, a variety (of finite type) over F1 determines, after extension of scalars to Z,
a variety over Z. Moreover, even though the algebraic nature of F1 is still mysterious, a basic equation
of the theory is the formal equality

F1n ⊗F1 Z := Z[T ]/(T n − 1
)
, n ∈ N. (1)

Our starting point is that the natural inductive structure defined by the extensions F1n ⊂ F1m , for
n|m, translates into a natural inductive system of algebras, whose limit is the group ring Z[Q/Z].
After tensoring by Q, this group ring is a key ingredient in the definition of the BC-endomotive [4],
since it describes the abelian part of the structure. The second key ingredient is the semigroup of
endomorphisms of the above algebra associated to the action of N, given by multiplication, in the
group Q/Z. This operation describes an analogue over F1 of the classical Frobenius correspondence,
and part of our investigation is directed at making this statement more precise.

In Section 2 we start our study by recalling the group theoretical and an equivalent geometrical
description of the abelian part of the BC algebra. In particular, the Section 2.1 introduces the relevant
abelian algebra, that is the group ring of the abelian group Q/Z, together with the endomorphisms σn
given by multiplication by n in Q/Z as well as their partial inverses ρn . In Section 2.2 we describe
the same space by using elementary techniques of algebraic geometry.
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In Section 3 we give an interpretation of the abelian part of the BC-system in terms of a system
of pro-affine varieties μ(k) over F1 which are defined by considering affine group schemes of roots of
unity.

The core of the paper concentrates on the definition of an integral model for the BC-system over Q

and on the generalization of the notion of endomotive that was originally developed over fields of
characteristic zero only. This study is motivated by the idea to achieve an interesting link between
the thermodynamical system associated to the BC-algebra (and its connection to the zeta-function)
and the theory of algebraic varieties over F1. Working with spaces over F1 implicitly requires one to
define a geometric theory over Z and thus to set-up a corresponding construction over finite fields
(and their extensions), after taking the reduction at the various primes. The main result of Section 4
is that the original noncommutative BC-algebra AQ has a model over Z.

In Section 4.1 we shortly review the description of the C∗-algebra of the BC-system in terms of
groupoids and in Section 4.2 we recall the presentation of AQ by generators and relations. Section 4.3
describes how to eliminate the denominators in the partial inverses ρn of the endomorphisms σn .
This leads us in Section 4.4 to the definition of the integral model AZ of the BC-algebra by generators
and relations. In Proposition 4.10 and Corollary 4.11, we show that the general element of AZ can
be uniquely written as a sum of simple monomials labeled by Q/Z × Q∗+ . In Section 4.5 we define
an isomorphism of AZ with the integral version HZ(Γ,Γ0) of the original Hecke algebra of [1], and
deduce from that the existence of two different involutions on the rational algebra AQ . In Section 5 we
analyze the BC endomotive over a perfect field of characteristic p, and we relate the endomorphisms
of this system to the Frobenius correspondence.

We isolate the p-part C p of the BC-algebra in characteristic p and exhibit its nilpotent nature by
constructing in Proposition 5.8 a faithful representation of C p as lower triangular infinite matrices.
This representation is obtained by relating the algebra C p to a sub-semigroup of the group of affine
transformations of the additive group S = ⋃ 1

pn Z ⊂ R. A new feature that arises in positive character-
istic is the appearance of unreduced algebras in the abelian part of the system. We explain the effect
of reduction of these algebras in Section 5.3 and briefly discuss in Section 5.4, the required extension
of the notion of endomotive to the general (unreduced) framework.

Finally, in Section 6 we prove that the BC system has a model defined over F1. This result al-
lows us to deduce that the symmetries of the BC system are recovered from the automorphisms
of F1∞ = lim−→ F1n over F1. In fact, we show that the BC endomotive embodies the structure of the
extensions F1n of F1 through the Frobenius correspondence which is implemented by the action of
the endomorphisms on the abelian part of the associated algebra. More precisely, we show that these
endomorphisms coincide with the Frobenius correspondence in the reduction of the BC system over
a perfect field of positive characteristic. We then use this result to prove that the original analytic
endomotive of the BC system can be recovered from the data supplied at infinity in the form of an
inductive system of Banach algebras.

2. The abelian part of the BC system and its endomorphisms

In this section we shall give a short overview of two equivalent formulations of the abelian part
of the algebra describing the quantum statistical mechanical system introduced in [1] as well as the
associated endomotive [4]. In the following and throughout the paper we shall refer to it as the
BC-system (cf. Definition 4.1).

2.1. Group theoretic description

The BC-endomotive over Q is defined as the algebraic crossed product of the group ring Q[Q/Z]
by the action of a semigroup of endomorphisms.

In the following, we denote by e(r), for r ∈ Q/Z, the canonical generators of the group ring Q[Q/Z]
with presentation

e(a + b) = e(a)e(b), ∀a,b ∈ Q/Z. (2)
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We now describe in group theoretic terms the semigroup action on this group ring. Let Γ = Q/Z.
For each n, let Γn ⊂ Γ be the n-torsion subgroup

Γn = {x ∈ Γ | nx = 0}. (3)

Proposition 2.1. Let n ∈ N.

(a) One has an exact sequence of abelian groups

1 → Γn → Γ
×n−→ Γ → 1. (4)

(b) The operator

πn = 1

n

∑
s∈Γn

e(s) (5)

defines an idempotent πn ∈ Q[Q/Z]. One has πnπm = πk where k is the least common multiple of n
and m.

(c) The formula

ρn : Q[Q/Z] → Q[Q/Z], ρn
(
e(r)

) = 1

n

∑
ns=r

e(s) (6)

defines an endomorphism of Q[Q/Z]. Moreover ρn is a ring isomorphism between Q[Q/Z] and the re-
duced algebra by πn, more precisely one has

ρn : Q[Q/Z] ∼−→ πnQ[Q/Z], ρn
(
e(r)

) = πne(s), ∀s s.t. ns = r. (7)

(d) The formula

σn : Q[Q/Z] → Q[Q/Z], σn
(
e(r)

) = e(nr), ∀r ∈ Q/Z, n ∈ N, (8)

defines an endomorphism of Q[Q/Z] and one has

σnρn(x) = x, (9)

ρnσn(x) = πnx. (10)

Proof. (a) follows from the divisibility of the group Γ , which implies the surjectivity of the multipli-
cation by n.

(b) One checks that π2
n = πn using (2). Given integers n and m, with � = (n,m) their gcd, the map

(s, t) ∈ Γn × Γm 
→ s + t ∈ Γk is an � to 1 map onto Γk , where k = nm/� is the least common multiple
of n and m. Thus πnπm = πk .

(c) First, the homomorphism ρn is well defined since

πne(s) = 1

n

∑
e(u)
nu=s
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is independent of the choice of s such that ns = r. It defines an algebra homomorphism, since with
ns j = r j one has

ρn
(
e(r1 + r2)

) = πne(s1 + s2) = πne(s1)πne(s2) = ρn
(
e(r1)

)
ρn

(
e(r2)

)
.

We then show that ρn is an isomorphism with the reduced algebra. We let Γ̂ be the (Pontrjagin)
dual of Γ , i.e. the group of characters of the group Γ . We let En be the open and closed subset
of Γ̂ given by the condition χ ∈ En if and only if χ(πn) = 1. This holds if and only if χ |Γn = 1.
This allows one to identify the closed subset En ⊂ Γ̂ with the space of characters of the quotient
group Γ/Γn . Using the identification of Γ/Γn with Γ determined by the isomorphism (4), one gets
an isomorphism of En ⊂ Γ̂ with Γ̂ , given by

En
ρ∗

n−→ Γ̂ , χ 
→ ρ∗
n (χ), ρ∗

n (χ)(r) = χ(s), ∀s s.t. ns = r. (11)

In other words, ρ∗
n (χ) = χ ◦ρn at the level of the group ring. The range of the algebra homomorphism

ρn is contained in the reduced algebra by πn , and ρn( f ) = 0 implies 〈ρ∗
n (χ), f 〉 = 0 for all χ ∈ En . It

then follows that f = 0 since ρ∗
n is surjective, hence ρn is injective.

To show that the algebra homomorphism ρn is surjective on the reduced algebra by πn , it is
enough to show that the range contains the πne(a) for all a ∈ Q/Z. This follows from (6).

(d) The map r ∈ Q/Z 
→ nr ∈ Q/Z is a group homomorphism. One has σn(πn) = 1 by (5) and one
gets (9) using (6). One checks (10) on the generators e(s) using (6). �
2.2. The endomorphisms ρn from algebraic geometry

Let us first recall the geometric construction introduced in [4] which gives rise to interesting exam-
ples of algebraic endomotives. One lets (Y , y0) be a pointed smooth algebraic variety (over a field K

of characteristic zero) and S an abelian semi-group of algebraic self-maps s : Y → Y with s(y0) = y0,
which are finite (of finite degree) and unramified over y0. In this way one then obtains:

• A projective system of algebraic varieties

Xs = {
y ∈ Y

∣∣ s(y) = y0
}
, ξs,s′ : Xs′ → Xs, ξs,s′ (y) = r(y) if s′ = rs.

• Algebraic morphisms

βs : X = lim←− Xu → Xes , ξuβs(x) = sξu(x), (12)

where Xes = ξ−1
s (y0) ⊂ X are open and closed subsets of X .

