
The Mathematical Theory of Formal Languages

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017
Geometry of Neuroscience

Matilde Marcolli and Doris Tsao Formal Languages

References for this lecture:

1 Ian Chiswell, A course in formal languages, automata and
groups, Springer, 2009

2 György Révész, Introduction to formal languages,
McGraw-Hill, 1983

3 Noam Chomsky, Three models for the description of language,
IRE Transactions on Information Theory, (1956) N.2,
113–124.

4 Noam Chomsky, On certain formal properties of grammars,
Information and Control, Vol.2 (1959) N.2, 137–167

5 A.V. Anisimov, The group languages, Kibernetika (Kiev)
1971, no. 4, 18–24

6 D.E. Muller, P.E. Schupp, Groups, the theory of ends, and
context-free languages, J. Comput. System Sci. 26 (1983),
no. 3, 295–310

Matilde Marcolli and Doris Tsao Formal Languages

A very general abstract setting to describe languages (natural or
artificial: human languages, codes, programming languages, . . .)

Alphabet: a (finite) set A; elements are letters or symbols

Words (or strings): Am = set of all sequences a1 . . . am of length m
of letters in A

Empty word: A0 = {ε} (an additional symbol)

A+ = ∪m≥1Am, A? = ∪m≥0Am

concatenation: α = a1 . . . am ∈ Am, β = b1 . . . bk ∈ Ak

αβ = a1 . . . amb1 . . . bk ∈ Am+k

Length `(α) = m for α ∈ Am

Language: a subset of A?

Question: how is the subset constructed?

Matilde Marcolli and Doris Tsao Formal Languages

Rewriting system on A: a subset R of A? × A?

(α, β) ∈ R means that for any u, v ∈ A? the word
uαv rewrites to uβv

Notation: write α→R β for (α, β) ∈ R
R-derivation: for u, v ∈ A? write u

•→R v if ∃ sequence
u = u1, . . . , un = v of elements in A? such that ui →R ui+1

Grammar: a quadruple G = (VN ,VT ,P,S)

VN and VT disjoint finite sets: non-terminal and terminal
symbols

S ∈ VN start symbol

P finite rewriting system on VN ∪ VT

P = production rules

Language produced by a grammar G:

LG = {w ∈ V ?
T |S

•→P w}

language with alphabet VT

Matilde Marcolli and Doris Tsao Formal Languages

Production rules can be seen as parsing trees

Example: Grammar: G = {{S ,A}, {a, b},P, S} with productions P

S → aAS , S → a, A→ SbA, A→ SS , A→ ba

• this is a possible parse tree for the string aabbaa in LG

S

�� �� ��
a A

�� �� ��

S

��
S

��

b A

�� ��

a

a b a

Matilde Marcolli and Doris Tsao Formal Languages

Context free and context sensitive production rules

• context free: A→ α with A ∈ VN and α ∈ (VN ∪ VT)?

• context sensitive: βAγ → βαγ with A ∈ VN

α, β, γ ∈ (VN ∪ VT)? and α 6= ε

context free is context sensitive with β = γ = ε

“context free” languages: a first attempt (Chomsky, 1956) to
model natural languages; not appropriate, but good for some
programming languages (e.g. Fortran, Algol, HTML)

Matilde Marcolli and Doris Tsao Formal Languages

The Chomsky hierarchy

Types:

Type 0: just a grammar G as defined above (unrestricted
grammars)

Type 1: context-sensitive grammars

Type 2: context-free grammars

Type 3: regular grammars, where all productions A→ aB or
A→ a with A,B ∈ VN and a ∈ VT

(right/left-regular if aB or Ba in r.h.s. of production rules)

Language of type n if produced by a grammar of type n

Matilde Marcolli and Doris Tsao Formal Languages

Examples

• Type 3 (regular): G = ({S ,A}, {0, 1},P, S) with productions P
given by

S → 0S , S → A, A→ 1A, A→ 1

then LG = {0m1n |m ≥ 0, n ≥ 1}

• Type 2 (context-free): G = ({S}, {0, 1},P,S) with productions
P given by

S → 0S1, S → 01

then LG = {0n1n | n ≥ 1}

Matilde Marcolli and Doris Tsao Formal Languages

• Type 1 (context-sensitive): G = ({S ,B,C}{a, b, c},P, S) with
productions P

S → aSBC , S → aBC , CB → BC ,

aB → ab, bB → bb, bC → bc, cC → cc

the LG = {anbncn | n ≥ 1}

Main Idea: a generative grammar G determines what kinds of
recursive structures are possible in the language LG

Matilde Marcolli and Doris Tsao Formal Languages

Why is it useful to organize formal languages in this way?

