The Mathematical Theory of Formal Languages

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017 Geometry of Neuroscience

References for this lecture:

- Ian Chiswell, A course in formal languages, automata and groups, Springer, 2009
- György Révész, Introduction to formal languages, McGraw-Hill, 1983
- Noam Chomsky, Three models for the description of language, IRE Transactions on Information Theory, (1956) N.2, 113–124.
- Noam Chomsky, On certain formal properties of grammars, Information and Control, Vol.2 (1959) N.2, 137–167
- A.V. Anisimov, The group languages, Kibernetika (Kiev) 1971, no. 4, 18–24
- D.E. Muller, P.E. Schupp, Groups, the theory of ends, and context-free languages, J. Comput. System Sci. 26 (1983), no. 3, 295–310

- 4 副 🕨 - 4 国 🕨 - 4 国 🕨

A very general abstract setting to describe languages (natural or artificial: human languages, codes, programming languages, ...)

Alphabet: a (finite) set \mathfrak{A} ; elements are *letters* or *symbols*

Words (or strings): $\mathfrak{A}^m = \text{set of all sequences } a_1 \dots a_m \text{ of length } m$ of letters in \mathfrak{A}

Empty word: $\mathfrak{A}^{0} = \{\epsilon\}$ (an additional symbol)

$$\mathfrak{A}^+ = \cup_{m \ge 1} \mathfrak{A}^m, \quad \mathfrak{A}^\star = \cup_{m \ge 0} \mathfrak{A}^m$$

concatenation: $\alpha = a_1 \dots a_m \in \mathfrak{A}^m$, $\beta = b_1 \dots b_k \in \mathfrak{A}^k$

$$\alpha\beta=a_1\ldots a_mb_1\ldots b_k\in \mathfrak{A}^{m+k}$$

Length $\ell(\alpha) = m$ for $\alpha \in \mathfrak{A}^m$ Language: a subset of \mathfrak{A}^* Question: how is the subset constructed? Rewriting system on \mathfrak{A} : a subset \mathcal{R} of $\mathfrak{A}^* \times \mathfrak{A}^*$ $(\alpha, \beta) \in \mathcal{R}$ means that for any $u, v \in \mathfrak{A}^*$ the word $u\alpha v$ rewrites to $u\beta v$

Notation: write $\alpha \to_{\mathcal{R}} \beta$ for $(\alpha, \beta) \in \mathcal{R}$ \mathcal{R} -derivation: for $u, v \in \mathfrak{A}^*$ write $u \xrightarrow{\bullet}_{\mathcal{R}} v$ if \exists sequence $u = u_1, \ldots, u_n = v$ of elements in \mathfrak{A}^* such that $u_i \to_{\mathcal{R}} u_{i+1}$

Grammar: a quadruple $\mathcal{G} = (V_N, V_T, P, S)$

- V_N and V_T disjoint finite sets: *non-terminal* and *terminal* symbols
- $S \in V_N$ start symbol
- *P* finite rewriting system on $V_N \cup V_T$
- P = production rules

Language produced by a grammar \mathcal{G} :

$$\mathcal{L}_{\mathcal{G}} = \{ w \in V_T^\star \, | \, S \stackrel{\bullet}{\to}_P w \}$$

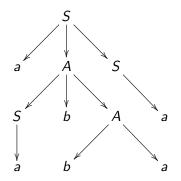
language with alphabet V_T

Production rules can be seen as *parsing trees*

Example: Grammar: $\mathcal{G} = \{\{S, A\}, \{a, b\}, P, S\}$ with productions P

$$S
ightarrow aAS$$
, $S
ightarrow a$, $A
ightarrow SbA$, $A
ightarrow SS$, $A
ightarrow ba$

• this is a possible parse tree for the string *aabbaa* in $\mathcal{L}_{\mathcal{G}}$