In other words, one obtains in this way a first action σs of the semigroup S on the projective limit
X = lim←− Xu , since the maps βs given by applying s componentwise commute with the connecting
maps of the projective system

σs( f ) = f ◦ βs. (13)

In fact, since the maps βs are isomorphisms of X with Xes , it is possible to invert them and define
a second action of S that corresponds, at the algebraic level, to the endomorphisms

ρs( f )(x) =
{

f (β−1
s (x)) if x ∈ Xes ,

es
(14)
0 if x /∈ X .
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The BC-endomotive is a special case of this general construction. It corresponds to the action of
the semigroup S = N by finite algebraic endomorphisms, unramified over 1, on the pointed algebraic
variety (Gm/Q,1) (cf. [4, Proposition 3.7]). One has Gm/Q = Spec(Q[T ±1]) and the action of N is given
by a 
→ an on the coordinate a ∈ Q̄ of the point associated to the character P (T ) 
→ P (a). Equivalently,
at the algebra level, this action is described by

Q
[
T ±1] � P

(
T , T −1) 
→ P

(
T n, T −n) ∈ Q

[
T ±1]. (15)

The point 1 ∈ Gm/Q is a fixed point and its inverse image under the algebraic map a 
→ an is Xn =
Spec(Q[T ±1]/(T n − 1)). The spaces Xn form a projective system indexed by N, with partial order
given by divisibility. That is, for a pair of natural numbers r,n with r = ns, we have maps

ξn,r : Xr → Xn, x 
→ xs.

One lets X = lim←−n
Xn . The base point 1 belongs to Xn for all n and defines a component Zn = {1}

of Xn . One checks that the description of the algebra morphisms ρn given by (14) agrees with that
given in (6). Here the closed and open subset Xen ⊂ X of X is simply the inverse image ξ−1

n (Zn) ⊂ X
of Zn by the canonical map ξn from the projective limit X = lim←−n

Xn to Xn .
The relation between this geometric description of the BC-endomotive and the previous group

theoretic one can be seen in the following way.
Let u(n) be the class of T mod T n − 1, i.e. the canonical generator of the algebra Q[T ±1]/(T n − 1).

Then the homomorphism ξm,n is given by

ξm,n
(
u(n)

) = u(m)a, a = m/n. (16)

The isomorphism with the group theoretic description is then obtained by mapping u(n) 
→ e( 1
n ) ∈

Q[Q/Z].

3. FFF1∞ and the abelian part of the BC-system

In this section we describe the group ring part of the algebra of the BC-system in terms of schemes
of finite type over F1 in the sense of [16]. This is done by introducing a family of affine algebraic
varieties μ(n) over F1. We will show that these spaces can be organized in two ways: as an inductive
system related to the affine multiplicative group scheme over F1 and also as a pro-variety μ(∞) =
lim←−n

μ(n) . The relation with the BC-system arises exactly when one works with the second system.
We first recall the examples of extensions F1n of F1, developed in [11,16], which are the analogues

for q = 1 of the field extensions Fqn of Fq . The main idea is that these extensions are described by the
formula (1) after extending the coefficients from F1 to Z. Notice that neither F1 nor its extensions F1n

need to be properly defined for (1) to make sense. Following [11], while “vector spaces over F1”
correspond to sets, those defined over the extension F1n correspond to sets with a free action of the
group Z/nZ.

When n|m, one expects in analogy with the case of Fqn (q > 1 a rational prime power) to have
extensions

F1n ⊂ F1m (17)

(cf. [11, (1.3)]). In terms of free actions of roots of unity on sets, and for m = na, the functor of
restriction of scalars for the extension (17) is obtained by viewing Z/nZ as the subgroup of Z/mZ

generated by a, which is in agreement with (16).
Note also that there is no analogue for q = 1 of the classification of finite extensions of Fq for q a

prime power, and it is unjustified to consider the inductive limit F1∞ = lim−→ F1n of the extensions (17)
as the algebraic closure of F1.
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3.1. Affine varieties over F1

We start by recalling briefly the notion of an affine variety over F1 as introduced in [16]. Starting
with the category of (commutative) rings R with unit, which are finite and flat over Z, we denote
by R the full sub-category generated by the rings An = Z[T ]/(T n − 1) as in (1) and their tensor
products (as Z-modules). A gadget1 X = (X, A X , e X ) over F1 is specified (cf. [16, §3.4, Definition 3])
by giving the following data:

(a) A covariant functor X : R → S ets to the category of sets.
(b) A C-algebra A X .
(c) A natural transformation e X from the functor X to the functor R 
→ Hom(A X , RC).

The notion of morphism of gadgets is that of natural transformation i.e. a morphism φ from X
to Y is given by a pair φ = (φ,φ∗):

φ : X → Y , φ∗ : AY → A X , (18)

where φ is a natural transformation of functors and φ∗ a morphism of algebras. One requires the
compatibility with the evaluation maps i.e. one has a commutative diagram

X(R)

e X (R)

φ(R)

Y (R)

eY (R)

Hom(A X , RC)
φ∗

Hom(AY , RC).

A morphism φ from X to Y is an immersion when φ∗ is injective and for any object R of R, the map
φ(R) : X(R) → Y (R) is injective.

The construction described in Section 3.3 of [16] gives a natural covariant functor F from the
category of varieties over Z (i.e. schemes of finite type over Z) to the category T of gadgets over F1.
More precisely

Lemma 3.1. An affine variety V over Z defines a gadget X = F (V ) over F1 by letting

X(R) = HomZ

(
O(V ), R

)
, A X = O(V ) ⊗Z C, e X ( f ) = f ⊗ idC, ∀ f ∈ X(R). (19)

One then defines (cf. [16, Definition 3])

Definition 3.2. An affine variety over F1 is a gadget X such that:

• X(R) is finite for any object R of R.
• There exists an affine variety XZ over Z and an immersion i : X → F (XZ) of gadgets satisfying the

following property: for any affine variety V over Z and any morphism of gadgets ϕ : X → F (V ),
there exists a unique algebraic morphism

ϕZ : XZ → V

such that ϕ = F (ϕZ) ◦ i.

1 “Truc” in French.
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3.2. The varieties μ(k)

We introduce the varieties μ(k) over F1, as examples of affine varieties over F1. We begin by
defining the associated functors μ(k) : R → S ets. These are given (for k ∈ N) by the assignments

μ(k)(R) = {
x ∈ R

∣∣ xk = 1
}
, (20)

i.e. μ(k) is the functor represented by the ring Ak:

μ(k)(R) = HomZ(Ak, R), ∀R ∈ Obj(R). (21)

Notice that the functors μ(k) can be organized in two different ways:

a) As an inductive system converging to μ = Gm , where Gm(R) := μ(R) is the multiplicative
group Gm over F1, as affine variety over F1 (cf. [16, 5.2.2]).

b) As a projective system converging to μ(∞) , where

μ(∞)(R) := lim←−
k

Hom(Ak, R) = Hom
(
Z[Q/Z], R

)
.

For a), one uses the natural inclusion

μ(n)(R) ⊂ μ(m)(R), ∀n|m, (22)

which corresponds at the level of the rings An representing these functors, to the surjective ring
homomorphism

Am � An = Am/
(
T n − 1

)
, ∀n|m. (23)

Then, the union of the μ(k)(R) is simply the functor μ(R) which assigns to R ∈ Obj(R) the set of all
roots of 1 in R . In the formalism of [16] this functor is part (a) of the data (a)–(c) for the multiplicative
group μ = Gm as an affine variety over F1.

To explain b), we use the homomorphisms (16). These homomorphisms organize the μ(k)(R) into
a projective system. The connecting maps are given by raising a root of 1 to the power a = m/n. Then,
the elements of μ(∞)(R) are described by homomorphisms of the group Q/Z to the multiplicative

group of R . The equality μ(∞)(R) = Hom(Z[Q/Z], R) follows from (21).
After tensoring by Z as in (1), the scalars extensions F1n ⊂ F1m of (17) (cf. [11, (1.3)]) correspond

to homomorphisms of rings

ξm,n : F1n ⊗F1 Z → F1m ⊗F1 Z (24)

given by

ξm,n
(
u(n)

) = u(m)a, a = m/n, (25)

where u(n) is the canonical generator T ∈ An . These agree with the maps (16) that define the integral
version of the abelian part of the BC-system.

In order to complete the definition of the varieties μ(n) over F1, we use the functor F of
Lemma 3.1. In other words we define
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μ(n) = F Spec(An). (26)

One checks (cf. [16, §4, Proposition 2]) that it fulfills the conditions of Definition 3.2. We then obtain
the following result.

Proposition 3.3. The μ(n) defined as in (26) form a projective system of zero-dimensional affine varieties
over F1 .

Proof. It follows from (21) that the corresponding functors μ(k) are the same as the ones defined
by (20). The morphisms (16) turn the varieties Spec(An) into a projective system and thus, since F is
a covariant functor, we get that the μ(n) form a projective system of varieties over F1. �
4. The integral BC-endomotive

Having to work over Z creates a problem when one implements the semigroup action via the maps
ρn , which involve denominators, as in (6) and (5). However, as shown in the algebro-geometric de-
scription of the BC-algebra (Proposition 2.1(d)), the partial inverses of the ρn , which we have denoted
by σn , do not involve denominators, therefore we will be able to consider them over Z.