Types and Machine Recognition

Recognized by:

Type 0: Turing machine

Type 1: linear bounded automaton

Type 2: non-deterministic pushdown stack automaton

Type 3: finite state automaton

What are these things?

Matilde Marcolli and Doris Tsao Formal Languages

Finite state automaton (FSA)

M = (Q,F ,A, τ, q0)

Q finite set: set of possible states

F subset of Q: the final states

A finite set: alphabet

τ ⊂ Q × A× Q set of transitions

q0 ∈ Q initial state

Matilde Marcolli and Doris Tsao Formal Languages

computation in M: sequence q0a1q1a2q2 . . . anqn where
qi−1aiqi ∈ τ for 1 ≤ 1 ≤ n

• label of the computation: a1 . . . an

• successful computation: qn ∈ F

• M accepts a string a1 . . . an if there is a successful computation
in M labeled by a1 . . . an

Language recognized by M:

LM = {w ∈ A? |w accepted by M}

Matilde Marcolli and Doris Tsao Formal Languages

Graphical description of FSA

Transition diagram: oriented finite labelled graph Γ with vertices
V (Γ) = Q set of states and E (Γ) = τ , with eq,a,q′ an edge from vq
to vq′ with label a ∈ A; label vertex q0 with − and all final states
vertices with +

• computations in M ⇔ paths in Γ starting at vq0

• an oriented labelled finite graph with at most one edge with a
given label between given vertices, and only one vertex labelled −
is the transition diagram of some FDA

Matilde Marcolli and Doris Tsao Formal Languages

Examples

Examples of finite state automata with marked final states

Matilde Marcolli and Doris Tsao Formal Languages

deterministic FSA

for all q ∈ Q and a ∈ A, there is a unique q′ ∈ Q with (q, a, q′) ∈ τ

⇒ function δ : Q × A→ Q with δ(q, a) = q′, transition function

determines δ : Q × A? → Q by δ(q, ε) = q and
δ(q,wa) = δ(δ(q,w), a) for all w ∈ A? and a ∈ A

if q0a1q1 . . . anqn computation in M then qn = δ(q0, a1 . . . an)

non-deterministic: multivalued transition functions also allowed

Matilde Marcolli and Doris Tsao Formal Languages

Languages recognized by (non-deterministic) FSA are Type 3

• for G = (VN ,VT ,P, S) type 3 grammar construct an FSA

M = (VN ∪ {X},F ,VT , τ, S)

with X a new letter, F = {S ,X} if S →P ε, F = {X} if not;

τ = {(B, a,C) |B →P aC} ∪ {(B, a,X) |B →P a, a 6= ε}

then LG = LM
• if M is a FSA take G = (Q,A,P, q0) with P given by

P = {B → aC | (B, a,C) ∈ τ} ∪ {B → a | (B, a,C) ∈ τ,C ∈ F}

then LM = LG

Matilde Marcolli and Doris Tsao Formal Languages

pushdown stack automaton (PDA)

M = (Q,F ,A, Γ, τ, q0, z0)

Q finite set of possible states

F subset of Q: the final states

A finite set: alphabet

Γ finite set: stack alphabet

τ ⊂ Q× (A∪{ε})×Γ×Q×Γ? finite subset: set of transitions

q0 ∈ Q initial state

z0 ∈ Γ start symbol

Matilde Marcolli and Doris Tsao Formal Languages

• it is a FSA (Q,F ,A, τ, q0) together with a stack Γ?

• the transitions are determined by the first symbol in the stack,
the current state, and a letter in A ∪ {ε}
• the transition adds a new (finite) sequence of symbols at the
beginning of the stack Γ?

• a configuration of M is an element of Q × A? × Γ?

