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1. Introduction

Starting with the seminal paper of J. Tits on the geometric construction of the analogues over any
field of all complex simple Lie groups (cf. [18]), the a priori vague idea that a suitable analogue of the
geometry over the finite fields Fy; should make sense in the limit case “q = 1" has been taking more
and more substance and has given rise to a number of different approaches (cf. [9-12,15,16,19]). So
far, the relation between these constructions and the Riemann zeta function has remained elusive, in
spite of the hope of being able to consider the tensor product Z ®p, Z as a nontrivial analogue of the
product of a curve by itself (see [12]).

It is known that the quantum statistical mechanical system of [1] (which we refer to as the BC-
system) gives, after passing to the dual system, a spectral realization of the zeros of the Riemann
zeta function, as well as a trace formula interpretation of the Riemann-Weil explicit formulas (see
[1,2,4,5,13]).

The main result of the present paper is that the BC-system and the associated algebraic endo-
motive as defined in [4] appear from first principles, by studying the algebraic extensions of F; and
implementing the techniques developed in [11,16].

In this formalism, a variety (of finite type) over F; determines, after extension of scalars to Z,
a variety over Z. Moreover, even though the algebraic nature of [ is still mysterious, a basic equation
of the theory is the formal equality

Fin ®r, Z:=Z[T]/(T" —=1), neN. (1)

Our starting point is that the natural inductive structure defined by the extensions Fi» C Fym, for
n|m, translates into a natural inductive system of algebras, whose limit is the group ring Z[Q/Z].
After tensoring by Q, this group ring is a key ingredient in the definition of the BC-endomotive [4],
since it describes the abelian part of the structure. The second key ingredient is the semigroup of
endomorphisms of the above algebra associated to the action of N, given by multiplication, in the
group QQ/Z. This operation describes an analogue over F; of the classical Frobenius correspondence,
and part of our investigation is directed at making this statement more precise.

In Section 2 we start our study by recalling the group theoretical and an equivalent geometrical
description of the abelian part of the BC algebra. In particular, the Section 2.1 introduces the relevant
abelian algebra, that is the group ring of the abelian group Q/Z, together with the endomorphisms o,
given by multiplication by n in Q/Z as well as their partial inverses p,. In Section 2.2 we describe
the same space by using elementary techniques of algebraic geometry.
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In Section 3 we give an interpretation of the abelian part of the BC-system in terms of a system
of pro-affine varieties £® over F; which are defined by considering affine group schemes of roots of
unity.

The core of the paper concentrates on the definition of an integral model for the BC-system over QQ
and on the generalization of the notion of endomotive that was originally developed over fields of
characteristic zero only. This study is motivated by the idea to achieve an interesting link between
the thermodynamical system associated to the BC-algebra (and its connection to the zeta-function)
and the theory of algebraic varieties over 1. Working with spaces over F; implicitly requires one to
define a geometric theory over Z and thus to set-up a corresponding construction over finite fields
(and their extensions), after taking the reduction at the various primes. The main result of Section 4
is that the original noncommutative BC-algebra Ag has a model over Z.

In Section 4.1 we shortly review the description of the C*-algebra of the BC-system in terms of
groupoids and in Section 4.2 we recall the presentation of .Ag by generators and relations. Section 4.3
describes how to eliminate the denominators in the partial inverses p, of the endomorphisms o;,.
This leads us in Section 4.4 to the definition of the integral model Az of the BC-algebra by generators
and relations. In Proposition 4.10 and Corollary 4.11, we show that the general element of Az can
be uniquely written as a sum of simple monomials labeled by Q/Z x Q. In Section 4.5 we define
an isomorphism of Az with the integral version Hz(I', I'p) of the original Hecke algebra of [1], and
deduce from that the existence of two different involutions on the rational algebra Ag. In Section 5 we
analyze the BC endomotive over a perfect field of characteristic p, and we relate the endomorphisms
of this system to the Frobenius correspondence.

We isolate the p-part C, of the BC-algebra in characteristic p and exhibit its nilpotent nature by
constructing in Proposition 5.8 a faithful representation of C, as lower triangular infinite matrices.
This representation is obtained by relating the algebra C, to a sub-semigroup of the group of affine
transformations of the additive group S=J pl—,.Z C R. A new feature that arises in positive character-
istic is the appearance of unreduced algebras in the abelian part of the system. We explain the effect
of reduction of these algebras in Section 5.3 and briefly discuss in Section 5.4, the required extension
of the notion of endomotive to the general (unreduced) framework.

Finally, in Section 6 we prove that the BC system has a model defined over Fy. This result al-
lows us to deduce that the symmetries of the BC system are recovered from the automorphisms
of Fioe =limFn over Fy. In fact, we show that the BC endomotive embodies the structure of the
extensions Fqn of F; through the Frobenius correspondence which is implemented by the action of
the endomorphisms on the abelian part of the associated algebra. More precisely, we show that these
endomorphisms coincide with the Frobenius correspondence in the reduction of the BC system over
a perfect field of positive characteristic. We then use this result to prove that the original analytic
endomotive of the BC system can be recovered from the data supplied at infinity in the form of an
inductive system of Banach algebras.

2. The abelian part of the BC system and its endomorphisms

In this section we shall give a short overview of two equivalent formulations of the abelian part
of the algebra describing the quantum statistical mechanical system introduced in [1] as well as the
associated endomotive [4]. In the following and throughout the paper we shall refer to it as the
BC-system (cf. Definition 4.1).

2.1. Group theoretic description
The BC-endomotive over QQ is defined as the algebraic crossed product of the group ring Q[Q/Z]
by the action of a semigroup of endomorphisms.

In the following, we denote by e(r), for r € Q/Z, the canonical generators of the group ring Q[Q/Z]
with presentation

e(a+b)=e(a)e(b), Va,beQ/Z. (2)
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We now describe in group theoretic terms the semigroup action on this group ring. Let I" = Q/Z.
For each n, let I, C I be the n-torsion subgroup

In={xel |nx=0}. (3)
Proposition 2.1. Letn € N.

(a) One has an exact sequence of abelian groups

1T 511, (4)
(b) The operator
Ty = L Ze(s) (5)
"Tn
sely

defines an idempotent 1, € Q[Q/Z). One has mpmy = 7, where k is the least common multiple of n
and m.
(c) The formula

QT > QIQ/ZL o) =1 3 e (6)

defines an endomorphism of Q[Q/Z]. Moreover py, is a ring isomorphism between Q[Q/Z] and the re-
duced algebra by 1, more precisely one has

Pn:QIQ/Z] — mQIQ/Z),  pa(e(r)) =mne(s), Vsst.ns=r. (7)

(d) The formula

on:QIQ/Z] — QIQ/Z),  on(e(r)) =e(nr), VreQ/Z, neN, (8)

defines an endomorphism of Q[Q/Z] and one has

OnPn(X) =X, (9)

On0n(X) = X, (10)

Proof. (a) follows from the divisibility of the group I", which implies the surjectivity of the multipli-
cation by n.

(b) One checks that 7{,% = 1, using (2). Given integers n and m, with £ = (n, m) their gcd, the map
(s, t) eIy x Iy s+tel}isan ¢ to 1 map onto [}, where k =nm/¢ is the least common multiple
of n and m. Thus m,my, = my.

(c) First, the homomorphism pj, is well defined since

mpe(s) = % Z e(u)

nu=s
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is independent of the choice of s such that ns =r. It defines an algebra homomorphism, since with
nsj=rj one has

pn(e(r1 +12)) = mae(s1 + s2) = mpe(s1)mne(s2) = pu(e(r)) pu(e(r2)).

We then show that p, is an isomorphism with the reduced algebra. We let I be the (Pontrjagin)
dual of I', i.e. the group of characters of the group I'. We let E, be the open and closed subset
of I given by the condition x € E, if and only if x(m,) = 1. This holds if and only if x|p, = 1.
This allows one to identify the closed subset E, C [ with the space of characters of the quotient
group I'/I;. Using the identification of I'/I}, with I determined by the isomorphism (4), one gets
an isomorphism of E, C I" with I, given by

*

Pn ~
En - T, X = Pn(X), Pr@) = x(s), VYsstns=r. (11)

In other words, o () = x o pn at the level of the group ring. The range of the algebra homomorphism
on is contained in the reduced algebra by 7,, and p,(f) =0 implies (o (x), f) =0 for all x € E,. It
then follows that f =0 since p;; is surjective, hence p, is injective.