The partial inverse relations between the σn and ρn are given by (9) and (10).
Since by (21) the schemes μ(n) are represented by the rings An , by Yoneda’s lemma the ring

homomorphisms σn given by

σn : Ak → Ak, u(k) 
→ u(k)n (27)

define (contravariantly) morphisms of schemes. These induce morphisms of the pro-scheme μ(∞) by
the compatibility

ξ�,k ◦ σn = σn ◦ ξ�,k, ∀k|�, ∀n ∈ N. (28)

In Proposition 6.1 we will show how the maps σn in fact give rise to endomorphisms of the vari-
eties μ(k) over F1.

In the limit, the endomorphisms σn are surjective

σn : lim−→
k

Ak � lim−→
k

Ak. (29)

In fact, in the group ring notation of Section 2.1, one gets σn(e(r)) = e(nr), while one has the sur-
jectivity of multiplication by n in the exact sequence (4). However, the σn are not the same as the
endomorphisms ρn , since the latter are injective and describe ring isomorphisms between reduced
algebras and the projectors πn , as we have shown in Proposition 2.1.

The kernel of σn in (29) is the ideal Jn generated by the element u(n)−1, or in group-ring notation
by e(1/n) − 1. This means that σ−1

n ( f ) is only defined modulo Jn . If one allows inverting n, then
there is a natural complementary subspace to Jn , namely the reduced algebra by the projection πn .
However, when we work over Z (and a fortiori over F1) we cannot invert n, and we need to adapt
the presentation of the BC-endomotive. The data of the BC-endomotive, i.e. the abelian algebra and
the endomorphisms, combine to produce a noncommutative crossed product algebra with a natural
time evolution defined over C. This quantum statistical mechanical system is the BC-system which
we recall below.
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4.1. C∗-algebra description of the BC-system

At the C∗-algebra level the BC system is given by 1
Ẑ
(C0(AQ, f ) � Q∗+)1

Ẑ
, namely by the algebra of

the crossed product C0(AQ, f ) � Q∗+ reduced by the projection 1
Ẑ

∈ C0(AQ, f ). Here AQ, f denotes the

locally compact space of finite adeles of Q and Ẑ ⊂ AQ, f the open compact subset closure of Z. The
reduced algebra can be described as the convolution algebra of the locally compact étale groupoid G
obtained as the reduction of the groupoid AQ, f � Q∗+ by the open and closed set of units Ẑ ⊂ AQ, f .
Concretely, the groupoid G is the étale groupoid of pairs

G = {
(r,ρ)

∣∣ r ∈ Q∗+, ρ ∈ Ẑ, such that rρ ∈ Ẑ
}
, (30)

with source and range maps (r,ρ) 
→ ρ and (r,ρ) 
→ rρ , and composition

(r1,ρ1) ◦ (r2,ρ2) = (r1r2,ρ2) if r2ρ2 = ρ1. (31)

The C∗-algebra C∗(G) of a locally compact étale groupoid G is obtained as the completion of the
algebra Cc(G) of compactly supported functions on G with the convolution product

f1 ∗ f2(g) =
∑

g1 g2=g

f1(g1) f2(g2), (32)

the involution

f ∗(g) = f
(

g−1
)

(33)

and the norm

‖ f ‖ := sup
y∈G(0)

∥∥πy( f )
∥∥

B(H y)
. (34)

Here every unit y ∈ G(0) defines a representation πy by left convolution of the algebra Cc(G) on the
Hilbert space H y = �2(G y), where G y denotes the set of elements in G with source y. Namely, one
has

(
πy( f )ξ

)
(g) =

∑
g1 g2=g

f (g1)ξ(g2). (35)

The C∗-algebra C∗(G) contains C(Ẑ) as a subalgebra and is generated by C(Ẑ) and the elements μn

given by the compactly supported functions

μn(n,ρ) = 1, ∀ρ ∈ Ẑ, μn(r,ρ) = 0, ∀r �= n, ρ ∈ Ẑ. (36)

One identifies the Pontrjagin dual of the group Q/Z with the compact group Ẑ = Hom(Q/Z,Q/Z)

using the pairing

〈γ ,ρ〉 = e2π iρ(γ ), ∀γ ∈ Q/Z, ρ ∈ Hom(Q/Z,Q/Z)

and one lets e(γ ) ∈ C∗(G) be given by the function

e(γ )(r,ρ) = 0, ∀r �= 1, e(γ )(1,ρ) = 〈γ ,ρ〉. (37)
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The time evolution is given by the following one-parameter group of automorphisms of the C∗-
algebra C∗(G):

σt(μn) = nitμn, σt
(
μ∗

n

) = n−itμ∗
n, σt

(
e(γ )

) = e(γ ). (38)

Definition 4.1. The BC-system is the complex dynamical system defined by the pair (C∗(G),σt).

We refer to [6, Chapter 3, §4] for the equivalent descriptions of the C∗-algebra of the BC-system
and of the relation with Q-lattices. Working over C one considers the subalgebra of C∗(G) generated
by the characters e(γ ), γ ∈ Q/Z the μn and their adjoints μ∗

n . We shall now explain the presentation
of this algebra over Q.

4.2. The BC-algebra over Q

We first recall the presentation of the crossed product algebra AQ = Q[Q/Z]�N of the BC system
in characteristic zero.

The group ring Q[Q/Z] has the canonical additive basis e(γ ), γ ∈ Q/Z, with e(γ )∗ = e(−γ ) and
e(γ1 + γ2) = e(γ1)e(γ2). To obtain the crossed product, one considers then generators μn and μ∗

n ,
n ∈ N, which satisfy the following conditions:

(c1) μ∗
nμn = 1, ∀n,

(c2) μnm = μnμm , μ∗
nm = μ∗

nμ
∗
m , ∀n,m,

(c3) μnμ
∗
m = μ∗

mμn , if (m,n) = 1,

together with the additional relation

(c4) μne(γ )μ∗
n = 1

n

∑
nδ=γ e(δ), ∀n, γ .

In particular, the relation (c4) can be interpreted algebraically by means of the homomor-
phism ρn(x) (cf. (6)) projecting onto the reduced algebra by the idempotent πn . This means

(c4′) ρn(x) = μnxμ∗
n , ∀x ∈ Q[Q/Z].

As a consequence of (c1) and (c4′) we get

(
μnμ

∗
n

)2 = (
μnμ

∗
n

)(
μnμ

∗
n

) = μnμ
∗
n = ρn(1) = 1

n

∑
nγ =0

e(γ ).

In this way we get a description of the projector πn ∈ Q[Q/Z] as in (5) by means of the new genera-
tors of the crossed product i.e. πn = ρn(1) = μnμ

∗
n . It also follows from (c1) that μnμ

∗
nμn = μn . Since

the surjective endomorphisms σn are partial inverses of ρn , that is

σnρn
(
e(γ )

) = 1

n

∑
nγ ′=γ

σn
(
e(γ ′)

) = 1

n

∑
nγ ′=γ

e(nγ ′) = e(γ ),

one gets σnρn(x) = x, ∀x ∈ Q[Q/Z].
We then have the following easy consequence.
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Proposition 4.2. The following relations hold in the algebra AQ = Q[Q/Z] �ρ N:

μnx = ρn(x)μn, ∀x ∈ Q[Q/Z], ∀n ∈ N, (39)

μ∗
nx = σn(x)μ∗

n, ∀x ∈ Q[Q/Z], ∀n ∈ N, (40)

xμn = μnσn(x), ∀x ∈ Q[Q/Z], ∀n ∈ N. (41)

Proof. Relation (39) follows from

μnxμ∗
n = ρn(x) (42)

and the fact that μ∗
nμn = 1. For (40), we use the idempotent πn = μnμ

∗
n = ρn(1). We first assume that

x = πnx belongs to the reduced algebra by πn . It then follows that x = ρn(y) for some y ∈ Q[Q/Z]
(hence y = σn(x)). By applying (c4′) and (c1), this shows that

μ∗
nx = μ∗

nρn(y) = μ∗
nμn yμ∗

n = yμ∗
n = σn(x)μ∗

n.

In the general case, we notice that in view on (c1), the left-hand side of (40) does not change by
replacing x by μnμ

∗
nx = πnx. The right-hand side does not change either, since σn(πn) = 1, hence

(40) holds with no restriction. The relation (40) also gives

μ∗
nxμn = σn(x) (43)

by multiplying on the right by μn and applying (c1). The relation (41) then follows by (43) together
with xμn = πnxμn = xπnμn . �
Remark 4.3. Notice that the involution (33) of the C∗-algebra C∗(G) restricts to an involution of the
rational algebra AQ = Q[Q/Z] � N with the properties

e(γ ) 
→ e(−γ ), μn 
→ μ∗
n, μ∗

n 
→ μn. (44)

Note that the full presentation of the rational algebra involves the two relations that appear in (c2).
In particular this is needed for the involution (44) to make sense.

4.3. The maps ρ̃n

When one wants to generalize the definition of the algebra AQ = Q[Q/Z] �ρ N to the case where
the field of coefficients is a perfect field K of positive characteristic (for example K = Fp), as well as
in extending the original (rational) formulation of the algebra to the case of integer coefficients, one
is faced with the problem of “dividing by n” in the definition of the endomorphisms ρn (e.g. when
K = Fp , for n = p). However, up to multiplying the original definition of the maps ρn by n, the linear
maps

ρ̃n : K[Q/Z] → K[Q/Z], ρ̃n
(
e(γ )

) =
∑

nγ ′=γ

e(γ ′) (45)

retain a meaning (when char(K) = p > 0 and n = p and also over Z), since e(γ ) is a linear basis
of the algebra K[Q/Z] as a K-vector space. In particular, when char(K) = p > 0, the operator π̃p =
ρ̃p(1) = ∑

pγ =0 e(γ ) �= 0 is nilpotent since
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π̃2
p =

( ∑
pγ =0

e(γ )

)( ∑
pγ ′=0

e(γ ′)
)

=
∑
γ ,γ ′

e(γ + γ ′) = p
∑

pγ ′′=0

e(γ ′′) = 0.

