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Copulas with fractal supports
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Abstract

Using an iterated function system, the authors construct families of copulas whose supports are fractals. In particular, they
show that the members of one family have supports with arbitrary Hausdorff dimensions in the interval (1,2). They also employ
those copulas to construct more general bivariate distribution functions with fractal supports.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we establish the existence of copulas
whose supports are fractals and prove

Theorem 1. For each s ∈ (1, 2), there exists a copula
whose support is a fractal with Hausdorff dimension s.

Section 2 contains background information. We in-
troduce the construction technique in Section 3 and
prove Theorem 1 in Section 4. We obtain a generaliza-
tion of Theorem 1 to distribution functions with more
general margins in Section 5.

∗ Corresponding author.
E-mail address: fredrix@lclark.edu (G.A. Fredricks).

2. Preliminaries

A copula is a bivariate distribution function whose
margins are uniform on I = [0, 1]. For an introduction
to copulas see Nelsen (1999). The Borel measure on I2

corresponding to a copula C is denoted by µC. We use
Mandelbrot’s original definition of a fractal (see Edgar,
1990, p. 179); specifically, a fractal is a set whose topo-
logical dimension is less than its Hausdorff dimension.
For an introduction to fractals, includingHausdorff and
topological dimensions, see Edgar (1990).
Most of our results follow from general techniques

relating to iterated function systems (IFSs hence-
forth), for which Edgar (1990, 1998) offer excellent
introductions. We have chosen these and Barnsley
(1989) as our references. A hyperbolic IFS consists
of a complete metric space (X, d) together with a
finite set of contraction mappings (wn : X → X). The
hyperbolic IFS {X; (wn)} satisfies Moran’s open set
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condition if there exists a nonempty open subset U
of X for which wn(U) ∩ wm(U) = ∅ whenever n &= m

and wn(U) ⊆ U for all n.

Proposition 1 (Barnsley, 1989, p. 131 and Edgar,
1990, pp. 107 and 161). If {X; (wn)} is a hyperbolic
IFS, then there exists a unique nonempty compact sub-
set K of X for whichK =

⋃

n wn(K).Moreover, if each
wn is a similarity and Moran’s open set condition is
satisfied, then the Hausdorff dimension s of K is given
implicitly by the equation

∑

n cs
n = 1, where cn is the

similarity ratio of wn.

K is called the invariant set of {X; (wn)}. A hy-
perbolic IFS with probabilities is a hyperbolic IFS
{X; (w1, . . . , wN )} together with an ordered set of pos-
itive numbers (p1, . . . , pN ) for which

∑N
i=1 pi = 1.

Each hyperbolic IFSwith probabilities {X; (wn), (pn)},
with X compact, defines a Markov operator M :
P(X) → P(X), where P(X) denotes the set of normal-
ized Borel measures on X, by

M(ν) =
∑

n

pn(ν ◦ w−1
n ).

Proposition 2 (Barnsley, 1989, p. 139). If
{X; (wn), (pn)} is a hyperbolic IFS with probabilities
and X is compact, then there exists a unique µ ∈ P(X)
for whichM(µ) = µ.Moreover, the support ofµ is the
invariant set of {X; (wn)}.

µ is called the invariant measure of {X; (wn), (pn)}.

3. Transformation matrices and invariant
copulas

Definition 1. A transformation matrix is a matrix T
with nonnegative entries, for which the sum of the en-
tries is 1 and no row or column has every entry zero.

We double subscript the entries ofTwith the column
indexfirst and the rowsordered frombottom to top, e.g.,

T =
[

t12 t22

t11 t21

]

,

to conform with the order of coordinates in I2 (see
Example 1). Each transformation matrix T determines

a subdivision of I2 into subrectangles as follows. Letpi

denote the sum of the entries in the first i columns of T,
letqj denote the sumof the entries in thefirst j rowsofT,
and let p and q denote the partitions of I that they form.
The partitions p on the horizontal axis and q on the
vertical axis determine an obvious partition of I2 into
subrectangles. We let Rij = [pi−1, pi]× [qj−1, qj].

Example 1. For the transformation matrix

T =
[

0.1 0.2 0.3
0.4 0 0

]

, (1)

we have p = (0, .5, .7, 1), q = (0, .4, 1) and the subdi-
vision of I2 illustrated in Fig. 1 with Rij shaded when-
ever tij > 0.