To show that the algebra homomorphism p, is surjective on the reduced algebra by 7y, it is
enough to show that the range contains the mye(a) for all a € Q/Z. This follows from (6).

(d) The map r € Q/Z + nr € Q/Z is a group homomorphism. One has o,(7r;) =1 by (5) and one
gets (9) using (6). One checks (10) on the generators e(s) using (6). O

2.2. The endomorphisms py, from algebraic geometry

Let us first recall the geometric construction introduced in [4] which gives rise to interesting exam-
ples of algebraic endomotives. One lets (Y, yg) be a pointed smooth algebraic variety (over a field K
of characteristic zero) and S an abelian semi-group of algebraic self-maps s: Y — Y with s(yo) = yo,
which are finite (of finite degree) and unramified over yg. In this way one then obtains:

e A projective system of algebraic varieties

XSZ{YEY‘S(J’)ZYO}, &5 1 Xy = X, &, (¥)=1(y) if s’ =rs.

e Algebraic morphisms
Bs: X =lim X, — X*, EuPs(x) = s&u(x), (12)

where X6 = Es‘l(yo) C X are open and closed subsets of X.
In other words, one obtains in this way a first action o of the semigroup S on the projective limit

X = lim X,;, since the maps fs given by applying s componentwise commute with the connecting
maps of the projective system

os(f)=fopBs. (13)

In fact, since the maps Bs are isomorphisms of X with X, it is possible to invert them and define
a second action of S that corresponds, at the algebraic level, to the endomorphisms

-1 : es
,Os(f)(x)z{f(ﬁs (X)) leGX s (]4)
0 if x ¢ XC.
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The BC-endomotive is a special case of this general construction. It corresponds to the action of
the semigroup S =N by finite algebraic endomorphisms, unramified over 1, on the pointed algebraic
variety (Gm g, 1) (cf. [4, Proposition 3.7]). One has G ,q = Spec(Q[T*!]) and the action of N is given
by a > a" on the coordinate a € Q of the point associated to the character P(T) — P(a). Equivalently,
at the algebra level, this action is described by

Q[T > P(T. T ") > P(T", T") e Q[T*']. (15)

The point 1 € G /g is a fixed point and its inverse image under the algebraic map a > a" is X; =
Spec(Q[T*!]/(T" — 1)). The spaces X, form a projective system indexed by N, with partial order
given by divisibility. That is, for a pair of natural numbers r,n with r =ns, we have maps

Enr: Xr = Xn, X x5,

One lets X = 11m Xn. The base point 1 belongs to X, for all n and defines a component Z, = {1}
of X,. One checks that the description of the algebra morphisms p, given by (14) agrees with that
given in (6). Here the closed and open subset X® C X of X is simply the inverse image & YzZycX
of Z, by the canonical map &, from the projective limit X = lim Xp to Xp.

The relation between this geometric description of the BC-endomotive and the previous group
theoretic one can be seen in the following way.

Let u(n) be the class of T mod T" — 1, i.e. the canonical generator of the algebra Q[T*'1/(T" — 1).
Then the homomorphism &, , is given by

Enn(um)=um?, a=m/n. (16)

The isomorphism with the group theoretic description is then obtained by mapping u(n) — e(%) €

QIQ/Z].
3. F1~ and the abelian part of the BC-system

In this section we describe the group ring part of the algebra of the BC-system in terms of schemes
of finite type over Fy in the sense of [16]. This is done by introducing a family of affine algebraic
varieties 1™ over F;. We will show that these spaces can be organized in two ways: as an inductive
system related to the affine multiplicative group scheme over F; and also as a pro-variety u(® =
lim w™ ., The relation with the BC-system arises exactly when one works with the second system.

We first recall the examples of extensions Fy» of F1, developed in [11,16], which are the analogues
for ¢ =1 of the field extensions Fgn of Fq. The main idea is that these extensions are described by the
formula (1) after extending the coefficients from F; to Z. Notice that neither F; nor its extensions Fin
need to be properly defined for (1) to make sense. Following [11], while “vector spaces over 1"
correspond to sets, those defined over the extension [Fi» correspond to sets with a free action of the
group Z/nZ.

When n|m, one expects in analogy with the case of Fgn (q > 1 a rational prime power) to have
extensions

Fin C Fym (17)

(cf. [11, (1.3)]). In terms of free actions of roots of unity on sets, and for m = na, the functor of
restriction of scalars for the extension (17) is obtained by viewing Z/nZ as the subgroup of Z/mZ
generated by a, which is in agreement with (16).

Note also that there is no analogue for g =1 of the classification of finite extensions of g for q a
prime power, and it is unjustified to consider the inductive limit Fi =1im[F1» of the extensions (17)
as the algebraic closure of [Fy.
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3.1. Affine varieties over Fq

We start by recalling briefly the notion of an affine variety over [F; as introduced in [16]. Starting
with the category of (commutative) rings R with unit, which are finite and flat over Z, we denote
by R the full sub-category generated by the rings A, = Z[T]/(T" — 1) as in (1) and their tensor
products (as Z-modules). A gadget! X = (X, Ax, ex) over Fy is specified (cf. [16, §3.4, Definition 3])
by giving the following data:

(a) A covariant functor X : R — Sets to the category of sets.
(b) A C-algebra Ay.
(c) A natural transformation ey from the functor X to the functor R — Hom(Ayx, R¢).

The notion of morphism of gadgets is that of natural transformation i.e. a morphism ¢ from X
to Y is given by a pair ¢ = (¢, ¢*):

p:X—>Y, ¢*: Ay — Ay, (18)

where ¢ is a natural transformation of functors and ¢* a morphism of algebras. One requires the
compatibility with the evaluation maps i.e. one has a commutative diagram

$(R)
XR) ———=Y(R)

ex(R)l \Lev(R)

¢
Hom(Ayx, Rc) — Hom(Ay, Re).

A morphism ¢ from X to Y is an immersion when ¢* is injective and for any object R of R, the map
¢(R) : X(R) — Y(R) is injective.

" The construction described in Section 3.3 of [16] gives a natural covariant functor F from the
category of varieties over Z (i.e. schemes of finite type over Z) to the category 7 of gadgets over [F.
More precisely

Lemma 3.1. An affine variety V over Z defines a gadget X = F (V) over F; by letting

X(R)=Homz(O(V),R), Ax=0()®zC, ex(f)=f®idc, YfeX(R). (19)
One then defines (cf. [16, Definition 3])
Definition 3.2. An affine variety over Fy is a gadget X such that:
e X(R) is finite for any object R of R.
e There exists an affine variety X7 over Z and an immersion i : X — F(X7z) of gadgets satisfying the

following property: for any affine variety V over Z and any morphism of gadgets ¢ : X — F(V),
there exists a unique algebraic morphism

@z Xz =V

such that ¢ = F(¢z) oi.

T “Truc” in French.
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3.2. The varieties 1 ®

We introduce the varieties ©u® over Fq, as examples of affine varieties over F;. We begin by
defining the associated functors ,L_L“‘) : R — Sets. These are given (for k € N) by the assignments

n®®) ={xeR|x¥ =1}, (20)
i.e. u® is the functor represented by the ring Ay:
pw® (R) =Homz (A, R), VR e Obj(R). (1)

Notice that the functors /iG() can be organized in two different ways:

a) As an inductive system converging to © = Gpm, where Gpn(R) := u(R) is the multiplicative
group Gy, over [Fq, as affine variety over F; (cf. [16, 5.2.2]).
b) As a projective system converging to &(OO), where

1 (R) :=limHom(A, R) = Hom(Z[Q/Z], R).

<

k

For a), one uses the natural inclusion

™R c ™ R),  Vajm, (22)

which corresponds at the level of the rings A, representing these functors, to the surjective ring
homomorphism

Am — Ap=An/(T" = 1), Vnjm. (23)

Then, the union of the ,u,(")(R) is simply the functor p(R) which assigns to R € Obj(R) the set of all
roots of 1 in R. In the formalism of [16] this functor is part (a) of the data (a)-(c) for the multiplicative
group u = Gy, as an affine variety over Fi.

To explain b), we use the homomorphisms (16). These homomorphisms organize the ;/,(")(R) into
a projective system. The connecting maps are given by raising a root of 1 to the power a = m/n. Then,
the elements of (°(R) are described by homomorphisms of the group Q/Z to the multiplicative
group of R. The equality 11> (R) = Hom(Z[Q/Z], R) follows from (21).