Compare this with the idempotents πn of (5). Moreover, over a perfect field of characteristic p > 0
one gets σpρ̃p = 0, since σpπ̃p = σpρ̃p(1) = σp

∑
pγ =0 e(γ ) = ∑

pγ =0 e(pγ ) = 0. This means that
Range(ρ̃p) ⊂ Ker(σp).

Proposition 4.4. When working over Z the σn continue to make sense and define endomorphisms of Z[Q/Z]
which fulfill the following relations with the maps ρ̃m:

σnm = σnσm, ρ̃mn = ρ̃mρ̃n, ∀m,n, (46)

ρ̃m
(
σm(x)y

) = xρ̃m(y), ∀x, y ∈ Z[Q/Z], (47)

σc
(
ρ̃b(x)

) = (b, c)ρ̃b′
(
σc′(x)

)
, b′ = b/(b, c), c′ = c/(b, c), (48)

where (b, c) denotes the gcd of b and c.

Proof. One has by definition σn(e(γ )) = e(nγ ), which shows that σn is an endomorphism of Z[Q/Z]
and σnm = σnσm . To get ρ̃mn = ρ̃mρ̃n we let, for x ∈ Q/Z and n ∈ N,

En(x) = {y ∈ Q/Z | ny = x}. (49)

One has

Enm(x) =
⋃

y∈En(x)

Em(y), y1 �= y2 ⇒ Em(y1) ∩ Em(y2) = ∅,

thus

ρ̃m
(
ρ̃n

(
e(x)

)) = ρ̃m

( ∑
En(x)

e(y)

)
=

∑
y∈En(x)

∑
z∈Em(y)

e(z) = ρ̃mn
(
e(x)

)
.

To check (47) we can assume that x = e(s), y = e(t) with s, t ∈ Q/Z. One has σm(x)y = e(ms)e(t) =
e(ms + t). For u ∈ Q/Z, one has mu = ms + t iff u − s ∈ Em(t) thus Em(ms + t) = s + Em(t) which
proves (47).

To check (48) we assume that x = e(s) and let n = (b, c) so that b = nb′ , c = nc′ with (b′, c′) = 1.
One has

Eb(s) = {u ∈ Q/Z | bu = s} = {u ∈ Q/Z | nb′u = s}.

Thus the multiplication by c = nc′ is an n to 1 map from Eb(s) to Eb′ (c′s). This proves (48). �
In particular one gets

Corollary 4.5. The range of ρ̃m is an ideal in Z[Q/Z]. When n and m are relatively prime σn commutes
with ρ̃m.

Proof. The range of ρ̃m is additive by construction and is invariant under multiplication by Z[Q/Z]
using (47). The second statement follows from (48). �
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Remark 4.6. Notice that, although the ρ̃n are not ring homomorphisms, the relation (47) which they
fulfill suggests the existence of an associated correspondence (in the form of a bimodule). This would
fit with a more general framework for the theory of endomotives that uses correspondences instead
of endomorphisms as in [14].

4.4. The BC-algebra over Z

When K denotes either Z or a perfect field of positive characteristic, the relations (40) continue
to make sense, because the σn are well defined. On the other hand, the relation (39) involves the ρn
which are not well defined. However, in the case of integral coefficients and in characteristic p, the
linear maps ρ̃n of (45) make sense and in the latter case these maps play the role of the pρp . Thus,
in order to extend the relation (39), we keep the generators μ∗

n and introduce new generators μ̃n (in
place of the μn ’s), which play the role, in characteristic p, of the operators pμp and in general fulfill
the relation

μ̃nxμ∗
n = ρ̃n(x), (50)

that is the analog of (42). These relations reformulate (c4′) in the case of integral coefficients and
make sense in positive characteristic.

Definition 4.7. The algebra AZ = Z[Q/Z] �ρ̃ N is the algebra generated by the group ring Z[Q/Z],
and by the elements μ̃n and μ∗

n , with n ∈ N, which satisfy the relations:

μ̃nxμ∗
n = ρ̃n(x),

μ∗
nx = σn(x)μ∗

n,

xμ̃n = μ̃nσn(x), (51)

where ρ̃m , m ∈ N is defined in (45), as well as the relations

μ̃nm = μ̃nμ̃m, ∀n,m,

μ∗
nm = μ∗

nμ
∗
m, ∀n,m,

μ∗
nμ̃n = n,

μ̃nμ
∗
m = μ∗

mμ̃n, (n,m) = 1. (52)

Our first task is to check that these relations are sufficient to express every element of AZ as
a finite sum of elementary monomials labeled by a pair (x, r) where x ∈ Z[Q/Z] and r ∈ Q∗+ is an
irreducible fraction r = a/b.

Lemma 4.8. Any element of the algebra AZ is a finite sum of monomials:

μ̃axμ∗
b, (a,b) = 1, x ∈ Z[Q/Z], (53)

where by convention μ̃1 = μ∗
1 = 1.

Proof. It is enough to show that the product of monomials of the form (53) is still of the same form.
We take a product of the form

μ̃axμ∗
bμ̃c yμ∗

d .
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Let then n be the gcd of b = nb′ and c = nc′ . One has

μ∗
bμ̃c = μ∗

b′μ∗
nμ̃nμ̃c′ = nμ∗

b′μ̃c′ = nμ̃c′μ∗
b′

so that

μ̃axμ∗
bμ̃c yμ∗

d = nμ̃axμ̃c′μ∗
b′ yμ∗

d = nμ̃aμ̃c′σc′ (x)σb′(y)μ∗
b′μ∗

d .

Let then m be the gcd of ac′ = mu and b′d = mv . One has

μ̃aμ̃c′ = μ̃uμ̃m, μ∗
b′μ∗

d = μ∗
mμ∗

v

so that

μ̃axμ∗
bμ̃c yμ∗

d = nμ̃uμ̃mσc′(x)σb′ (y)μ∗
mμ∗

v = nμ̃uρ̃m
(
σc′ (x)σb′ (y)

)
μ∗

v .

Since u and v are relatively prime and z = ρ̃m(σc′ (x)σb′ (y)) ∈ Z[Q/Z] it follows that the product of
two monomials of the form (53) is still a monomial of the same form. Note also that

u/v = (a/b)(c/d) (54)

since u/v = ac′/(b′d) = ac/(bd). Thus the labels a/b ∈ Q∗+ are multiplicative. �
Remark 4.9. Using the surjectivity of the endomorphisms σn one can rewrite the monomials (53) in
the form yμ̃aμ

∗
b , μ̃aμ

∗
b z or μ∗

btμ̃a . The reason for choosing (53) is that, in this form, there is no
ambiguity in the choice of x while the lack of injectivity of σa and σb introduces an ambiguity in the
choices of y, z and t . At the geometric level this corresponds, using (36), to the fact that the initial
support of μ̃a is 1.

In order to check that the relations of Definition 4.7 are coherent we shall now construct a faithful
representation of these relations (which is the left regular representation of AZ) in the free abelian
group E = Z[Q/Z×Q∗+]. We denote by ξ(x, r) the element of E associated to x ∈ Z[Q/Z] and r ∈ Q∗+ .

Proposition 4.10. The following relations define a faithful representation of the algebra AZ on E ,

xξ(y, c/d) = ξ
(
σc(x)y, c/d

)
, ∀c,d, (c,d) = 1, (55)

μ̃aξ(y, c/d) = ξ
(
ρ̃m(y),ac/d

)
, m = (a,d), (56)

μ∗
bξ(y, c/d) = (b, c)ξ

(
σb/n(y), c/bd

)
, n = (b, c). (57)

Proof. We shall check that the relations of Definition 4.7 are fulfilled. The relation (55) shows that
the left action of Z[Q/Z] is a representation which is a direct sum of copies of the left regular
representation of Z[Q/Z] composed with the σc .

Using the notation (a,b) for gcd(a,b) one has the equality

(a1a2,d) = (a1,d)
(
a2,d/(a1,d)

)
(58)

and the fact that the left action of μ̃a fulfills μ̃a2a1 = μ̃a2 μ̃a1 follows from (46) which gives

ρ̃m(y) = ρ̃m2

(
ρ̃m1 (y)

)
, m1 = (a1,d), m2 = (

a2,d/(a1,d)
)
, m = (a1a2,d).
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In order to check the relation xμ̃a = μ̃aσa(x) one uses (47). One has

xμ̃aξ(y, c/d) = xξ
(
ρ̃m(y),ac/d

) = ξ
(
σk(x)ρ̃m(y),ac/d

)
, k = ac/m, m = (a,d),

μ̃aσa(x)ξ(y, c/d) = μ̃aξ
(
σc

(
σa(x)

)
y, c/d

) = ξ
(
ρ̃m

(
σac(x)y

)
,ac/d

)
and since ac = mk, (47) gives

ρ̃m
(
σac(x)y

) = σk(x)ρ̃m(y).