For a transformation matrix T and a copula C, let
T(C) be the copula which, for each (i, j), spreads mass
tij on Rij in the same (but rescaled) way in which C
spreads mass on I2. Specifically, the copula T (C) is
given on Rij by

T (C)(u, v) =
∑

i′<i, j′<j

ti′j′ + u − pi−1
pi − pi−1

∑

j′<j

tij′

+ v − qj−1
qj − qj−1

∑

i′<i

ti′j

+ tijC

(

u − pi−1
pi − pi−1

,
v − qj−1
qj − qj−1

)

,

where empty sums are defined to be zero.
A direct calculation establishes the following result

on T (C)-volumes.

Fig. 1. Subdivision of I2 given by the transformation matrix (1).
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Proposition 3. For each (i, j) and each (u, v) ∈ Rij ,
we have

VT (C)
(

[pi−1, u]× [qj−1, v]
)

= tijC

(

u − pi−1
pi − pi−1

,
v − qj−1
qj − qj−1

)

.

Note that the support of T (Π), whereΠ(u, v) = uv,
is the union of all the rectangles Rij for which tij >

0, and that the support of T (C) for any copula C is
contained in the support of T (Π).

Example 2. For T in Example 1 and M(u, v) =
min(u, v), T (M) is the copula which, for each (i, j),
spreads mass tij uniformly on the diagonal of Rij (see
Fig. 2).
If T is a square matrix with exactly one nonzero

entry in each row and each column, then T (M) is a
(straight) shuffle of M (see Mikusiński et al., 1992, p.
64). Also, if C is a copula, n is a positive integer, and
T is the n × n matrix with coefficients given by

tij = C

(

i

n
,
j

n

)

− C

(

i − 1
n

,
j

n

)

− C

(

i

n
,
j − 1

n

)

+ C

(

i − 1
n

,
j − 1

n

)

,

then T is a transformation matrix and T (Π) is a
checkerboard approximation to C (see Li et al. (1997),
p. 109).

Fig. 2. Support of the copula T (M), where T is the transformation
matrix given by (1).

Proposition 4. Let T be a transformation matrix and
let C1 and C2 be copulas. Then

(a) T (C1) ≤ T (C2)wheneverC1 ≤ C2,where≤ is de-
fined pointwise, and

(b) d{T (C1), T (C2)} = max
i,j
(tij)d(C1, C2), where d

denotes the sup metric.

Proof. Part (a) follows from the definition of T (C).
For (b), note that for each (u, v) ∈ Rij ,

|T (C1)(u, v)− T (C2)(u, v)|

= tij

∣

∣

∣

∣

C1

(

u − pi−1
pi − pi−1

,
v − qj−1
qj − qj−1

)

− C2

(

u − pi−1
pi − pi−1

,
v − qj−1
qj − qj−1

)
∣

∣

∣

∣

.

Thus, sup(u,v)∈Rij
|T (C1)(u, v)− T (C2)(u, v)| =

tij d(C1, C2) and the result follows. !
For a transformation matrix T and a copula C, we now
consider successive iterations of T. Define T 2(C) =
T {T (C)}, T 3(C) = T {T 2(C)}, etc. Note that each
Tm(C) is a copula and that Tm(C) = (

⊗m T )(C),
where

⊗m T is the tensor product of T with itself m
times.

Example 3. For the transformation matrix

T =







0.1 0 0.1
0 0.6 0
0.1 0 0.1







(2)

(where p = q = (0, 0.2, 0.8, 1)), the supports of T (Π)
and T 2(Π) are pictured as shaded regions in Fig. 3.

Fig. 3. Supports of the copulas T (Π) and T 2(Π), where T is the
transformation matrix given by (2).
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Note that if T &= [1] (the 1× 1 matrix with en-
try 1), then maxi,j(tij) ∈ (0, 1) and hence, from (b) in
Proposition 4, thatT is a contractionmapping. Since the
set of copulas endowed with the sup metric is a com-
plete metric space, the Contraction-Mapping Theorem
yield.

Theorem 2. For each transformation matrix T &=
[1], there is a unique copula CT for which T (CT ) =
CT . Moreover, CT is the limit of the sequence
{C, T (C), T 2(C), . . . , Tm(C), . . .} for any copula C.