Context free and context sensitive production rules

- context free: $A \rightarrow \alpha$ with $A \in V_N$ and $\alpha \in (V_N \cup V_T)^*$
- context sensitive: $\beta A \gamma \rightarrow \beta \alpha \gamma$ with $A \in V_N$ $\alpha, \beta, \gamma \in (V_N \cup V_T)^*$ and $\alpha \neq \epsilon$

context free is context sensitive with $\beta=\gamma=\epsilon$

"context free" languages: a first attempt (Chomsky, 1956) to model natural languages; not appropriate, but good for some programming languages (e.g. Fortran, Algol, HTML)

The Chomsky hierarchy

Types:

- Type 0: just a grammar *G* as defined above (*unrestricted* grammars)
- Type 1: context-sensitive grammars
- Type 2: context-free grammars
- Type 3: regular grammars, where all productions $A \rightarrow aB$ or $A \rightarrow a$ with $A, B \in V_N$ and $a \in V_T$

(right/left-regular if aB or Ba in r.h.s. of production rules) Language of type n if produced by a grammar of type n

Examples

• Type 3 (regular): $\mathcal{G} = (\{S, A\}, \{0, 1\}, P, S)$ with productions P given by

$$S \rightarrow 0S$$
, $S \rightarrow A$, $A \rightarrow 1A$, $A \rightarrow 1$

then $\mathcal{L}_{\mathcal{G}} = \{0^m 1^n \mid m \ge 0, n \ge 1\}$

• Type 2 (context-free): $\mathcal{G} = (\{S\}, \{0, 1\}, P, S)$ with productions P given by

$$S \rightarrow 0S1, \quad S \rightarrow 01$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

then $\mathcal{L}_{\mathcal{G}} = \{0^n 1^n \mid n \ge 1\}$

• Type 1 (context-sensitive): $\mathcal{G} = (\{S, B, C\}\{a, b, c\}, P, S)$ with productions P

$$S
ightarrow aSBC$$
, $S
ightarrow aBC$, $CB
ightarrow BC$,
 $aB
ightarrow ab$, $bB
ightarrow bb$, $bC
ightarrow bc$, $cC
ightarrow cc$
the $\mathcal{L}_{\mathcal{G}} = \{a^n b^n c^n \mid n \ge 1\}$

Main Idea: a generative grammar \mathcal{G} determines what kinds of recursive structures are possible in the language $\mathcal{L}_{\mathcal{G}}$

向下 イヨト イヨト

Why is it useful to organize formal languages in this way?

Types and Machine Recognition

Recognized by:

- Type 0: Turing machine
- Type 1: linear bounded automaton
- Type 2: non-deterministic pushdown stack automaton
- Type 3: finite state automaton

What are these things?

Finite state automaton (FSA)

 $M = (Q, F, \mathfrak{A}, \tau, q_0)$

- Q finite set: set of possible states
- F subset of Q: the final states
- \mathfrak{A} finite set: alphabet
- $\tau \subset Q imes \mathfrak{A} imes Q$ set of transitions
- $q_0 \in Q$ initial state

computation in *M*: sequence $q_0a_1q_1a_2q_2...a_nq_n$ where $q_{i-1}a_iq_i \in \tau$ for $1 \le 1 \le n$

- label of the computation: $a_1 \dots a_n$
- successful computation: $q_n \in F$
- M accepts a string $a_1 \dots a_n$ if there is a successful computation in M labeled by $a_1 \dots a_n$

Language recognized by M:

$$\mathcal{L}_M = \{ w \in \mathfrak{A}^\star \, | \, w \text{ accepted by } M \}$$

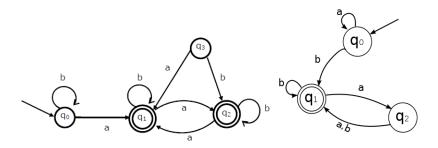
Graphical description of FSA

Transition diagram: oriented finite labelled graph Γ with vertices $V(\Gamma) = Q$ set of states and $E(\Gamma) = \tau$, with $e_{q,a,q'}$ an edge from v_q to $v_{q'}$ with label $a \in \mathfrak{A}$; label vertex q_0 with – and all final states vertices with +