Let us check the relation μ∗
b2b1

= μ∗
b2

μ∗
b1

. Let n1 = (b1, c) and b′
1 = b1/n1, c′

1 = c/n1 then

μ∗
b1

ξ(y, c/d) = n1ξ
(
σb′

1
(y), c′

1/
(
b′

1d
))

so that, with n2 = (b2, c′
1) and b′

2 = b2/n2, c′
2 = c′

1/n2 one gets

μ∗
b2

(
μ∗

b1
ξ(y, c/d)

) = n2n1ξ
(
σb′

2
σb′

1
(y), c′

2/
(
b′

2b′
1d

))
.

By (58) one has n1n2 = (b1, c)(b2, c/n1) = (b1b2, c) = n and with b = b1b2 one has

b′ = b/n = (b1/n1)(b2/n2) = b′
1b′

2,

c′
2 = c′

1/n2 = c/(n1n2) = c/n = c′.

This shows, using σab = σaσb , that

μ∗
b2

(
μ∗

b1
ξ(y, c/d)

) = μ∗
b2b1

ξ(y, c/d).

Let us now check the relation μ∗
b x = σb(x)μ∗

b . One has, with n = (b, c), b′ = b/n, c′ = c/n,

μ∗
b

(
xξ(y, c/d)

) = μ∗
bξ

(
σc(x)y, c/d

) = nξ
(
σb′

(
σc(x)y

)
, c/bd

)
,

σb(x)
(
μ∗

bξ(y, c/d)
) = nσb(x)ξ

(
σb′(y), c′/b′d

) = nξ
(
σc′

(
σb(x)

)
σb′(y), c/bd

)
.

Thus the relation follows from the multiplicativity of σb′ and the equality b′c = c′b.
Let us check the relation μ̃bxμ∗

b = ρ̃b(x). One has

x
(
μ∗

b

(
ξ(y, c/d)

)) = nξ
(
σc′ (x)σb′(y), c′/b′d

)
, n = (b, c), b′ = b/n, c′ = c/n.

To multiply by μ̃b on the left, one uses (56) and gets

μ̃b
(
x
(
μ∗

b

(
ξ(y, c/d)

))) = nξ
(
ρ̃m

(
σc′ (x)σb′ (y)

)
, u/v

)
,

where m = (b,b′d) and u = bc′/m, v = b′d/m. One has m = b′ since it divides b = nb′ and b′d while
bc′/b′ = c is prime to d. Thus u = c and v = d and one gets

μ̃b
(
x
(
μ∗

b

(
ξ(y, c/d)

))) = nξ
(
ρ̃b′

(
σc′ (x)σb′(y)

)
, c/d

)
.

In particular it is divisible by n and one needs to understand why the other side, namely
ρ̃b(x)ξ(y, c/d) is also divisible by n = (b, c). This follows from (48) since
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ρ̃b(x)ξ(y, c/d) = ξ
(
σc

(
ρ̃b(x)

)
y, c/d

)
(by (55)) while by (48),

σc
(
ρ̃b(x)

) = (b, c)ρ̃b′
(
σc′(x)

)
, b′ = b/(b, c), c′ = c/(b, c).

One then uses (47) to obtain

ρ̃b′
(
σc′(x)σb′ (y)

) = ρ̃b′
(
σc′ (x)

)
y

which gives the required equality.
Let us now check the relation μ∗

aμ̃a = a. By (56) one has

μ̃aξ(y, c/d) = ξ
(
ρ̃m(y), u/v

)
,

where m = (a,d) is the gcd of ac = mu and d = mv . We then get with a = ma′ , d = md′ that u = a′c
and v = d′ . The left action of μ∗

a is given by

μ∗
a

(
μ̃aξ(y, c/d)

) = μ∗
aξ

(
ρ̃m(y), u/v

) = nξ
(
σa′′

(
ρ̃m(y)

)
, c′′/(a′′d′)

)
,

where n = (a,a′c), c′′ = a′c/n, a′′ = a/n. One has n = a′ since (m, c) = 1 as m = (a,d) is a divisor
of d and (c,d) = 1. It follows that c′′ = a′c/n = c, a′′ = a/n = m. Thus by (48) σa′′(ρ̃m(y)) = my. Also
a′′d′ = md′ = d, thus

nξ
(
σa′′

(
ρ̃m(y)

)
, c′′/(a′′d′)

) = nmξ(y, c/d)

and the required equality follows from nm = a.
It remains to check that μ̃aμ

∗
b = μ∗

bμ̃a when (a,b) = 1. Let, as above, m = (a,d) and write a = ma′ ,
d = md′ so that u = a′c is prime to v = d′ . One has

μ∗
b

(
μ̃aξ(y, c/d)

) = μ∗
bξ

(
ρ̃m(y), u/v

) = nξ
(
σb/n

(
ρ̃m(y)

)
,ac/(bd)

)
,

where n = (b, u). Since (a,b) = 1 one has (a′,b) = 1 and n = (b, u) = (b,a′c) = (b, c). Thus by (57),

μ∗
bξ(y, c/d) = nξ

(
σb/n(y), c/bd

)
.

When applying μ̃a on the left, one uses (56). One lets m = (a,b′d) where b′ = b/n so that b′d is the
reduced denominator of c/bd. By (56), one has

μ̃aμ
∗
bξ(y, c/d) = nμ̃aξ

(
σb/n(y), c/bd

) = nξ
(
ρ̃m

(
σb/n(y)

)
,ac/bd

)
.

Since (a,b) = 1 one has m = (a,b′d) = (a,d) and the required equality follows from the second state-
ment of Corollary 4.5 since m and b/n are relatively prime so that σb/n and ρ̃m commute. We have
shown that the relations of Definition 4.7 are fulfilled. One has, for (a,b) = 1,

μ̃axμ∗
bξ(1,1) = ξ(x,a/b) (59)

which shows that the map x ∈ AZ 
→ xξ(1,1) ∈ E is an isomorphism of abelian groups, and hence the
representation of AZ in E is faithful. �
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Corollary 4.11. The monomials

μ̃ae(r)μ∗
b, (a,b) = 1, r ∈ Q/Z, (60)

form a basis of AZ as a free abelian group.

Proof. By construction E = Z[Q/Z × Q∗+] is a free abelian group with basis the ξ(e(r),a/b) for r ∈
Q/Z and a/b ∈ Q∗+ . Moreover by (59) and Proposition 4.10 the map x ∈ AZ 
→ xξ(1,1) ∈ E is an
isomorphism of abelian groups. �

While Proposition 4.10 describes the left regular representation of the algebra AZ , Proposition 4.4
allows one to construct a representation of AZ on its abelian part Z[Q/Z] as follows.

Proposition 4.12. The relations

θ(x)ξ = xξ, ∀x, ξ ∈ Z[Q/Z],
θ(μ̃n)ξ = ρ̃n(ξ), ∀ξ ∈ Z[Q/Z], ∀n,

θ
(
μ∗

n

)
ξ = σn(ξ), ∀ξ ∈ Z[Q/Z], ∀n, (61)

define a representation θ of AZ on Z[Q/Z].

Proof. It is enough to check that the relations of Definition 4.7 are fulfilled. The first of the three
relations (51) follows from (47). The second follows from the multiplicativity of σn . The third one
follows again from (47). The first two of the four relations (52) follow from the analogous relation (46)
on the ρ̃n and σn . The last two relations both follow from (48). �
4.5. Relation with the integral Hecke algebra

The original construction of the BC-system [1] is based on Hecke algebras of quasi-normal pairs.
One considers the inclusion P+

Z
⊂ P+

Q
where the “ax + b” algebraic group P is viewed as the functor

which to any abelian ring R assigns the group P R of 2 by 2 matrices over R of the form

P R =
{(

1 b

0 a

)
; a,b ∈ R, a invertible

}
. (62)

Here Γ0 = P+
Z

and Γ = P+
Q

denote the restrictions to a > 0. This inclusion Γ0 ⊂ Γ is such that the
orbits of the left action of Γ0 on Γ/Γ0 are all finite. The same clearly holds for orbits of Γ0 acting on
the right on Γ0 \ Γ .

The integral Hecke algebra HZ(Γ,Γ0) is by definition the convolution algebra of functions of finite
support

f : Γ0 \ Γ → Z, (63)

which fulfill the Γ0-invariance condition

f (γ γ0) = f (γ ), ∀γ ∈ Γ, ∀γ0 ∈ Γ0, (64)
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so that f is defined on Γ0 \ Γ/Γ0. The convolution product is then defined by the formula

( f1 ∗ f2)(γ ) =
∑
Γ0\Γ

f1
(
γ γ −1

1

)
f2(γ1). (65)

There is a presentation of this algebra which is obtained as an extension of the integral group
ring Z[Q/Z] by adjoining elements νn and ν∗

n which are formally defined by νn = √
nμn , ν∗

n = √
nμ∗

n
(with the notations of [1, §4], i.e. μn = n−1/2e Xn ). The presentation is of the form:

νnxν∗
n = ρ̃n(x),

ν∗
n x = σn(x)ν∗

n , xνn = νnσn(x),

νnm = νnνm, ν∗
nm = ν∗

n ν∗
m, ∀n,m,

ν∗
n νn = n, νnν

∗
m = ν∗

mνn, (n,m) = 1. (66)

Comparing this presentation with (51) and (52) one obtains

Proposition 4.13. There exists a unique isomorphism

φ : HZ(Γ,Γ0)
∼−→ AZ = Z[Q/Z] �ρ̃ N,

φ
(
e(r)

) = e(r), ∀r ∈ Q/Z, φ(νn) = μ̃n, φ
(
ν∗

n

) = μ∗
n. (67)