Definition 2. A copula C is invariant if C = CT for
some transformation matrix T.

In the following example, we see that Π, M and
W(u, v) = max(u + v − 1, 0) are invariant.

Example 4. If T =
[

0.25 0.25
0.25 0.25

]

, then CT = Π.

If T =
[

0 0.5
0.5 0

]

, then CT = M. If T =
[

0.5 0
0 0.5

]

,

then CT = W . More generally, CT = Π if T is a row
or column matrix or if all the entries of T are the same;
CT = M if T is square and all the nonzero entries of
T lie on the ascending diagonal; and CT = W if T is
square and all the nonzero entries of T lie on the de-
scending diagonal.
In addition, note that if p = (pi) and q = (qj) are

any two partitions of I, then the matrix T = (tij) with
tij = (pi − pi−1)(qj − qj−1) is a transformation ma-
trix which gives rise to the partitions p and q and has
CT = Π.

4. Self-similar copulas and the proof of
Theorem 1

Since the latter part of Theorem 2 tells us that the
limit copula CT is independent of the “seed” copula
used to generate the iterative sequence, we may study
CT as the limit of the sequence {Tm(Π)}. For example,
consider a transformation matrix T which has at least
one zero entry. If T has # nonzero entries, then the sup-
port σ1 of T (Π) consists of # rectangles and the union
of those rectangles has an areaA < 1. For eachm ≥ 2,
the support σm of Tm(Π) consists of #m rectangles and

has area Am. Note that (σm) is a nested sequence of
subsets of I2 and that the support of CT is contained
in σ =

⋂∞
m=1 σm. Since σ has Lebesgue measure zero,

the support of CT also has Lebesgue measure zero,
and thus, by definition, is a singular copula. We have
proven

Theorem 3. If T is a transformation matrix with at
least one zero entry, then CT is singular.

For each transformation matrix T = (tij), define
fij : I2 → I2 by

fij(u, v)

= {pi−1 + (pi − pi−1)u, qj−1 + (qj − qj−1)v},

where (pi) and (qj) are the partitions of I determined
by T. The following theorem gives two descriptions of
the support of CT .

Theorem 4. If T is a transformation matrix, which is
not a row or column matrix, then the support σ of CT

satisfies both

(a) σ is the invariant set of {I2, (fij)+}, and
(b) σ =

⋂∞
m=1 σm,

where σm is the support of Tm(Π).
The plus-sign superscript denotes that the collection

is over all (i, j) for which tij > 0. Similar notation will
be used in other settings to denote the same restriction
on (i, j).

Proof. Let r be the maximum of the sidelengths of
the Rij . Note that r < 1 and that |fij(u)− fij(v)| ≤
r|u − v| for each u, v ∈ I2 and each (i, j). Hence
{I2, (fij)+, (tij)+} is a hyperbolic IFS with prob-
abilities. For any copula C we have VT (C)(R) =
tijVC{f−1

ij (R)} for every rectangle R ⊆ Rij , and hence
VT (C)(R) =

∑+
i,j tijVC{f−1

ij (R)} for every rectangle
R ⊆ I2. Therefore

µT (C) =
∑+

i,j
tij(µC ◦ f−1

ij ) = M(µC),

whereM is the Markov operator of {I2, (fij)+, (tij)+}.
Now M(µCT ) = µT (CT ) = µCT , so µCT is the invari-
ant measure of {I2, (fij)+, (tij)+} and (a) follows from
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Proposition 2. It now follows that σ is the fixed point
of the function F (K) =

⋃+
i,j fij(K), which is a con-

traction mapping on the complete metric space of
nonempty compact subsets of I2 (see Edgar, 1990,
proof of Theorem 4.1.3 on p. 107). The Contraction-
Mapping Theorem insures that σ is also the limit of
the iterative sequence {Fm(I2)}, which is the nested
sequence (σm). This establishes (b). !

Corollary 1. If T is a transformation matrix with all
entries nonzero, then the support of CT is I2.