After tensoring by Z as in (1), the scalars extensions Fin € Fim of (17) (cf. [11, (1.3)]) correspond
to homomorphisms of rings

Emn : Fin ®F, Z — Fim ®p, Z (24)

given by

Emn(um)=um?’, a=m/n, (25)

where u(n) is the canonical generator T € A;. These agree with the maps (16) that define the integral
version of the abelian part of the BC-system.

In order to complete the definition of the varieties ©™ over F;, we use the functor F of
Lemma 3.1. In other words we define
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w™ = FSpec(Ap). (26)

One checks (cf. [16, §4, Proposition 2]) that it fulfills the conditions of Definition 3.2. We then obtain
the following result.

Proposition 3.3. The 1™ defined as in (26) form a projective system of zero-dimensional affine varieties
over Fq.

Proof. It follows from (21) that the corresponding functors E(k) are the same as the ones defined
by (20). The morphisms (16) turn the varieties Spec(A;) into a projective system and thus, since F is
a covariant functor, we get that the 1™ form a projective system of varieties over Fy. O

4. The integral BC-endomotive

Having to work over Z creates a problem when one implements the semigroup action via the maps
Pn, Which involve denominators, as in (6) and (5). However, as shown in the algebro-geometric de-
scription of the BC-algebra (Proposition 2.1(d)), the partial inverses of the p,, which we have denoted
by o, do not involve denominators, therefore we will be able to consider them over Z.

The partial inverse relations between the o, and p, are given by (9) and (10).

Since by (21) the schemes p™ are represented by the rings A,, by Yoneda's lemma the ring
homomorphisms o, given by

on:Ar— Ar,  u(k) > uk)" (27)

define (contravariantly) morphisms of schemes. These induce morphisms of the pro-scheme &("O) by
the compatibility

Erkoon=0n0&k, Vk|¢, VneN. (28)

In Proposition 6.1 we will show how the maps o, in fact give rise to endomorphisms of the vari-
eties u® over Fj.
In the limit, the endomorphisms o, are surjective

oy lim Ap — lim Ay. (29)
k k
In fact, in the group ring notation of Section 2.1, one gets oy (e(r)) = e(nr), while one has the sur-
jectivity of multiplication by n in the exact sequence (4). However, the o, are not the same as the
endomorphisms p;,, since the latter are injective and describe ring isomorphisms between reduced
algebras and the projectors m,, as we have shown in Proposition 2.1.

The kernel of o, in (29) is the ideal J, generated by the element u(n) —1, or in group-ring notation
by e(1/n) — 1. This means that or,;](f) is only defined modulo J,. If one allows inverting n, then
there is a natural complementary subspace to J,, namely the reduced algebra by the projection ;.
However, when we work over Z (and a fortiori over F;) we cannot invert n, and we need to adapt
the presentation of the BC-endomotive. The data of the BC-endomotive, i.e. the abelian algebra and
the endomorphisms, combine to produce a noncommutative crossed product algebra with a natural
time evolution defined over C. This quantum statistical mechanical system is the BC-system which
we recall below.
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4.1. C*-algebra description of the BC-system

At the C*-algebra level the BC system is given by 1, (Co(Ag,f) x Q})1,, namely by the algebra of
the crossed product Co(Ag,f) x Q% reduced by the projection 1, € Co(Aq, f). Here Ag ¢ denotes the

locally compact space of finite adeles of Q and Zc Aq, s the open compact subset closure of Z. The
reduced algebra can be described as the convolution algebra of the locally compact étale groupoid G
obtained as the reduction of the groupoid Ag,; x Q% by the open and closed set of units Z C Ag .
Concretely, the groupoid G is the étale groupoid of pairs

G={.p) |reqr, p €7, such that rpeZ}, (30)
with source and range maps (r, p) — p and (r, p) — rp, and composition

(r1, p1) o (2, p2) = (1112, p2)  if r202 = p1. (31)

The C*-algebra C*(G) of a locally compact étale groupoid G is obtained as the completion of the
algebra C.(G) of compactly supported functions on G with the convolution product

fixh@= Y fE)fi(g), (32)
8182=¢
the involution
=" (33)
and the norm
I71:= sup, |7y (D) s, - (34)

Here every unit y € G defines a representation 7y by left convolution of the algebra C.(G) on the
Hilbert space H, = ¢2(Gy), where G, denotes the set of elements in G with source y. Namely, one
has

(ry(HE)N @ = Y f(gn&(g). (35)

£182=8

The C*-algebra C*(G) contains C(Z) as a subalgebra and is generated by C(Z) and the elements Un
given by the compactly supported functions

pn(, p) =1, YpeZ,  pa(r,p)=0, ¥r#n, pel. (36)

One identifies the Pontrjagin dual of the group Q/Z with the compact group 7= Hom(Q/Z, Q/7Z)
using the pairing

(y.p)=e""PY)  Vy eQ/Z, peHom(Q/Z,Q/Z)

and one lets e(y) € C*(G) be given by the function

e(y)(r,p)=0, Vr#1, e(Y)1,0)=(y,p). (37)
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The time evolution is given by the following one-parameter group of automorphisms of the C*-
algebra C*(G):

—it %

o(n) =" e, or(up)=n"ur  or(e(y)) =e). (38)
Definition 4.1. The BC-system is the complex dynamical system defined by the pair (C*(G), o).

We refer to [6, Chapter 3, §4]| for the equivalent descriptions of the C*-algebra of the BC-system
and of the relation with Q-lattices. Working over C one considers the subalgebra of C*(G) generated
by the characters e(y), y € Q/Z the w, and their adjoints ;. We shall now explain the presentation
of this algebra over Q.

4.2. The BC-algebra over Q

We first recall the presentation of the crossed product algebra Ag = Q[Q/Z] x N of the BC system
in characteristic zero.

The group ring Q[Q/Z] has the canonical additive basis e(y), y € Q/Z, with e(y)* =e(—y) and
e(y1 + v2) = e(y1)e(y2). To obtain the crossed product, one considers then generators w, and W,
n € N, which satisfy the following conditions:

(c1) uppn=1,Vn,

(€2) fnm = Mnlhms M = Mg gy, Y0, M,
(€3) Unpy = UpMn, if (m,n) =1,
together with the additional relation

(c4) tne(YIs = 5 Yns—y €(8), YN, ¥

In particular, the relation (c4) can be interpreted algebraically by means of the homomor-
phism p;(x) (cf. (6)) projecting onto the reduced algebra by the idempotent ;. This means

(c4) pn(x) = punxpk, Vx € QIQ/Z].

As a consequence of (c1) and (c4’) we get

1
(nif)” = (st (1n i) = pnpis = pu(1) = - Zoe(y).
ny=

In this way we get a description of the projector 7, € Q[Q/Z] as in (5) by means of the new genera-
tors of the crossed product i.e. 7, = pn(1) = pp . It also follows from (c1) that g, pin = pn. Since
the surjective endomorphisms o, are partial inverses of pp, that is

1 1
onpn(e()) = > on(e(yN) =+ > ey =e@).

ny’=y ny’=y

one gets o, on(x) =X, Vx € Q[Q/Z].
We then have the following easy consequence.
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Proposition 4.2. The following relations hold in the algebra Ag = Q[Q/Z] x, N:

MnX = Pn(X)in, Vxe€Q[Q/Z], VneN, (39)
urx=op(x)ur, VxeQ[Q/Z], VneN, (40)
Xy = Upon(x), Vx e Q[Q/Z], VneN. (41)

Proof. Relation (39) follows from

MnXiy = Pn(X) (42)

and the fact that @, = 1. For (40), we use the idempotent 77, = pn ;s = pn(1). We first assume that
X = mpx belongs to the reduced algebra by 7. It then follows that x = p,(y) for some y € Q[Q/Z]
(hence y = on(x)). By applying (c4’) and (c1), this shows that

MpX = [y Pn(Y) =ty nY iy = Yy = On(X) .