Proof. One checks that the relations (66) transform into (51) and (52) under φ. �
The Hecke algebra HZ(Γ,Γ0) admits a natural involution for which νn and ν∗

n are adjoint of each
other. It is given (with arbitrary coefficients) by

f ∗(γ ) := f
(
γ −1

)
, ∀γ ∈ Γ0 \ Γ/Γ0. (68)

The rational algebra AZ ⊗ Q = AQ = Q[Q/Z] �ρ N also admits a natural involution which coincides
with (68) on the subalgebra Z[Q/Z] and whose extension to AZ is dictated by the equation μ̃n =
n(μ∗

n)∗ .
Notice that the isomorphism φ of Proposition 4.13 does not preserve the involution. The rational

subalgebras HQ(Γ,Γ0) and AZ ⊗Z Q = AQ of the C∗-dynamical system (C∗(G),σt) of Definition 4.1
are not the same. One has however

Proposition 4.14. The involutive algebras AZ ⊗Z Q = Q[Q/Z] �ρ̃ N and HQ(Γ,Γ0) become isomorphic
after tensoring by C. An isomorphism is given by

ψ
(
e(r)

) = e(r), ∀r ∈ Q/Z, ψ(νn) = n−1/2μ̃n, ψ
(
ν∗

n

) = n1/2μ∗
n. (69)

The corresponding rational subalgebras of the C∗-dynamical system (C∗(G),σt) are conjugate under σi/2 .

Proof. As subalgebras of the C∗-algebra C∗(G), the above involutive Q-algebras are generated by the
e(r) and respectively by the μn and μ∗

n for AZ ⊗Z Q and by the νn = n1/2μn and ν∗
n = n1/2μ∗

n for
HQ(Γ,Γ0). Thus they are the same after tensoring with C. To get the conjugacy by σi/2, note that
one has σt(μn) = nitμn and σt(μ

∗
n) = n−itμ∗

n . Thus with μ̃n = nμn one gets σi/2(μ̃n) = n1/2μn = νn

and σi/2(μ
∗
n) = n1/2μ∗

n = ν∗
n . �
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Remark 4.15. The above distinction between the two rational subalgebras of Proposition 4.14 is over-
looked in Proposition 3.25 of [6, Chapter III]. However by Proposition 4.14, these two rational algebras
are conjugate by σi/2 and the σt invariance of KMSβ states thus shows that the values of the restric-
tion of KMSβ states is independent of this distinction.

5. The endomotive and algebra in characteristic p

The group ring Z[Q/Z] together with the endomorphisms σn and the maps ρ̃n give a model over Z

of the BC-endomotive.
In this section we study the reduction of this model at a prime p both at the level of the endo-

motive and of the noncommutative crossed product algebra. From now and throughout this section
we shall work over a perfect field K of characteristic p > 0, such as a finite extension Fq of Fp or a
separable closure of Fp .

We first show that, by applying reduction at p and specializing n to be p� , the endomorphism σn

on K[Q/Z] is identified with the geometric Frobenius correspondence. The group algebra K[Q/Z]
decomposes as a tensor product of the group algebra K[Qp/Zp] of the p-torsion Qp/Zp of Q/Z by
the group algebra of fractions with denominators prime to p. The structure of the latter algebra is
essentially insensitive to characteristic p. The new fact specific to characteristic p is that the group
algebra K[Qp/Zp] is unreduced and in fact local. We concentrate on this “p-part” of the abelian
algebra.

We then form a new noncommutative algebra obtained as the crossed product of the p-part
K[Qp/Zp] by the sub-semigroup of N given by powers of p. We exhibit the nilpotent nature of
this algebra by showing that it admits a faithful representation as infinite triangular matrices.

5.1. The endomotive in characteristic p

The relevant properties of the algebra AZ(K) can be isolated by decomposing the groups as follows

Q/Z = Qp/Zp × (Q/Z)(p). (70)

Here Qp/Zp is identified with the subgroup of Q/Z of fractions with denominator a power of p and
(Q/Z)(p) is interpreted as the subgroup of Q/Z of fractions with denominator prime to p. At the
group algebra level one gets

K[Q/Z] = K[Qp/Zp] ⊗ K
[
(Q/Z)(p)

]
. (71)

The decomposition

Q∗+ = pZ × Q
(p)
+ (72)

corresponds to the decomposition of the semigroup N as a product of the semigroup pZ+
of powers

of p and the semigroup N(p) of numbers prime to p. There is no essential difference with the char-
acteristic zero set-up for the action of N(p) on K[Q/Z]. In fact, the endomorphism ρn on K[Q/Z]
retains a meaning when n is prime to p, since the denominators in the definition of the projec-
tion πn and of ρn (i.e. the partial inverse of σn) are integers prime to p. Moreover, we notice that
when n is prime to p the equation T n − 1 = 0 is unramified. On the other hand, when n ∈ pZ+

there
is no way to single out the component of {1} in Spec(An) since in that case the above equation has 1
as a multiple root. Therefore, our study will focus on the understanding of:

• The endomorphism σn , for n = p� ∈ pZ+
.

• The algebra A p∞ = lim A p� ⊗Z K = K[Qp/Zp].
−→�
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We first show the relation between the endomorphisms σn , for n = p� ∈ pZ+
, and the (relative)

geometric Frobenius homomorphism acting on the algebra A p∞ .

Proposition 5.1. Let σFp ∈ Aut(K) be the small Frobenius automorphism given by σFp (x) = xp for all x ∈ K,
then for any �,

(
σp� ⊗ σ �

Fp

)
( f ) = f p�

, ∀ f ∈ K[Q/Z] = Z[Q/Z] ⊗Z K, ∀� ∈ N. (73)

Proof. Both sides of (73) define an endomorphism of the ring, thus it is enough to check that they
agree on elements of the form e(r) ⊗ x, for x ∈ K and r ∈ Q/Z. One has

(
σp� ⊗ σ �

Fp

)(
e(r) ⊗ x

) = e
(

p�r
) ⊗ xp� = (

e(r) ⊗ x
)p�

,

which gives the required equality. �
Remark 5.2. The relation (σp� ⊗ σ �

Fp
)( f ) = f p�

of (73) shows that we can interpret σp� as the

Frobenius correspondence acting on the pro-variety (μ(∞) ⊗Z K). This means that at the fixed level
μ(m) = Spec(Am), the definition of σp� coincides with the Frobenius morphism ϕ as in [17, p. 24]
(i.e. the morphism inducing in étale cohomology the geometric Frobenius Φ of Deligne).

An equivalent description of the algebra A p∞ = lim−→�
A p� ⊗Z K = K[Qp/Zp] will be given in terms

of the following (local) convolution algebra of functions which displays an explicit choice of a basis.
At a fixed level �, i.e. for the algebra A p� , this choice of basis corresponds to the powers εk of the
natural generator ε = δp−� , as in (75), of the maximal ideal of the local ring A p� , cf. Remark 5.9.

Definition 5.3. We define the algebra T (p) (over K) as the convolution algebra of K-valued functions
with finite support on the semigroup S+ = ⋃ 1

pn Z+ ⊂ R, modulo the ideal of functions with support
in S ∩ [1,∞[, with the convolution product given by

f1 � f2(c) =
∑

a+b=c

f1(a) f2(b). (74)

We extend any function f on S+ to a function on S = ⋃ 1
pn Z which fulfills f (a) = 0 for all a < 0.

This extension is compatible with the convolution product. By construction the algebra T (p) is com-
mutative and local. It has a unique character: the homomorphism of K-algebras given by evaluation
at 0, that is,

ε0 : T (p) → K, f 
→ f (0).

Any element in the kernel of this character is nilpotent. The kernel Ker(ε0) of this character is the
only maximal ideal.

For any a ∈ S ∩ [0,1) we let δa ∈ T (p) be given by

δa(a) = 1, δa(b) = 0 if b �= a. (75)

Any f ∈ T (p) is a finite sum f = ∑
f (a)δa and δ0 is the unit 1 of the algebra T (p).
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Fig. 1. The maps σp and ρ̃p .

Proposition 5.4.

1) The following map induces in the limit an isomorphism of A p∞ with T (p),

ι : A p� ⊗Z K → T (p), ι
(
e
(
1/p�

)) = 1 − δp−� . (76)

2) The endomorphism σp corresponds by the above isomorphism to the following endomorphism of T (p),

σp( f )(a) = f (a/p), ∀ f ∈ T (p). (77)

3) The map ρ̃p corresponds by the above isomorphism to the following map of T (p),

ρ̃p( f )(a) = f
(

pa − (p − 1)
)
, ∀ f ∈ T (p). (78)

Note that both maps σp and ρp are given by an affine change of variables as shown in Fig. 1.

Proof. 1) Let us check that the ι(e(1/p�)) fulfill the rules of the generators e(1/p�). In characteristic p
one has

(1 − T )p� = 1 − T p�

.

Thus to show that ι(e(1/p�))p� = 1 it is enough to check that the p� power of the characteristic
function δp−� is equal to 0. This follows from the equalities δa � δb = δa+b (using (74)) and δ1 = 0. In
fact one needs to show that
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ι
(
e
(
1/p�

))p = ι
(
e
(
1/p�−1))

which means that

(1 − δp−� )
p = 1 − δp−�+1

and this follows from δ
p
p−� = δp−�+1 .