Proof. If T is a row or column matrix, then CT =
Π from Example 4. The other cases follow from the
preceding theorem as σm = I2 for all m. !
Cuculescu and Theodorescu (2001) use a similar

technique to construct copulas, including one whose
support is the Sierpinski carpet. The 2× 2 case of the
preceding corollary appears in Example 3.3 of the same
paper.
Formulas for computing the Hausdorff dimension

of the types of sets we have encountered require that
the IFSs be similarities. Toward that end, we let T be a
transformation matrix that satisfies the following con-
dition:

for each nonzero entry of T, the row and column

sumsthrough that entry are equal. (3)

The preceding condition implies that each Rij is a
square whenever tij &= 0, as the relevant column and
row sums are pi − pi−1 and qj − qj−1, respectively.
It also implies that T is a square matrix. To see this,
suppose that s is a row or column sum and consider the
submatrix S of T consisting of the intersections of the
rows and columns with sum s. Note that all entries in
these rows and columns not belonging to S are zero.
If S is m × n, then summing its entries by rows and
by columns givesms = ns, som = n. It easily follows
that T is square.

Definition 3. An invariant copula CT is self-similar if
T satisfies (3).

The Borel measures corresponding to self-similar
copulas are special cases of self-similar measures (see
Edgar, 1998, p. 133). Note that Π, M and W are self-
similar.

For a transformation matrix T satisfying (3), let rij
denote the sidelength ofRij whenever tij &= 0, and note
that the hyperbolic IFS {I2, (fij)+} is a system of sim-
ilarities with similarity ratios (rij)+. Since this IFS sat-
isfiesMoran’s open set condition with open setU equal
to the interior of I2, the following theorem is a conse-
quence of Theorem 4 and Proposition 1.

Theorem 5. The support of a self-similar copula CT

has Hausdorff dimension s given by

∑+

i,j
rs
ij = 1.

In the following theorem we give sufficient condi-
tions for the support of a self-similar copula to be a
fractal.

Theorem6. LetCT be a self-similar copula for which:

(a) T has at least one zero entry; and
(b) there is at least one row or column of T with two

nonzero entries.

Then the support σ of CT is a fractal whose Hausdorff
dimension is between 1 and 2.

Proof. The function f (s) =
∑+

i,j rs
ij is continuous and

strictly decreasing on [0, ∞), as the sameholds for each
of its terms. Note that f (2) is the sum of the areas of
the squares in the support σ1 of T (Π) and that f (1) is
the sum of the sidelengths of the squares in σ1. Hence
f (2) < 1 and f (1) > 1 by (a) and (b), respectively. It
follows from Theorem 5 and the Intermediate-Value
Theorem that the Hausdorff dimension of σ is in the
interval (1, 2). Since the topological dimension is an
integer which is less than or equal to the Hausdorff
dimension (see Edgar, 1990, p. 155), we see that the
topological dimension of σ is less than or equal to 1.
Hence σ is a fractal. !

We now consider the family of transformation ma-
trices

Tr =







r/2 0 r/2
0 1− 2r 0

r/2 0 r/2






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with r ∈ (0, 1/2). T0.2 appears in Example 3. It follows
from Theorems 5 and 6 that the support ofCTr is a frac-
tal whose Hausdorff dimension is the unique solution
s ∈ (1, 2) to the equation

4rs + (1− 2r)s = 1. (4)

Proposition 5. The function s(r) defined implicitly by
(4) is a strictly increasing C∞ bijection from (0, 1/2)
to (1, 2).

Proof. For each s ∈ (1, 2) define gs on (0, 1/2)
by gs(r) = 4rs + (1− 2r)s. Then g′

s(r) = 2s{2rs−1 −
(1− 2r)s−1}, so g′

s < 0 on (0, rs) and g′
s > 0

on (rs, 1/2), where rs = 1/{2+ 21/(s−1)} ∈ (0, 1/2).
Since gs(0+) = 1 and gs(1/2−) = 4/2s > 1, there is
a unique solution r ∈ (0, 1/2) to gs(r) = 1, i.e., to
(4). Hence s(r) is a bijection from (0, 1/2) to (1, 2).
To see that s(r) is strictly increasing and C∞ on
(0, 1/2), consider the function F (r, s) = 4rs + (1−
2r)s, which isC∞ on (0, 1/2)× (1, 2). For each (r, s) ∈
(0, 1/2)× (1, 2) we have (∂F/∂s)(r, s) = 4rs ln r +
(1− 2r)s ln(1− 2r) < 0, so s(r) is C∞ on (0, 1/2) by
the Implicit-FunctionTheorem. Implicit differentiation
in (4) yields

s′(r) = −g′
s(r)

∂F
∂s (r, s)

,

which is positive at points (r, s) ∈ (0, 1/2)× (1, 2) sat-
isfying (4). !
Theorem 1 follows from the fact that s(r) maps

(0, 1/2) onto (1, 2).