• computations in $M \Leftrightarrow$ paths in Γ starting at v_{q_0}

• an oriented labelled finite graph with at most one edge with a given label between given vertices, and only one vertex labelled — is the transition diagram of some FDA

Examples



Examples of finite state automata with marked final states

・ロト ・回ト ・ヨト

문 문 문

deterministic FSA

for all $q \in Q$ and $a \in \mathfrak{A}$, there is a unique $q' \in Q$ with $(q, a, q') \in \tau$ \Rightarrow function $\delta : Q \times \mathfrak{A} \rightarrow Q$ with $\delta(q, a) = q'$, transition function determines $\delta : Q \times \mathfrak{A}^* \rightarrow Q$ by $\delta(q, \epsilon) = q$ and $\delta(q, wa) = \delta(\delta(q, w), a)$ for all $w \in \mathfrak{A}^*$ and $a \in \mathfrak{A}$ if $q_0 a_1 q_1 \dots a_n q_n$ computation in M then $q_n = \delta(q_0, a_1 \dots a_n)$

non-deterministic: multivalued transition functions also allowed

Languages recognized by (non-deterministic) FSA are Type 3

• for $\mathcal{G} = (V_N, V_T, P, S)$ type 3 grammar construct an FSA

$$M = (V_N \cup \{X\}, F, V_T, \tau, S)$$

with X a new letter, $F = \{S, X\}$ if $S \rightarrow_P \epsilon$, $F = \{X\}$ if not;

$$\tau = \{ (B, \mathsf{a}, \mathsf{C}) \, | \, B \to_{\mathsf{P}} \mathsf{a}\mathsf{C} \} \cup \{ (B, \mathsf{a}, \mathsf{X}) \, | \, B \to_{\mathsf{P}} \mathsf{a}, \, \mathsf{a} \neq \epsilon \}$$

then $\mathcal{L}_{\mathcal{G}} = \mathcal{L}_{M}$

• if M is a FSA take $\mathcal{G} = (Q, \mathfrak{A}, P, q_0)$ with P given by

 $P = \{B \to aC \mid (B, a, C) \in \tau\} \cup \{B \to a \mid (B, a, C) \in \tau, C \in F\}$ then $\mathcal{L}_M = \mathcal{L}_G$

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

pushdown stack automaton (PDA)

 $M = (Q, F, \mathfrak{A}, \Gamma, \tau, q_0, z_0)$

- Q finite set of possible states
- F subset of Q: the final states
- \mathfrak{A} finite set: alphabet
- Γ finite set: stack alphabet
- $\tau \subset Q \times (\mathfrak{A} \cup \{\epsilon\}) \times \Gamma \times Q \times \Gamma^*$ finite subset: set of transitions
- $q_0 \in Q$ initial state
- $z_0 \in \Gamma$ start symbol

- it is a FSA $(Q, F, \mathfrak{A}, \tau, q_0)$ together with a stack Γ^*
- the transitions are determined by the first symbol in the stack, the current state, and a letter in $\mathfrak{A} \cup \{\epsilon\}$

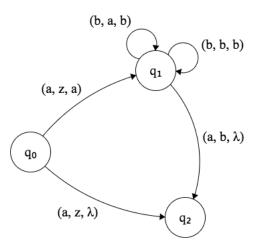
 \bullet the transition adds a new (finite) sequence of symbols at the beginning of the stack Γ^\star

- a configuration of M is an element of $Q \times \mathfrak{A}^{\star} \times \Gamma^{\star}$
- given $(q, a, z, q', \alpha) \in \tau \subset Q \times (\mathfrak{A} \cup \{\epsilon\}) \times \Gamma \times Q \times \Gamma^*$ the corresponding transition is from a configuration $(q, aw, z\beta)$ to a configuration $(q', w, \alpha\beta)$

• computation in M: a chain of transitions $c \to c'$ between configurations $c = c_1, \ldots, c_n = c'$ where each $c_i \to c_{i+1}$ a transition as above