In the general case, we notice that in view on (c1), the left-hand side of (40) does not change by
replacing x by pnuix = mpx. The right-hand side does not change either, since o0, (r;) = 1, hence
(40) holds with no restriction. The relation (40) also gives

Xy = 0 (X) (43)

by multiplying on the right by w, and applying (c1). The relation (41) then follows by (43) together
with X = mpXpn = X fhn. O

Remark 4.3. Notice that the involution (33) of the C*-algebra C*(G) restricts to an involution of the
rational algebra Ag = Q[Q/Z] x N with the properties

e(y)—>e(=y),  Hnr> Uy, > [n. (44)

Note that the full presentation of the rational algebra involves the two relations that appear in (c2).
In particular this is needed for the involution (44) to make sense.

4.3. The maps pn

When one wants to generalize the definition of the algebra Ag = Q[Q/Z] %, N to the case where
the field of coefficients is a perfect field K of positive characteristic (for example K =T,), as well as
in extending the original (rational) formulation of the algebra to the case of integer coefficients, one
is faced with the problem of “dividing by n” in the definition of the endomorphisms p, (e.g. when
K =Ty, for n = p). However, up to multiplying the original definition of the maps p, by n, the linear
maps

P KIQ/Z] - KIQ/Z],  fu(ey)) = > ey (45)

ny’=y

retain a meaning (when char(K) = p > 0 and n = p and also over Z), since e(y) is a linear basis
of the algebra K[Q/Z] as a K-vector space. In particular, when char(K) = p > 0, the operator 7, =
Pp(1) =3, _ge(y) #0 is nilpotent since
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= ( > e(V))( > e()/)) =Y ey+y)=p ) ey")=0.
py=0 py'=0 vy py"=0

Compare this with the idempotents 7, of (5). Moreover, over a perfect field of characteristic p > 0
one gets oppp =0, since opTp = 0opPp(1) =0p 3, ge(¥) =3 ,,_oe(py) = 0. This means that
Range(pp) C Ker(op).

Proposition 4.4. When working over Z the o,, continue to make sense and define endomorphisms of Z[Q/Z)]
which fulfill the following relations with the maps pm:

Onm = OnOm, Pmn = PmPn, Ym,n, (46)
P (Om(0Y) =Xpm(y). Vx,y € ZIQ/Z], (47)
oc(Pp () = (b, 0) Py (00 (%)), b =b/(b,c), ¢ =c/(b.0), (48)

where (b, ¢) denotes the gcd of b and c.

Proof. One has by definition oy (e(y)) = e(ny), which shows that o;; is an endomorphism of Z[Q/Z]
and opm = 07,0m. To get Pmn = PmoOn We let, for x€e Q/Z and n € N,

En(x) ={y € Q/Z |ny =x}. (49)

One has

Em®= | En®, yi#y2 = En(1)NEn(y2)=0,
YeEn (%)

thus
Pm(fn(e(®)) = ﬁm< > e(y)) = > > e@=pm(e®).
En(x) YEEn (%) ZEEm(Y)
To check (47) we can assume that x =e(s), y =e(t) with s,t € Q/Z. One has op(X)y =e(ms)e(t) =
e(ms +t). For u € Q/Z, one has mu=ms +t iff u —s € En(t) thus Ep(ms +t) =s + En(t) which
proves (47).

To check (48) we assume that x = e(s) and let n = (b, ¢) so that b =nb’, c =nc’ with (b’,c’) =1.
One has

Ep(s)={ueQ/Z|bu=s}={ueQ/Z|nb'u=s).
Thus the multiplication by c =nc’ is an n to 1 map from Ej(s) to Ep (c’s). This proves (48). O
In particular one gets

Corollary 4.5. The range of pp is an ideal in Z[Q/Z]. When n and m are relatively prime o, commutes
with pm.

Proof. The range of p, is additive by construction and is invariant under multiplication by Z[Q/Z]
using (47). The second statement follows from (48). O
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Remark 4.6. Notice that, although the p, are not ring homomorphisms, the relation (47) which they
fulfill suggests the existence of an associated correspondence (in the form of a bimodule). This would
fit with a more general framework for the theory of endomotives that uses correspondences instead
of endomorphisms as in [14].

4.4. The BC-algebra over 7Z

When K denotes either Z or a perfect field of positive characteristic, the relations (40) continue
to make sense, because the o, are well defined. On the other hand, the relation (39) involves the o,
which are not well defined. However, in the case of integral coefficients and in characteristic p, the
linear maps o, of (45) make sense and in the latter case these maps play the role of the ppp. Thus,
in order to extend the relation (39), we keep the generators w;; and introduce new generators fi, (in
place of the w,’s), which play the role, in characteristic p, of the operators pu, and in general fulfill
the relation
finX14 = Pn(X), (50)

that is the analog of (42). These relations reformulate (c4’) in the case of integral coefficients and
make sense in positive characteristic.

Definition 4.7. The algebra Az = Z[Q/Z] x5 N is the algebra generated by the group ring Z[Q/Z],
and by the elements fi, and u;;, with n € N, which satisfy the relations:

XLy = Pn(X),
X = 0 (X) Ay
Xfly = fAnOn (%), (51)
where pm, m € N is defined in (45), as well as the relations
Pnm = fAnflm, ¥n,m,
Ponm = HnHms  Yn,m,
Mnfin =,
Pl = Pmfn, (n,m) = 1. (52)
Our first task is to check that these relations are sufficient to express every element of Az as
a finite sum of elementary monomials labeled by a pair (x,r) where x € Z[Q/Z] and r € Q% is an

irreducible fraction r =a/b.
Lemma 4.8. Any element of the algebra Ay, is a finite sum of monomials:

faxpy, (a,b)y=1, xeZ[Q/Z), (53)
where by convention fi1 = uj = 1.

Proof. It is enough to show that the product of monomials of the form (53) is still of the same form.
We take a product of the form

ReaXhpy ey poy-
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Let then n be the gcd of b =nb’ and ¢ =nc'. One has

Mpkc = My My fnfle = Ndy e = NfLc iy

so that
RaXpy ey by = nflaXile Wy Y g = Nflaflc Oc (X)Ob (V) iy -
Let then m be the gcd of ac’ =mu and b’d = mv. One has
Pafle = fuflm, My kg = AmHy
so that
RaXLf ey i = Nflu flmOc (X) O (V) o iy = Nfiby Pim (0 ()0 (V) ) 14 -

Since u and v are relatively prime and z = pp(0y (X)op (¥)) € Z[Q/Z] it follows that the product of
two monomials of the form (53) is still a monomial of the same form. Note also that

u/v ={(a/by(c/d) (54)
since u/v =ac’/(b’d) = ac/(bd). Thus the labels a/b € Q% are multiplicative. O

Remark 4.9. Using the surjectivity of the endomorphisms o;, one can rewrite the monomials (53) in
the form yjiquj, flaityz or wjtiiq. The reason for choosing (53) is that, in this form, there is no
ambiguity in the choice of x while the lack of injectivity of o, and o}, introduces an ambiguity in the
choices of y, z and t. At the geometric level this corresponds, using (36), to the fact that the initial
support of jig is 1.

In order to check that the relations of Definition 4.7 are coherent we shall now construct a faithful
representation of these relations (which is the left regular representation of Az) in the free abelian
group & =7Z[Q/Z x Q% ]. We denote by &(x,r) the element of £ associated to x € Z[Q/Z] and r € Q7.

Proposition 4.10. The following relations define a faithful representation of the algebra Az on &,

XE(y,c/d) =&(oc(®)y.c/d), Ve,d, (c,d)=1, (55)
llaf(.VaC/d):S(/Sm()’)aac/d)7 m:(a7d)7 (56)
ugE(y. c/d) = (b, ©)&(apm(y). c/bd), n=(b,c). (57)

Proof. We shall check that the relations of Definition 4.7 are fulfilled. The relation (55) shows that
the left action of Z[Q/Z] is a representation which is a direct sum of copies of the left regular
representation of Z[QQ/Z] composed with the o..