2) It is enough to check (77) on the elements ι(e(1/p�)) = 1−δp−� = δ0 −δp−� . The right-hand side
of (77) defines an endomorphism of T (p) which transforms δa into δpa and this gives σp(e(1/p�)) =
e(1/p�−1) as required.

3) Note that since f is extended to a function on S = ⋃ 1
pn Z which fulfills f (a) = 0 for all a < 0,

the formula (78) makes sense and the function ρp( f ) vanishes on the interval [0,
p−1

p ). In character-

istic p one has, with q = p� ,

q−1∑
0

T k = (1 − T )q−1 (79)

since multiplying both sides by (1 − T ) gives (1 − T )q . This shows that

ι
(
ρ̃p(1)

) =
p−1∑

0

ι
(
e(k/p)

) = (
1 − ι

(
e(1/p)

))p−1 = δ p−1
p

. (80)

Now, by (47), one has

ρ̃p
(
σp(x)

) = xρ̃p(1), ∀x ∈ A p∞ ,

which gives the required equality (78) using the surjectivity of σp and the fact that in the algebra
T (p) the convolution by ι(ρ̃p(1)) = δ p−1

p
is given by the translation by p−1

p . �
Corollary 5.5. The kernel of σp is the nilpotent ideal

Kerσp =
{

f ∈ T (p)

∣∣∣ f (a) = 0, ∀a ∈
[

0,
1

p

)}
. (81)

Proof. One has f ∈ Kerσp iff f (a/p) = 0 for all a ∈ S ∩[0,1) which gives (81). Any element f ∈ Kerσp
thus fulfills f p = 0 in the algebra T (p). �
5.2. The BC-algebra in characteristic p

By definition, the BC-algebra over K is the tensor product:

AZ(K) = AZ ⊗Z K. (82)

By Corollary 4.11 the K-linear space AZ(K) coincides with the vector space K[Q/Z × Q∗+] and be-
cause of that we will work with the corresponding linear basis of monomials (60).

The remaining part of this section is dedicated to the study of the algebra

C p = A p∞ �ρ̃ pN ∼ T (p) �ρ̃ pN. (83)
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We shall refer to C p as to the p-part of the algebra AZ(K). We keep the same notation as in Sec-
tion 4.4.

Lemma 5.6. The following monomials form a linear basis of the algebra C p :

μ̃n
pδa, n ∈ N, a ∈ S ∩ [0,1), δaμ

∗
p

m
, m � 0, a ∈ S ∩ [0,1). (84)

Proof. For m = 0 we use the notation μ∗
p

0 = 1 so that the above monomials contain the algebra A p∞
and the generators μ̃p and μ∗

p . Thus it is enough to show that the linear span of these monomials is
stable under the product. One has

μ̃n
p xμ̃m

p y = μ̃n+m
p σm

p (x)y, xμ∗
p

n yμ∗
p

m = xσ n
p (y)μ∗

p
n+m (85)

and, for n > 0,

xμ∗
p

nμ̃m
p y = 0 (86)

while

μ̃n
p xyμ∗

p
m =

{
ρ̃n

p(xy)μ∗
p

m−n if m � n,

μ̃n−m
p ρ̃m

p (xy) if n > m,
(87)

which shows that the linear span of the above monomials is an algebra. �
Note that Lemma 5.6 also follows directly from Lemma 4.8.
In order to exhibit the nilpotent nature of this algebra we now show that the representation of

Proposition 4.12 is given by infinite triangular matrices.
We let K[S ∩ [0,1)] be the K-linear space of K-valued functions with finite support on S ∩ [0,1)

and denote by ξa , a ∈ S ∩ [0,1), its canonical basis. For a ∈ S+ , a � 1, we let ξa = 0 by convention.
Let G = S � Z be the semi-direct product of the additive group S by the action of Z whose gener-

ator acts on S by multiplication by p. The group G acts on S by affine transformations

αg(b) = pnb + a, ∀g = (n,a) ∈ G, b ∈ S. (88)

Lemma 5.7. Let G be the group defined above.

(1) The condition

x � a ⇒ g(x) � a, ∀a ∈ [0,1], (89)

defines a sub-semigroup G+ ⊂ G.
(2) G+ acts on K[S ∩ [0,1)] by

τ (g)ξa = ξg(a).

(3) The semi-group G+ is generated by the elements ga = (0,a), for a ∈ S ∩ [0,1), α = (−1, (p − 1)/p),
β = (1,0).
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Proof. The first statement is obvious. The second follows from (89) for a = 1. Let us prove (3). Let
g = (n,a) ∈ G+ . If n = 0 then g = ga with a � 0. If n > 0 then g(x) = pnx + a and taking x = 0 shows
that a � 0 so that g = gaβ

n . For n = −m < 0, g(x) = p−mx + a. Taking x = 1 and using (89), one gets
p−m + a � 1 i.e. a = 1 − p−m + b for some b � 0. Thus g = gbα

m . �
Proposition 5.8. The equations

θ(δb)ξa = τ (gb)ξa = ξa+b,

θ(μ̃p)ξa = τ (α)ξa = ξ a+p−1
p

,

θ
(
μ∗

p

)
ξa = τ (β)ξa = ξpa (90)

define a faithful representation

C p
θ−→ End

(
K

[
S ∩ [0,1)

])
of the algebra C p by (lower)-triangular matrices T = (Ta,b), Ta,b ∈ K with a,b ∈ S ∩ [0,1).

Proof. The matrix associated to T ∈ End(K[S ∩ [0,1)]) is defined by

(T f )(a) =
∑

Ta,b f (b), ∀ f ∈ K
[

S ∩ [0,1)
]
. (91)

Thus the matrices associated to the operators given in (90) are

(δa)c,d = 0 if c − d �= a, (δa)c,c−a = 1,

(μ̃p)c,d = 0 if c �= d + p − 1

p
, (μ̃p)c,d = 1 if c = d + p − 1

p
,

(
μ∗

p

)
c,d = 0 if c �= pd,

(
μ∗

p

)
c,c/p = 1. (92)

They are lower triangular. Indeed one has

c � c − a,
d + p − 1

p
> d, pd � d, ∀c,d ∈ S ∩ [0,1).

One then needs to show that the defining relations of the algebra C p are fulfilled. These relations are
obtained from the presentation of Definition 4.7 by restriction to the p-part. Thus they are fulfilled
by specializing Proposition 4.12 to the p-part. One can also check them directly. By construction the
action of the δa gives a representation of the convolution algebra T (p). The three relations of (51)

μ̃p xμ∗
p = ρ̃p(x),

μ∗
p x = σp(x)μ∗

p,

xμ̃p = μ̃pσp(x) (93)

follow directly from the group action τ . Moreover one has the additional relation

μ∗
pμ̃pξa = μ∗

pξ a+p−1
p

= ξa+p−1 = 0,

which corresponds to the third relation of (52). Its validity follows from ξb = 0 for all b � 1.
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Let us prove that the representation is faithful. By Lemma 5.6 any element x ∈ C p is a finite linear
combination x = ∑

λ jτ (g j) (λ j ∈ K) of monomials with g j ∈ G+ . Now for any two distinct elements
g,h ∈ G+ the set of elements a ∈ S such that g(a) = h(a) contains at most one element. Thus, since
g j(0) ∈ [0,1), one can find an element b ∈ S ∩ [0,1) such that

g j(b) ∈ S ∩ [0,1), ∀ j, g j(b) �= gk(b), ∀ j �= k.

We then have

xξb =
∑

λ jτ (g j)ξb =
∑

λ jξg j(b)

and xξb �= 0 if x �= 0. Thus the representation is faithful. �
Remark 5.9. By construction the algebra A p∞ is the inductive limit of the local rings Aq = K[T ]/
(T q − 1), q = p� . We let

π̃q = ρ̃q(1) = 1 + T + · · · + T q−1 ∈ Aq = Z[T ]/(T q − 1
)
. (94)

The local ring K[T ]/(T q − 1) is generated over K by the nilpotent element ε = T − 1 (εq = 0). The
principal ideal of multiples of ε is the maximal ideal. We use the natural decreasing finite filtration
by powers of the maximal ideal

F i(K[T ]/(T q − 1
)) = ε iK[T ]/(T q − 1

)
. (95)

One has, using (80),

π̃q = εq−1 ∈ F q−1(K[T ]/(T q − 1
))

, F q(K[T ]/(T q − 1
)) = {0}. (96)

Thus the operator π̃q detects the top piece of the filtration.
The following equalities show that the subalgebra P ⊂ A p∞ generated by the ρ̃m

p (1) = π̃pm = τm is
stable under the ρ̃p and σp ,

τmτn = 0, ρ̃m
p (τn) = τm+n, σp(τn) = 0, ∀m,n ∈ N. (97)

As above one checks that the following monomials form a linear basis of the crossed product algebra
P �ρ̃ pN:

μ̃n
pτk, n ∈ N, k � 0, τkμ

∗
p

m
, m � 0, k � 0. (98)

Since P �ρ̃ pN is a subalgebra of the algebra C p , Proposition 5.8 yields in particular, a triangular
representation of P �ρ̃ pN .

5.3. The effect of reduction

In the original definition of endomotives given in [4], we assumed that the algebras are reduced.
This is in agreement with the classical definition of Artin motives (cf. [8, II p. 211]). In the present
context, namely working over a perfect field K of characteristic p, one can still restrict to reduced
algebras by functorial reduction. One can see in the result below that this reduction introduces a
drastic simplification of the algebra, which, in particular, eliminates the problem of denominators.
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Proposition 5.10. The reduced algebra of lim−→n
An ⊗Z K is the group ring over K of the subgroup of Q/Z of

fractions with denominator prime to p. Moreover, σp induces an automorphism on the reduced algebra.