イロン イヨン イヨン イヨン

Example



a transition labelled (a, b, c) between vertex q_i and q_j means read letter a on string, read letter b on top of memory stack, remove b and place c at the top of the stack: move from configuration $(q_i, aw, b\alpha)$ to configuration $(q_i, w, c\alpha)$

computation stops when reach final state or empty stack

• PDA *M* accepts $w \in \mathfrak{A}^*$ by final state if $\exists \gamma \in \Gamma^*$ and $q \in F$ such that $(q_0, w, z_0) \rightarrow (q, \epsilon, \gamma)$ is a computation in *M*

• Language recognized by *M* by final state

 $\mathcal{L}_M = \{ w \in \mathfrak{A}^* \, | \, w \text{ accepted by } M \text{ by final state } \}$

• $w \in \mathfrak{A}^*$ accepted by M by empty stack: if $(q_0, w, z_0) \rightarrow (q, \epsilon, \epsilon)$ is a computation on M with $q \in Q$

• Language recognized by *M* by empty stack

 $\mathcal{N}_{M} = \{ w \in \mathfrak{A}^{\star} \, | \, w \text{ accepted by } M \text{ by empty stack } \}$

(日) (同) (E) (E) (E)

deterministic PDA

- at most one transition $(q, a, z, q', \alpha) \in \tau$ with given (q, a, z) source
- 2 if there is a transition from (q, ϵ, z) then there is no transition from (q, a, z) with $a \neq \epsilon$

first condition as before; second condition avoids choice between a next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for non-deterministic PDA

$$\mathcal{L} = \mathcal{L}_M \Leftrightarrow \mathcal{L} = \mathcal{N}_{M'}$$

not equivalent for deterministic: in deterministic case languages $\mathcal{L} = \mathcal{N}_M$ have additional property: prefix-free: if $w \in \mathcal{L}$ then no prefix of w is in \mathcal{L} Languages recognized by (non-deterministic) PDA are Type 2 (context-free)

• If \mathcal{L} is context free then $\mathcal{L} = \mathcal{N}_M$ for some PDA M

 $\mathcal{L} = \mathcal{L}_{\mathcal{G}}$ with $\mathcal{G} = (V_N, V_T, P, S)$ context-free, take $M = (\{q\}, \emptyset, V_T, V_N, \tau, q, S)$ with τ given by the (q, a, A, q, γ) for productions $A \to a\gamma$ in P

then for $\alpha \in V_N^\star$ and $w \in V_T^\star$ have

$$S \xrightarrow{\bullet}_{P} w \alpha \quad \Leftrightarrow \quad (q, w, S) \rightarrow_{M} (q, \epsilon, \alpha)$$

A (10) A (10)

if also $\epsilon \in \mathcal{L}$ add new state q' and new transition $(q, \epsilon, Sq', \epsilon)$, where S start symbol of a PDA that recognizes $\mathcal{L} \setminus \{\epsilon\}$ • if $\mathcal{L} = \mathcal{N}_M$ for PDA M then $\mathcal{L} = \mathcal{L}_G$ with \mathcal{G} context-free for $M = (Q, F, \mathfrak{A}, \Gamma, \tau, q_0, z_0)$ define $\mathcal{G} = (V_N, \mathfrak{A}, P, S)$ where $V_N = \{(q, z, p) \mid q, p \in Q, z \in \Gamma\} \cup \{S\}$

with production rules P given by

$$(q, w, z) \rightarrow_M (p, \epsilon, \epsilon) \iff (q, z, p) \stackrel{\bullet}{\rightarrow}_P w$$

Similar arguments show Type 0 = recognized by Turing machine; Type 1 (context sensitive) = recognized by "linear bounded automata" (Turing machines but only part of tape can be used)

Representing natural languages?

• Question: How good are context-free grammars at representing natural languages?