Using the notation (a, b) for gcd(a, b) one has the equality

(a1a2,d) = (a1,d)(az.d/(a1.d)) (58)

and the fact that the left action of fiq fulfills fig,q, = fla, fla, follows from (46) which gives

Pm(Y) = Pmy (Pmy (1)), m1 = (ar.d), my = (az,d/(ar,d)), m= (a1a2,d).
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In order to check the relation xfiq = ji,04(x) one uses (47). One has

XfLa€ (Y. c/d) = x& (P (y), ac/d) =& (0k(X) pm(¥). ac/d), k=ac/m, m= (a,d),
flaGa®E(Y, ¢/d) = fiaé (0¢(0a(®))y. c/d) = & (Pm(0ac(X)y), ac/d)

and since ac = mk, (47) gives

Pm(0ac(®)y) = k(%) pm ().
Let us check the relation ”sz = '“?72“?51' Let ny = (b1,¢) and b} =by/ny, ¢} =c/n; then
b, E(v, c/d) =n1& (o, (v), €1/ (b} d))
so that, with ny = (b2, ¢}) and b}, = by/n3, ¢}, =/ /n2 one gets
I, (15,6 (v, ¢/d)) = nani& (o, 03 (¥), €5/ (b3bd)).
By (58) one has niny = (b1, ¢)(b2, c/n1) = (b1b2,c) =n and with b = b1b, one has
b"=b/n= (b1/n1)(ba/nz) = b} by,
chy=cy/my=c/(nny)=c/n=c.
This shows, using og, = 0403, that
wg, (15 &y, c/d)) = ug,p, E(y, c/d).
Let us now check the relation }x = 0y (x)uj;. One has, with n=(b,c), b’ =b/n, ¢ =c/n,

up (x6(y, c/d)) = upg (oc(®y, c/d) = n& (o (0c (%)), ¢/bd),
(%) (UpE (Y, c/d)) =nop )& (o (), ¢ /b'd) = né (o¢ (op()) o (¥), ¢/bd).

Thus the relation follows from the multiplicativity of o} and the equality b’c = c’b.
Let us check the relation fipxu; = Op(x). One has

x(up(E(y. c/d))) =né (o0 (X0 (y),'/b'd), n=(b,c), b'=b/n, ¢ =c/n.

To multiply by fi;, on the left, one uses (56) and gets

oy (x(gs (B, c/d)))) = ng (pm (o ®)ow (1)) u/v),

1547

where m = (b, b’d) and u = bc’/m, v =b’d/m. One has m = b’ since it divides b =nb’ and b’d while

bc’/b’ =c is prime to d. Thus u =c and v =d and one gets

iy (x(1g (E(y, c/d)))) = né (B (0 X)ow (), c/d).

In particular it is divisible by n and one needs to understand why the other side, namely

Pp(X)E(y, c/d) is also divisible by n = (b, ¢). This follows from (48) since
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P&y, c/d) =& (oc(pp(x))y, c/d)

(by (55)) while by (48),

oc(Pp () = (b, ) py (00 (%)), b =b/(b,c), ' =c/(b,0).

One then uses (47) to obtain

Py (00 (X0 () = Py (00 (%)) y

which gives the required equality.
Let us now check the relation (.} fi, = a. By (56) one has

fak(y,c/d) =&(pm(y), u/v),

where m = (a, d) is the gcd of ac =mu and d = mv. We then get with a =ma’, d =md’ that u =d'c
and v =d'. The left action of u} is given by

e (a€ (Y, c/d)) = Ua (Pm(¥), u/v) =n&(oa (om(¥)), " /(@"d)),
where n = (a,d’c), ¢" =d'c/n, @’ =a/n. One has n=d’ since (m,c) =1 as m = (a,d) is a divisor

of d and (c,d) = 1. It follows that ¢ =a'c/n=c, @’ =a/n =m. Thus by (48) o4/ (Pm(y)) = my. Also
a’d’ =md’ =d, thus

né (g (Pm(¥)). ¢”/(@"d)) = nmé(y, c/d)
and the required equality follows from nm =a.

It remains to check that fiqpuy = fia when (a, b) = 1. Let, as above, m = (a,d) and write a = ma’,
d=md’ so that u =ad’c is prime to v =d’. One has

wy (e (Y, c/d)) = up€ (Pm(y), u/v) = n& (op/m(Pm(y)). ac/(bd)),

where n = (b, u). Since (a,b) =1 one has (a’,b) =1 and n= (b, u) = (b, a’c) = (b, ¢). Thus by (57),

1pE (Y, c/d) =n& (0b/m(y). c/bd).

When applying i, on the left, one uses (56). One lets m = (a, b’d) where b’ =b/n so that b’d is the
reduced denominator of c¢/bd. By (56), one has

RatpE (Y, c/d) =nfia& (0 (¥), c/bd) = n&(dm(0b/m(¥)), ac/bd).
Since (a,b) =1 one has m = (a, b’d) = (a, d) and the required equality follows from the second state-

ment of Corollary 4.5 since m and b/n are relatively prime so that oy, and o commute. We have
shown that the relations of Definition 4.7 are fulfilled. One has, for (a,b) =1,

PaxpyE(1,1) =£(x, a/b) (59)

which shows that the map x € Az — x£(1, 1) € £ is an isomorphism of abelian groups, and hence the
representation of Az in £ is faithful. O
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Corollary 4.11. The monomials

fge(Mpy,  (@b)=1,reQ/Z, (60)
form a basis of Az as a free abelian group.

Proof. By construction & =Z[Q/Z x Q%] is a free abelian group with basis the &(e(r),a/b) for r €
Q/Z and a/b € QY. Moreover by (59) and Proposition 4.10 the map x € Az — x£(1,1) € £ is an
isomorphism of abelian groups. O

While Proposition 4.10 describes the left regular representation of the algebra .4z, Proposition 4.4
allows one to construct a representation of Az on its abelian part Z[Q/Z] as follows.

Proposition 4.12. The relations

O(0E =xE, Vx,& € Z[Q/Z],
0(fin)s = pn(€), VE € ZIQ/Z], Vn,
0(up)& =on(€), V& €Z[Q/Z], Vn, (61)

define a representation 6 of Ay, on Z[Q/Z].

Proof. It is enough to check that the relations of Definition 4.7 are fulfilled. The first of the three
relations (51) follows from (47). The second follows from the multiplicativity of op. The third one
follows again from (47). The first two of the four relations (52) follow from the analogous relation (46)
on the 0, and oy,. The last two relations both follow from (48). O

4.5. Relation with the integral Hecke algebra

The original construction of the BC-system [1] is based on Hecke algebras of quasi-normal pairs.
One considers the inclusion Pg C Pé where the “ax + b” algebraic group P is viewed as the functor
which to any abelian ring R assigns the group Pg of 2 by 2 matrices over R of the form

1 b
PR:{(O ); a,beR, a invertible}. (62)
a

Here Iy = P% and I = Pa denote the restrictions to a > 0. This inclusion I C I" is such that the
orbits of the left action of Iy on I' /Iy are all finite. The same clearly holds for orbits of Iy acting on
the right on I\ I".

The integral Hecke algebra Hz(I", I'p) is by definition the convolution algebra of functions of finite
support

f:o\I' > 2, (63)

which fulfill the I'p-invariance condition

fyvo)=f(y), VYyel, Yy el, (64)
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so that f is defined on Iy \ I'/Ip. The convolution product is then defined by the formula

(fix ) =Y filyyy ") far). (65)

o\l
There is a presentation of this algebra which is obtained as an extension of the integral group
ring Z[Q/Z] by adjoining elements v, and v} which are formally defined by v, = /nun, vi = V/np}k
(with the notations of [1, §4], i.e. un =n"1/2ey, ). The presentation is of the form:
VXV = n (%),

Vix = 0p(X)Vy, XUy = Vp0n(X),

Vnm = VnVm, Vo = Vpvy,  Vn,m,
* * *
VyVp =N, VnVp =VpVn, (M,m)=1. (66)

Comparing this presentation with (51) and (52) one obtains
Proposition 4.13. There exists a unique isomorphism
¢ Hz(I', To) — Az =Z[Q/Z] x5 N,
plen)=e), VreQ/Z,  ¢Wn)=jtn,  ¢(vp)=Ms- (67)
Proof. One checks that the relations (66) transform into (51) and (52) under ¢. O

The Hecke algebra Hz (1", I'y) admits a natural involution for which v, and v} are adjoint of each
other. It is given (with arbitrary coefficients) by

fFfy)y=f(y="). Yyelho\I'/l. (68)

The rational algebra Az ® Q = . Ag = Q[Q/Z] x, N also admits a natural involution which coincides
with (68) on the subalgebra Z[Q/Z] and whose extension to Az is dictated by the equation fi, =
n(pup)*.