Proof. This amounts to showing that for n = pkm with m prime to p, the reduced algebra of
K[T ]/(T n − 1) is the algebra K[T ]/(T m − 1). If n = pkm then the group Z/nZ splits canonically as
a product of Z/pkZ and Z/mZ. At the group ring level, this corresponds to a tensor product decom-
position. Since the reduction in characteristic p of the group ring of Z/pkZ is the ground field K,
the first factor in the tensor product disappears and the reduction only leaves the second factor. This
proves the first statement. It is then enough to observe that, for m prime to p, the multiplication by p
is an automorphism of Z/mZ. Since σp preserves the levels, this is compatible with the map of the
inductive system of algebras. �
Corollary 5.11. In the case of the reduced algebra in characteristic p, the inverses ρn of the σn only involve
denominators that are prime to p.

Proof. The case where n is prime to p is clear. Suppose that n = pk . Then by Proposition 5.10, σn is
an automorphism of the reduced algebra since multiplication by n is an automorphism of the group
(Q/Z)(p) . One then defines ρn as its inverse and the corresponding πn is then equal to one, since σn
is injective. �

Note that passing from Q/Z to the subgroup (Q/Z)(p) (i.e. the prime-to-p component) is the
same, when dealing with the Pontrjagin dual groups, as removing from the ring of finite adeles the
component at p. This suggests that there is a connection with the localized system at p in [5] (cf.
[5, Definition 8.14, Theorem 8.15]). Note however that unlike the setting of [5], here the coefficients
are taken in a field of positive characteristic, so that the notion of KMS states should be taken in the
extended sense of [7].

Remark 5.12. Notice that reducing the abelian part of the algebra and then taking the crossed product
as we did in this section is not the same thing as modding out the crossed product algebra AZ by its
nilpotent radical.

5.4. Endomotives in the unreduced case

As we have seen in the previous sections, when taking coefficients in a field of positive character-
istic the BC-endomotive involves unreduced finite dimensional commutative algebras which strictly
speaking do not correspond to classical Artin motives. The construction in characteristic p that we
gave in the case of the BC-algebra in fact extends to a more general class of endomotives constructed
from finite, self maps of algebraic varieties as in [4], but without requiring that these maps are un-
ramified over the base point.

This leads us naturally to consider the problem of a general construction of endomotives in arbi-
trary characteristic. Roughly speaking, an endomotive over a (perfect) field K is given by assigning:

• An inductive system of augmented commutative K-algebras, finite dimensional as vector spaces
over a perfect field K (i.e. Artinian commutative K-algebras).

• A commutative family of correspondences σn .

This set of data should of course be compatible with the constructions that we have developed in
this paper as well as in [4], namely

1) It should determine homomorphisms (correspondences) such as the ρn ’s, when denominators (i.e.
division by n) are allowed.

2) It should be fulfilled by the endomotives associated to self-maps of pointed varieties as described
in [4, Example 3.4].
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6. The BC endomotive over FFF1

In this section we show that the BC endomotive has a model defined over F1 from which one
recovers the original endomotive by extension of scalars to Q.

Proposition 6.1.

a) The BC-endomotive has a model over F1 .
b) The original BC-endomotive is obtained by extension of the scalars from F1 to Q.

Proof. We start with the projective system of affine varieties μ(n) over F1, defined as in Section 3
and Proposition 3.3. This system shows that the abelian part of the BC endomotive is defined over F1.
Notice that these are pointed varieties because the algebras An are naturally augmented. The aug-
mentations fit together in the inductive system of algebras because they come from the natural
augmentation of the group ring.

It remains to show that the σn are morphisms of varieties over F1 in the sense of [16]. This is a
consequence of the construction of the projective system of the varieties μ(n) over F1, as these are
obtained by applying the functor F from varieties over Z to gadgets over F1 (cf. Proposition 3.3).
Notice that the maps σn preserve levels and are given at each level An by (27). Thus, the σn are
morphisms in the category of varieties over Z, and as such they define morphisms of varieties over F1
through the functor F . �
Remark 6.2. Proposition 6.1 shows that the BC-endomotive can be defined over F1, according to
the theory developed by C. Soulé in [16]. However, we also want to emphasize that since our proof
is mainly based on a description of the BC-algebra which is obtained using the family of algebraic
endomorphisms σn (n ∈ N) of the affine group-variety Gm (cf. Section 2.2), it continues to hold—
independently of the detailed theory of varieties over F1 as in op. cit.—as long as one is able to
show that the space Gm and the endomorphisms σn are defined over F1. The forthcoming paper [3]
will introduce and develop a theory of geometric spaces over F1 which is a refinement of the one
contained in [16]. In the case of Gm , the two theories agree and determine the same space over F1.
The advantage of the construction in [3] is that of being properly linked to the geometric theory
developed by J. Tits [18], in relation to the study of semi-simple algebraic groups.

6.1. The automorphisms of F1∞/F1 and the symmetries of the BC system

In [10], the analog of the Frobenius automorphism for the extension F1∞ of F1 is described as
follows. Suppose given a set X with a free action of the roots of unity (that is a vector space over
F1∞ when one adds an extra fixed point 0). Then, given an element α ∈ Ẑ∗ (and more in general a
noninvertible one in Ẑ) one defines a new action on the same set by the rule

ζ : x 
→ ζαx. (99)

For α = n an integer, this means that one replaces the action of a root of unity ζ by that of ζn . The
Ẑ-powers of the Frobenius are then defined by setting

ψα : F1∞ → F1∞ (100)

to be the map that sends the action of roots of unity ζ on a given F1∞ -vector space X to the action
by ζα .

When reformulated additively, after making an identification of the group of roots of unity with
Q/Z, one can write the action (99) in the form
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e(r) 
→ e
(
α(r)

)
, (101)

where α ∈ Ẑ is seen as an element in Ẑ = Hom(Q/Z,Q/Z).
Thus, in terms of the BC system, the Frobenius appears naturally in the semigroup action. This is

the case of (101) where n is an integer and it gives the action of the σn . Moreover, it is also important
to keep in mind that the Frobenius action (101) also recovers the symmetries of the BC system. In

fact, the symmetries by automorphisms, given by Ẑ∗ act exactly like the corresponding Frobenius ψ Ẑ∗

(cf. [1,4]).

6.2. The Frobenius correspondence and the BC endomotive over F1

We now show that not only the BC-endomotive has a model over F1, but in fact it captures the
structure of the extension F1∞ = lim−→ F1n over F1 by means of the Frobenius correspondence.

Theorem 6.3. The structure of the BC-endomotive corresponds to the structure of F1∞ over F1 as follows:

a) The abelian part of the BC-endomotive over F1 corresponds to the inductive system of “extensions” F1n .
b) The endomorphisms σn describe the Frobenius correspondence, in the sense that on the algebra

Z[Q/Z] ⊗Z K, for K a perfect field of characteristic p > 0, the endomorphisms σn, n = p� (� ∈ N)
coincide with the Frobenius correspondence described in Remark 5.2.

Proof. For a), we recall that the abelian part of the BC-endomotive over F1 is defined by the pro-
jective system μ(∞) of algebraic varieties μ(n) = F Spec(An), An = Z[Z/(n)] cf. (26). By means of
the isomorphism of algebras Z[T ]/(T n − 1)

∼−→ An , u(n) 
→ e( 1
n ) the inductive system of exten-

sions F1n ⊂ F1m (n|m) corresponds, after extending the coefficients to Z, to the projective limit
· · · → μ(m) → μ(n) → which defines geometrically the abelian part of the BC-endomotive. We refer to
Section 3 for the details.

For b), we refer to Proposition 5.1. We recall that on an algebraic variety X0 defined over a finite
field Fq (q = p�) the Frobenius morphism ϕ : X0 → X0 satisfies the property that the composition
ϕ ×σ : X̄0 → X̄0, where σ : F̄q → F̄q is the arithmetic Frobenius automorphism, acts on X̄0 := X0 × F̄q
by fixing points and by mapping f 
→ f q in the structure sheaf of X0. Here, f q denotes the section f
whose coefficients are raised to the q-th power. At each fixed level An of the inductive system of
algebras An ⊗Z K, the endomorphisms σk , for k = p� , behave in exactly the same way as the Frobenius
homomorphisms (cf. Proposition 5.1). �
6.3. Recovering the analytic endomotive

In [16], the set of data which define a variety X (of finite type) over F1 is inclusive of the important
analytic information supplied by the assignment of a commutative Banach C-algebra A X (cf. Section 3
of this paper). The definition of X implies that functions of A X can be evaluated at the points of X .
We shall now show that this analytic part of the set of data which define the BC-system as a pro-
variety over F1 supply naturally the structure of an analytic endomotive in the sense of [4]. The point
is that the set-up which describes the pro-variety μ(∞) is inclusive of the information supplied by an
inductive system of Banach C-algebras Aμ(n) = An ⊗Z C, cf. (19). Taking the inductive limit of these
yields the algebra

Aμ(∞) = lim−→ Aμ(n) (102)

since the functor X 
→ A X is contravariant. The following statement is a direct consequence of the
construction of the model of the BC-endomotive over F1 and of (102):

Proposition 6.4. The analytic part of the pro-variety over F1 associated to the BC endomotive over F1 coincides
with the analytic endomotive of the BC system as described in [4].
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