- Originally conjectured to be the right class of formal languages to contain natural languages

- Not always good, but often good (better than earlier criticism indicated)

- Some explicit examples not context-free (cross-serial subordinate clause in Swiss-German)

- G.K. Pullum, G. Gazdar Natural languages and context-free languages, Linguistics and Philosophy, Vol.4 (1982) N.4, 471–504
- S. Shieber, Evidence against the context-freeness of natural language, Linguistics and Philosophy, Vol.8 (1985) N.3, 333-343

Are natural languages context-free?

• Try to show they are not by finding cross-serial dependencies of arbitrarily large size

• Example: the language $\mathcal{L} = \{xx^R \mid x \in \{a, b\}^*\}$ has cross serial dependencies of arbitrary length (the *i*-th and (n + i)-th term have to be the same $(x^R = \text{reversal of } x)$

• if cross serial dependencies of arbitrary length not context-free

The Swiss German Example

Swiss German cross-serial order in dependent clauses

 $wa^n b^m x c^n d^m y$

Jan säit das mer (d'chind)ⁿ (em Hans)^m es huus haend wele (laa)ⁿ (häfte)^m aastrüche non-context-free language

• S. Shieber, *Evidence against the context-freeness of natural language*, Linguistics and Philosophy, Vol.8 (1985) N.3, 333–343

- Context-free class too small
- Context-sensitive class too large
- Intermediate candidates:
 - **1** Tree Adjoining Grammars
 - Ø Merge Grammars

Other Problem: Clearly there are many more formal languages that do not correspond to natural (human) languages (even within the appropriate class that contains natural languages)

Example: Programming Languages: Fortran is context-free; C is context-sensitite; C^{++} is Type 0, ...

Examples: Formal Languages constructed from finitely presented discrete groups

Formal Language of a finitely presented group

- Group G, with presentation $G = \langle X | R \rangle$ (finitely presented)
 - X (finite) set of generators x_1, \ldots, x_N
 - *R* (finite) set of relations: *r* ∈ *R* words in the generators and their inverses
- \bullet for $G=\langle X\,|\,R\rangle$ call $\hat{X}=\{x,x^{-1}\,|\,x\in X\}$ symmetric set of generators
- Language associated to a finitely presented group $G = \langle X | R \rangle$

$$\mathcal{L}_{G} = \{ w \in \hat{X}^{\star} \mid w = 1 \in G \}$$

set of words in the generators representing trivial element of G

• Question: What kind of formal language is it?

• Algebraic properties of the group G correspond to properties of the formal language \mathcal{L}_G :

- \mathcal{L}_G is a regular language (Type 3) iff G is finite (Anisimov)
- *L_G* is context-free (Type 2) iff *G* has a free subgroup of finite index (Muller–Schupp)

Example: Take $G = SL_2(\mathbb{Z})$, infinite so \mathcal{L}_G not regular; generators

$$S = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$
 and $T = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$

with relations S^2 and $(ST)^3$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

generate a free subgroup F_2 of index 12 in $SL_2(\mathbb{Z})$ (of index 2 in $\Gamma(2)$ that has index 6 in $SL_2(\mathbb{Z})$) so $\mathcal{L}_{SL_2(\mathbb{Z})}$ is context-free

The "Boundaries of Babel" Problem

- Given a class of formal languages good enough to contain natural languages
- How to characterize the "region" within this class of formal languages that is populated by actual human (natural) languages?
- What is the *geometry* of the space of natural languages inside the space of formal languages?
- Andrea Moro, *The Boundaries of Babel. The Brain and the Enigma of Impossible Languages*, Second Edition, MIT Press, 2015

Want: a characterization and parameterization of the syntax of human languages

Broad Question: Is it possible to develop something like the mathematical theory of formal languages for Vision instead of Language?

- Best attempt so far: Pattern Theory
 - Ulf Grenander, *Elements of Pattern Theory*, Johns Hopkins University Press, 1996
 - Ulf Grenander, Michael I. Miller, *Pattern Theory: From Representation to Inference*, Oxford University Press, 2007
 - David Mumford, Agnès Desolneux, *Pattern Theory: The Stochastic Analysis of Real-World Signals*, CRC Press, 2010.