Notice that the isomorphism ¢ of Proposition 4.13 does not preserve the involution. The rational
subalgebras Hq (I, I'o) and Az ®7 Q = Ag of the C*-dynamical system (C*(G), o¢) of Definition 4.1
are not the same. One has however

Proposition 4.14. The involutive algebras Az ®z Q = Q[Q/Z] x5 N and Hq(I", I't) become isomorphic
after tensoring by C. An isomorphism is given by

viem)=em), VreQ/z, =0, y(v)=n"pu; (69)
The corresponding rational subalgebras of the C*-dynamical system (C*(G), o) are conjugate under o;;.

Proof. As subalgebras of the C*-algebra C*(G), the above involutive Q-algebras are generated by the
e(r) and respectively by the u, and u! for Az ®7 Q and by the v, =n!/2u, and v =n'/2u} for
Ho(I', Ip). Thus they are the same after tensoring with C. To get the conjugacy by o/, note that
one has oy(un) =n*un and or(u}) =n~"tpi. Thus with fin = nun one gets o2 (fin) =n/2pn = vy
and i (ui) =n'2pi =vi. O



A. Connes et al. / Journal of Number Theory 129 (2009) 1532-1561 1551

Remark 4.15. The above distinction between the two rational subalgebras of Proposition 4.14 is over-
looked in Proposition 3.25 of [6, Chapter III]. However by Proposition 4.14, these two rational algebras
are conjugate by oj/2 and the oy invariance of KMSg states thus shows that the values of the restric-
tion of KMSg states is independent of this distinction.

5. The endomotive and algebra in characteristic p

The group ring Z[Q/Z] together with the endomorphisms o;, and the maps g, give a model over Z
of the BC-endomotive.

In this section we study the reduction of this model at a prime p both at the level of the endo-
motive and of the noncommutative crossed product algebra. From now and throughout this section
we shall work over a perfect field K of characteristic p > 0, such as a finite extension Fg of F}, or a
separable closure of Fp.

We first show that, by applying reduction at p and specializing n to be p?, the endomorphism o,
on K[Q/Z] is identified with the geometric Frobenius correspondence. The group algebra K[Q/Z]
decomposes as a tensor product of the group algebra K[Qp/Z,] of the p-torsion Q,/Z, of Q/Z by
the group algebra of fractions with denominators prime to p. The structure of the latter algebra is
essentially insensitive to characteristic p. The new fact specific to characteristic p is that the group
algebra K[Qp/Zp] is unreduced and in fact local. We concentrate on this “p-part” of the abelian
algebra.

We then form a new noncommutative algebra obtained as the crossed product of the p-part
K[Qp/Zp] by the sub-semigroup of N given by powers of p. We exhibit the nilpotent nature of
this algebra by showing that it admits a faithful representation as infinite triangular matrices.

5.1. The endomotive in characteristic p

The relevant properties of the algebra Az (K) can be isolated by decomposing the groups as follows

Q/Z=Qp/Zp x (Q/Z)P. (70)

Here Qp/Z, is identified with the subgroup of Q/Z of fractions with denominator a power of p and
(Q/Z)® is interpreted as the subgroup of Q/Z of fractions with denominator prime to p. At the
group algebra level one gets

K[Q/Z] = K[Qp/Zy] ® K[(Q/Z)P]. (71)

The decomposition

Q% =pZx QP (72)

corresponds to the decomposition of the semigroup N as a product of the semigroup pZ+ of powers
of p and the semigroup NP of numbers prime to p. There is no essential difference with the char-
acteristic zero set-up for the action of N(® on K[Q/Z]. In fact, the endomorphism p, on K[Q/Z]
retains a meaning when n is prime to p, since the denominators in the definition of the projec-
tion m, and of p, (i.e. the partial inverse of o) are integers prime to p. Moreover, we notice that
when n is prime to p the equation T" — 1 =0 is unramified. On the other hand, when n pZ+ there
is no way to single out the component of {1} in Spec(A;) since in that case the above equation has 1
as a multiple root. Therefore, our study will focus on the understanding of:

e The endomorphism oy, for n = pt € pZ".
e The algebra Ape~ = li_r)n[ Ape @z K= K[Qp/Zp].
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We first show the relation between the endomorphisms oy, for n = p’ € pZ+, and the (relative)
geometric Frobenius homomorphism acting on the algebra Ap.

Proposition 5.1. Let o, € Aut(K) be the small Frobenius automorphism given by or, (x) = xP forall x € K,
then for any ¢,

(op ®0f )()=f", VfeKIQ/ZI=ZIQ/Z] @z K, VEeN. (73)

Proof. Both sides of (73) define an endomorphism of the ring, thus it is enough to check that they
agree on elements of the form e(r) ® x, for x € K and r € Q/Z. One has

4
(0p ® G]gp)(e(r) ®x)=e(p'r)® X = (emex)’,
which gives the required equality. O

Remark 5.2. The relation (o, ® a]fp)( f)= f"g of (73) shows that we can interpret o, as the

Frobenius correspondence acting on the pro-variety (1(° ®z K). This means that at the fixed level
w™ = Spec(An), the definition of ope coincides with the Frobenius morphism ¢ as in [17, p. 24]
(i.e. the morphism inducing in étale cohomology the geometric Frobenius @ of Deligne).

An equivalent description of the algebra Ap~ = h_r)n[ Ape ®7 K =KI[Qp/Zp] will be given in terms
of the following (local) convolution algebra of functions which displays an explicit choice of a basis.
At a fixed level ¢, ie. for the algebra A, this choice of basis corresponds to the powers €k of the
natural generator € =3,-¢, as in (75), of the maximal ideal of the local ring A, cf. Remark 5.9.

Definition 5.3. We define the algebra 7 (p) (over K) as the convolution algebra of K-valued functions
with finite support on the semigroup Sy =J p]—,,Z+ C R, modulo the ideal of functions with support
in SN [1, oo[, with the convolution product given by

fixfa©)= Y fi@fab). (74)

a+b=c
We extend any function f on S, to a function on S = pl—nZ which fulfills f(a) =0 for all a < 0.
This extension is compatible with the convolution product. By construction the algebra 7 (p) is com-

mutative and local. It has a unique character: the homomorphism of K-algebras given by evaluation
at 0, that is,

€:7T(p)— K, f = f(0).

Any element in the kernel of this character is nilpotent. The kernel Ker(eg) of this character is the
only maximal ideal.
For any a e SN[0,1) we let §; € 7 (p) be given by

Sa@ =1,  8a(b)=0 ifb+£a. (75)

Any f € T(p) is a finite sum f =) f(a)dq and §p is the unit 1 of the algebra 7 (p).
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a(f)

plfl

Fig. 1. The maps o, and 5.
Proposition 5.4.
1) The following map induces in the limit an isomorphism of Ape with 7 (p),
1Ay @z K— T(p), L(e(1/pf))=1—ap4. (76)
2) The endomorphism o, corresponds by the above isomorphism to the following endomorphism of T (p),
op(f)@=f(a/p), VfeT(p). (77)
3) The map pp corresponds by the above isomorphism to the following map of T (p),
pp(H@=f(pa—(p-1), VfeT(p). (78)
Note that both maps o;, and p,, are given by an affine change of variables as shown in Fig. 1.

Proof. 1) Let us check that the t(e(1/p%)) fulfill the rules of the generators e(1/p%). In characteristic p
one has

A-TYP =1-T17"

Thus to show that L(e(1/p‘5))p( =1 it is enough to check that the p’ power of the characteristic
function 8p-¢ is equal to 0. This follows from the equalities §; x 8y = 844p (using (74)) and 8; = 0. In
fact one needs to show that
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((e(1/p%))" =1(e(1/p*))
which means that
1- (Sp,,)p =1—0,-c+1

and this follows from 65“ =8+

2) It is enough to check (77) on the elements t(e(1/p%)) =1— 8p-t = 80 —8,-¢. The right-hand side

of (77) defines an endomorphism of 7'(p) which transforms §, into §p, and this gives o (e(1/pH) =
e(1/p*~1) as required.
3) Note that since f is extended to a function on S = p]—nZ which fulfills f(a) =0 for all a <0,

the formula (78) makes sense and the function pp(f) vanishes on the interval [0, pr). In character-
istic p one has, with q = p¢,

q—1

Z TF =1 -T1)i! (79)

0

since multiplying both sides by (1 — T) gives (1 — T)4. This shows that

p—1
Wpp(D) =Y t(etk/p)) = (1—1(e(1/p)))" =8p1. (80)
0

5
Now, by (47), one has

Pp(0p(®) =xpp(1), Vxe Ap,

which gives the required equality (78) using the surjectivity of o, and the fact that in the algebra
T (p) the convolution by ¢(6,(1)) =8p-1 is given by the translation by pp%]. m]
P

Corollary 5.5. The kernel of o, is the nilpotent ideal

Kero, = {fe’T(p) ) f@=0, Vae [o, %)} (81)

Proof. One has f € Kero, iff f(a/p) =0 for all a € SN[0, 1) which gives (81). Any element f € Kerop,
thus fulfills fP =0 in the algebra 7 (p). O

5.2. The BC-algebra in characteristic p
By definition, the BC-algebra over K is the tensor product:
Az(K) = Az ®z K. (82)

By Corollary 4.11 the K-linear space Az(KK) coincides with the vector space K[Q/Z x Q%] and be-
cause of that we will work with the corresponding linear basis of monomials (60).
The remaining part of this section is dedicated to the study of the algebra

Cp=Apx x5 PN ~T(p) ;5 p". (83)
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We shall refer to Cp as to the p-part of the algebra Az (K). We keep the same notation as in Sec-
tion 4.4.