5. A generalization of Theorem 1

Definition 4. A function f : D → Rk with D ⊆ Rk

is bi-Lipschitz on D if there exist c1, c2 > 0 for
which c1|x − y| ≤ |f (x)− f (y)| ≤ c2|x − y| for all
x, y ∈ D.

Note that bi-Lipschitz functions are continuous
and one-to-one. Also note that if f : D → R satisfies
0 < c1 ≤ |f ′| ≤ c2 onD, then f is bi-Lipschitz onD by
the Mean-Value Theorem. In addition, note that if f is
bi-Lipschitz on D, then the inverse of f is bi-Lipschitz
on f (D).

Let F, G : R = [−∞, ∞] → I be distribution
functions such that for some a, b, c, d ∈ R
{

F (a) = 0, F (b) = 1 andF is bi-Lipschitz on [a, b],
G(c)= 0, G(d)= 1 andG is bi-Lipschitz on [c, d].

(5)

The following lemma is a straightforward consequence
of the equivalence of the standard and taxi-cab metrics
in the plane.

Lemma 1. If F and G satisfy (5), then the function
F × G defined by (F × G)(x, y) = {F (x), G(y)} is bi-
Lipschitz on [a, b]× [c, d].

Recall from Sklar’s Theorem (see Sklar, 1959) that
ifH is a bivariate distribution function with continuous
margins F and G, then there is a unique copula C for
which H = C ◦ (F × G). Hence

VH ([x1, x2]× [y1, y2])

= VC([F (x1), F (x2)]× [G(y1), G(y2)])

whenever x1 < x2, y1 < y2. (6)

Lemma 2. Let H be a bivariate distribution function
whose margins F and G satisfy (5). If S is the support
of H and T is the support of the copula C associated
with H, then (F × G)(S) = T .

Proof. Note that S ⊆ [a, b]× [c, d]. Let Sc =
([a, b]× [c, d])\S, T c = I2\T and, for this proof, let
F × G denote the restriction of itself to [a, b]× [c, d].
Recall that F and G are continuous and strictly in-
creasing on [a, b] and [c, d], respectively. If (x, y) is
in the interior of a closed rectangle Q in [a, b]× [c, d]
with VH (Q) = 0, then (F × G)(x, y) is in the inte-
rior of the closed rectangle (F × G)(Q) and VC{(F ×
G)(Q)} = 0 by (6). Since S and T are the closures of
their intersections with the interiors of [a, b]× [c, d]
and I2, respectively, we see that (F × G)(Sc) ⊆ T c.
Since the inverses of the restrictions of F and G
to [a, b] and [c, d], respectively, are continuous and
strictly increasing on I, a similar argument shows
that (F × G)−1(T c) ⊆ Sc. The result follows from
the fact that F × G is a bijection from [a, b]×
[c, d] to I2. !
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We have omitted a long and technical proof that
Lemma 2 holds for all continuous margins F and G.

Theorem 7. Let F and G be distribution func-
tions which satisfy (5). For each s ∈ (1, 2) there ex-
ists a bivariate distribution function H with margins
F and G, whose support is a fractal of Hausdorff
dimension s.

Proof. Fix s ∈ (1, 2) and choose, by Theorem 1,
a copula C whose support T is a fractal of Haus-
dorff dimension s. Let H = C ◦ (F × G). Then H is
a bivariate distribution function with margins F and
G by Sklar’s Theorem and the support of H is S =
(F × G)−1(T ) by Lemma 2. The function (F × G)−1
is bi-Lipschitz on I2 as F × G is bi-Lipschitz on
[a, b]× [c, d] byLemma1.Hence (see Falconer, 1990,
p. 30) the Hausdorff dimension of S is also s. The
topological dimension of S, being an integer, clearly
is less than the Hausdorff dimension of S, so S is a
fractal. !
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