Lemma 5.6. The following monomials form a linear basis of the algebra Cp,:

[L'I’,(Sa, neN,aeSN[0,1), (Sa,u’{,m, m>=0,aeSN[0,1). (84)

Proof. For m =0 we use the notation ,u*;o =1 so that the above monomials contain the algebra Ap«

and the generators i, and M- Thus it is enough to show that the linear span of these monomials is
stable under the product. One has

~ ~ _ ~n+ n m __ n+m
Rpxityy = iy Moy 0y, xup yup" =x0, (g (85)
and, for n > 0,
Xy ftpy =0 (86)
while
_ Apxy)uy™ " if m>n,
Alxypusm=1"P7"0 P (87)

Ay "o (xy) ifn>m,
which shows that the linear span of the above monomials is an algebra. O

Note that Lemma 5.6 also follows directly from Lemma 4.8.

In order to exhibit the nilpotent nature of this algebra we now show that the representation of
Proposition 4.12 is given by infinite triangular matrices.

We let K[SN[0,1)] be the K-linear space of K-valued functions with finite support on S N[0, 1)
and denote by &;, a € SN0, 1), its canonical basis. For a e S, a > 1, we let & = 0 by convention.

Let G =S x Z be the semi-direct product of the additive group S by the action of Z whose gener-
ator acts on S by multiplication by p. The group G acts on S by affine transformations

oagby=p"b+a, Vg=(@,a)€G, beS. (88)
Lemma 5.7. Let G be the group defined above.

(1) The condition

x>a = gX®>a, Vael0,1], (89)

defines a sub-semigroup G C G.
(2) Gt actson K[SN [0, 1)] by

T(8)éa = &g(a)-

(3) The semi-group G™ is generated by the elements g, = (0,a), forae SN[0,1), « = (-1, (p — 1)/p),
B=(1,0).
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Proof. The first statement is obvious. The second follows from (89) for a = 1. Let us prove (3). Let
g=m,a) eGt.If n=0 then g =g, with a>0. If n > 0 then g(x) = p"x +a and taking x = 0 shows
that a > 0 so that g =g,8". For n=—-m <0, g(x) = p ™x + a. Taking x =1 and using (89), one gets
p™4+a>1ie.a=1—p™+b for some b >0. Thus g=gpa™. O
Proposition 5.8. The equations

0 (3p)éa = T(8b)a = &a+b,

e(ﬂp)éa =T(a)éq = §a+£—1 )

9(#;)& =T7(B)&a =5pa (90)

define a faithful representation

¢y 2> End(K[S N[0, 1)])

of the algebra C,, by (lower)-triangular matrices T = (Tqp), Tqp € Kwitha,b e SN[0, 1).
Proof. The matrix associated to T € End(K[S N[0, 1)]) is defined by

(Tf)(a)=ZTa,bf(b), vfeK[SNI[O0,1)]. (91)
Thus the matrices associated to the operators given in (90) are

(ba)c g =0 ifc—d#a, (Ba)c,c—a =1,

. . d+p—-1 - . d+p-—1
(p)ea=0 ifc#t ——mo, (Ap)ea=1 ifc=——,
p p
(M;)C,dzo lfC;épd, (M’:)c,c/pzl' (92)
They are lower triangular. Indeed one has
d -1
c>c—a, ++ ~d, pd>d, Ve,deSn(o,1).

One then needs to show that the defining relations of the algebra C, are fulfilled. These relations are
obtained from the presentation of Definition 4.7 by restriction to the p-part. Thus they are fulfilled
by specializing Proposition 4.12 to the p-part. One can also check them directly. By construction the
action of the §, gives a representation of the convolution algebra 7 (p). The three relations of (51)

ApXiLy = Pp(X),
UpX = 0p (X)L},
Xflp = fipOp(X) (93)
follow directly from the group action 7. Moreover one has the additional relation
Wi llpba = WpEept =fasp-1 =0,

which corresponds to the third relation of (52). Its validity follows from &, =0 for all b > 1.
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Let us prove that the representation is faithful. By Lemma 5.6 any element x € C;, is a finite linear
combination x =" 1;7(g;) (*; € K) of monomials with g; € G*. Now for any two distinct elements
g,h e GT the set of elements a € S such that g(a) = h(a) contains at most one element. Thus, since
gj(0) €[0,1), one can find an element b € SN [0, 1) such that

gibyesn[o, 1), Vj,  gjb)#gkb), Vj#k.

We then have

xEp = Z?»jf(gj)éb = ijégj(b)
and x&p, # 0 if x # 0. Thus the representation is faithful. O

Remark 5.9. By construction the algebra Ap~ is the inductive limit of the local rings Aq = K[T1/
(T7—1), q=p*. We let

Rq=pq()=1+T+---+ T e Ag =2Z[T1/(TT - 1). (94)
The local ring K[T]/(T9 — 1) is generated over K by the nilpotent element ¢ =T — 1 (¢? = 0). The

principal ideal of multiples of € is the maximal ideal. We use the natural decreasing finite filtration
by powers of the maximal ideal

FY(K[T1/(TT - 1)) = € K[T1/(T? - 1). (95)

One has, using (80),

fg=€1"" e FITY(K[T)/(TT - 1)),  FYK[T]/(T?—1)) = {0} (96)

Thus the operator 774 detects the top piece of the filtration.
The following equalities show that the subalgebra P C A~ generated by the ﬁpm(]) =TTpm = Tpy IS
stable under the p, and oy,

TnTa=0, Py (Tn) =Tmin,  Op(Ta) =0, Vm,neN. (97)

As above one checks that the following monomials form a linear basis of the crossed product algebra
P x;pN:
p

Aptk, neN, k>0, Ty, m=0, k>0. (98)

Since P x5 pN is a subalgebra of the algebra Cp, Proposition 5.8 yields in particular, a triangular
representation of P x5 pN.

5.3. The effect of reduction

In the original definition of endomotives given in [4], we assumed that the algebras are reduced.
This is in agreement with the classical definition of Artin motives (cf. [8, Il p. 211]). In the present
context, namely working over a perfect field K of characteristic p, one can still restrict to reduced
algebras by functorial reduction. One can see in the result below that this reduction introduces a
drastic simplification of the algebra, which, in particular, eliminates the problem of denominators.
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Proposition 5.10. The reduced algebra of li_r)nn An ®7 K is the group ring over K of the subgroup of Q/Z of
fractions with denominator prime to p. Moreover, o} induces an automorphism on the reduced algebra.

Proof. This amounts to showing that for n = p*m with m prime to p, the reduced algebra of
K[T]/(T" — 1) is the algebra K[T]/(T™ — 1). If n = p¥m then the group Z/nZ splits canonically as
a product of Z/p*Z and Z/mZ. At the group ring level, this corresponds to a tensor product decom-
position. Since the reduction in characteristic p of the group ring of Z/p*Z is the ground field K,
the first factor in the tensor product disappears and the reduction only leaves the second factor. This
proves the first statement. It is then enough to observe that, for m prime to p, the multiplication by p
is an automorphism of Z/mZ. Since o, preserves the levels, this is compatible with the map of the
inductive system of algebras. O

Corollary 5.11. In the case of the reduced algebra in characteristic p, the inverses p, of the oy, only involve
denominators that are prime to p.

Proof. The case where n is prime to p is clear. Suppose that n = pX. Then by Proposition 5.10, oy, is
an automorphism of the reduced algebra since multiplication by n is an automorphism of the group
(Q/7)®, One then defines p, as its inverse and the corresponding 7, is then equal to one, since oy,
is injective. O

Note that passing from Q/Z to the subgroup (Q/Z)® (i.e. the prime-to-p component) is the
same, when dealing with the Pontrjagin dual groups, as removing from the ring of finite adeles the
component at p. This suggests that there is a connection with the localized system at p in [5] (cf.
[5, Definition 8.14, Theorem 8.15]). Note however that unlike the setting of [5], here the coefficients
are taken in a field of positive characteristic, so that the notion of KMS states should be taken in the
extended sense of [7].

Remark 5.12. Notice that reducing the abelian part of the algebra and then taking the crossed product
as we did in this section is not the same thing as modding out the crossed product algebra Ay by its
nilpotent radical.

5.4. Endomotives in the unreduced case

As we have seen in the previous sections, when taking coefficients in a field of positive character-
istic the BC-endomotive involves unreduced finite dimensional commutative algebras which strictly
speaking do not correspond to classical Artin motives. The construction in characteristic p that we
gave in the case of the BC-algebra in fact extends to a more general class of endomotives constructed
from finite, self maps of algebraic varieties as in [4], but without requiring that these maps are un-
ramified over the base point.

This leads us naturally to consider the problem of a general construction of endomotives in arbi-
trary characteristic. Roughly speaking, an endomotive over a (perfect) field K is given by assigning:

e An inductive system of augmented commutative K-algebras, finite dimensional as vector spaces
over a perfect field K (i.e. Artinian commutative K-algebras).
e A commutative family of correspondences oy,.

This set of data should of course be compatible with the constructions that we have developed in
this paper as well as in [4], namely

1) It should determine homomorphisms (correspondences) such as the p,’s, when denominators (i.e.
division by n) are allowed.

2) It should be fulfilled by the endomotives associated to self-maps of pointed varieties as described
in [4, Example 3.4].
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6. The BC endometive over [F,

In this section we show that the BC endomotive has a model defined over F; from which one
recovers the original endomotive by extension of scalars to Q.

Proposition 6.1.

a) The BC-endomotive has a model over [Fy.
b) The original BC-endomotive is obtained by extension of the scalars from [F1 to Q.

Proof. We start with the projective system of affine varieties ™ over Fy, defined as in Section 3
and Proposition 3.3. This system shows that the abelian part of the BC endomotive is defined over F;.
Notice that these are pointed varieties because the algebras A, are naturally augmented. The aug-
mentations fit together in the inductive system of algebras because they come from the natural
augmentation of the group ring.

It remains to show that the o, are morphisms of varieties over [F; in the sense of [16]. This is a
consequence of the construction of the projective system of the varieties ™ over Fy, as these are
obtained by applying the functor F from varieties over Z to gadgets over F; (cf. Proposition 3.3).
Notice that the maps o, preserve levels and are given at each level A, by (27). Thus, the o, are
morphisms in the category of varieties over Z, and as such they define morphisms of varieties over [F4
through the functor . O

Remark 6.2. Proposition 6.1 shows that the BC-endomotive can be defined over Fi, according to
the theory developed by C. Soulé in [16]. However, we also want to emphasize that since our proof
is mainly based on a description of the BC-algebra which is obtained using the family of algebraic
endomorphisms o, (n € N) of the affine group-variety Gy, (cf. Section 2.2), it continues to hold—
independently of the detailed theory of varieties over [F; as in op. cit.—as long as one is able to
show that the space G;; and the endomorphisms o, are defined over F1. The forthcoming paper [3]
will introduce and develop a theory of geometric spaces over F; which is a refinement of the one
contained in [16]. In the case of Gy, the two theories agree and determine the same space over [Fq.
The advantage of the construction in [3] is that of being properly linked to the geometric theory
developed by ]. Tits [18], in relation to the study of semi-simple algebraic groups.

6.1. The automorphisms of F1 /IF1 and the symmetries of the BC system

In [10], the analog of the Frobenius automorphism for the extension Fi~ of [y is described as
follows. Suppose given a set X with a free action of the roots of unity (that is a vector space over
[F1= when one adds an extra fixed point 0). Then, given an element « € 7+ (and more in general a
noninvertible one in Z) one defines a new action on the same set by the rule

x> %X (99)

For & =n an integer, this means that one replaces the action of a root of unity ¢ by that of ¢". The
Z-powers of the Frobenius are then defined by setting

VIQ :F1oo — ]F]oo (100)

to be the map that sends the action of roots of unity ¢ on a given Fi~-vector space X to the action
by ¢¢.

When reformulated additively, after making an identification of the group of roots of unity with
Q/Z, one can write the action (99) in the form
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e(r) > e(a(r)), (101)

where « € Z is seen as an element in 2 = Hom(Q/Z, Q/Z).

Thus, in terms of the BC system, the Frobenius appears naturally in the semigroup action. This is
the case of (101) where n is an integer and it gives the action of the o;,,. Moreover, it is also important
to keep in mind that the Frobenius action (101) also recovers the symmetries of the BC system. In

fact, the symmetries by automorphisms, given by Z* act exactly like the corresponding Frobenius wZ*
(cf. [1,4]).

6.2. The Frobenius correspondence and the BC endomotive over [Fq

We now show that not only the BC-endomotive has a model over 1, but in fact it captures the
structure of the extension Fqe =lim[F{» over Fy by means of the Frobenius correspondence.

Theorem 6.3. The structure of the BC-endomotive corresponds to the structure of 1~ over IF1 as follows:

a) The abelian part of the BC-endomotive over IFy corresponds to the inductive system of “extensions” F1n.

b) The endomorphisms o, describe the Frobenius correspondence, in the sense that on the algebra
ZIQ/7] @z K, for K a perfect field of characteristic p > 0, the endomorphisms oy, n = p¢ (£ € N)
coincide with the Frobenius correspondence described in Remark 5.2.

Proof. For a), we recall that the abelian part of the BC-endomotive over [ is defined by the pro-
jective system p(° of algebraic varieties u™ = FSpec(An), An = Z[Z/(n)] cf. (26). By means of
the isomorphism of algebras Z[T]/(T" — 1) = An, u(n) — e(%) the inductive system of exten-
sions [Fin C Fym (n|m) corresponds, after extending the coefficients to 7Z, to the projective limit
coo > u™ — 4™ 5 which defines geometrically the abelian part of the BC-endomotive. We refer to
Section 3 for the details.

For b), we refer to Proposition 5.1. We recall that on an algebraic variety X, defined over a finite
field Fy (q = p®) the Frobenius morphism ¢ : Xo — Xp satisfies the property that the composition
@ x o : Xo — Xo, where o : g — [y is the arithmetic Frobenius automorphism, acts on Xo := Xo x [y
by fixing points and by mapping f +— f7 in the structure sheaf of Xy. Here, f9 denotes the section f
whose coefficients are raised to the g-th power. At each fixed level A, of the inductive system of
algebras A, ®7K, the endomorphisms oy, for k = p¢, behave in exactly the same way as the Frobenius
homomorphisms (cf. Proposition 5.1). O

6.3. Recovering the analytic endomotive

In [16], the set of data which define a variety X (of finite type) over [y is inclusive of the important
analytic information supplied by the assignment of a commutative Banach C-algebra Ay (cf. Section 3
of this paper). The definition of X implies that functions of .Ax can be evaluated at the points of X.
We shall now show that this analytic part of the set of data which define the BC-system as a pro-
variety over Iy supply naturally the structure of an analytic endomotive in the sense of [4]. The point
is that the set-up which describes the pro-variety 1> is inclusive of the information supplied by an
inductive system of Banach C-algebras Aﬂ(m = Ap ®z C, cf. (19). Taking the inductive limit of these
yields the algebra

Au_(oc) = li_H)IAH_(n) (102)

since the functor X — Ay is contravariant. The following statement is a direct consequence of the
construction of the model of the BC-endomotive over 1 and of (102):

Proposition 6.4. The analytic part of the pro-variety over IF1 associated to the BC endomotive over F1 coincides
with the analytic endomotive of the BC system as described in [4].
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