• given (q, a, z , q′, α) ∈ τ ⊂ Q × (A ∪ {ε})× Γ× Q × Γ? the
corresponding transition is from a configuration (q, aw , zβ) to a
configuration (q′,w , αβ)

• computation in M: a chain of transitions c → c ′ between
configurations c = c1, . . . , cn = c ′ where each ci → ci+1 a
transition as above

Matilde Marcolli and Doris Tsao Formal Languages

Example

a transition labelled (a, b, c) between vertex qi and qj means read letter a

on string, read letter b on top of memory stack, remove b and place c at

the top of the stack: move from configuration (qi , aw , bα) to

configuration (qj ,w , cα)
Matilde Marcolli and Doris Tsao Formal Languages

• computation stops when reach final state or empty stack

• PDA M accepts w ∈ A? by final state if ∃γ ∈ Γ? and q ∈ F such
that (q0,w , z0)→ (q, ε, γ) is a computation in M

• Language recognized by M by final state

LM = {w ∈ A? |w accepted by M by final state }

• w ∈ A? accepted by M by empty stack: if (q0,w , z0)→ (q, ε, ε)
is a computation on M with q ∈ Q

• Language recognized by M by empty stack

NM = {w ∈ A? |w accepted by M by empty stack }

Matilde Marcolli and Doris Tsao Formal Languages

deterministic PDA

1 at most one transition (q, a, z , q′, α) ∈ τ with given (q, a, z)
source

2 if there is a transition from (q, ε, z) then there is no transition
from (q, a, z) with a 6= ε

first condition as before; second condition avoids choice between a
next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for
non-deterministic PDA

L = LM ⇔ L = NM′

not equivalent for deterministic: in deterministic case languages
L = NM have additional property:
prefix-free: if w ∈ L then no prefix of w is in L

Matilde Marcolli and Doris Tsao Formal Languages

Languages recognized by (non-deterministic) PDA are Type 2
(context-free)

• If L is context free then L = NM for some PDA M

L = LG with G = (VN ,VT ,P,S) context-free, take
M = ({q}, ∅,VT ,VN , τ, q,S) with τ given by the (q, a,A, q, γ) for
productions A→ aγ in P

then for α ∈ V ?
N and w ∈ V ?

T have

S
•→P wα ⇔ (q,w , S)→M (q, ε, α)

if also ε ∈ L add new state q′ and new transition (q, ε,Sq′, ε),
where S start symbol of a PDA that recognizes Lr {ε}

Matilde Marcolli and Doris Tsao Formal Languages

• if L = NM for PDA M then L = LG with G context-free

for M = (Q,F ,A, Γ, τ, q0, z0) define G = (VN ,A,P,S) where

VN = {(q, z , p) | q, p ∈ Q, z ∈ Γ} ∪ {S}

with production rules P given by

1 S → (q0, z0, q) for all q ∈ Q

2 (q, z , p)→ a(q1, y1, q2)(q2, y2, q3) · · · (qm, ym, qm+1) with
q1 = q, qm+1 = p and (q, a, z , q1, y1 . . . ym) transition of M

(q,w , z)→M (p, ε, ε) ⇔ (q, z , p)
•→P w

Similar arguments show Type 0 = recognized by Turing machine;
Type 1 (context sensitive) = recognized by “linear bounded
automata” (Turing machines but only part of tape can be used)

Matilde Marcolli and Doris Tsao Formal Languages

Representing natural languages?

• Question: How good are context-free grammars at representing
natural languages?

- Originally conjectured to be the right class of formal languages to
contain natural languages
- Not always good, but often good (better than earlier criticism
indicated)
- Some explicit examples not context-free (cross-serial subordinate
clause in Swiss-German)

1 G.K. Pullum, G. Gazdar Natural languages and context-free
languages, Linguistics and Philosophy, Vol.4 (1982) N.4,
471–504

2 S. Shieber, Evidence against the context-freeness of natural
language, Linguistics and Philosophy, Vol.8 (1985) N.3,
333–343

Matilde Marcolli and Doris Tsao Formal Languages

Are natural languages context-free?

• Try to show they are not by finding cross-serial dependencies of
arbitrarily large size

• Example: the language L = {xxR | x ∈ {a, b}∗} has cross serial
dependencies of arbitrary length (the i-th and (n + i)-th term have
to be the same (xR = reversal of x)

• if cross serial dependencies of arbitrary length not context-free

Matilde Marcolli and Doris Tsao Formal Languages

The Swiss German Example

Swiss German cross-serial order in dependent clauses

wanbmxcndmy

Jan säit das mer (d’chind)n (em Hans)m es huus haend wele (laa)n

(häfte)m aastrüche
non-context-free language

• S. Shieber, Evidence against the context-freeness of natural
language, Linguistics and Philosophy, Vol.8 (1985) N.3, 333–343

Context-free class too small

Context-sensitive class too large

Intermediate candidates:
1 Tree Adjoining Grammars
2 Merge Grammars

Matilde Marcolli and Doris Tsao Formal Languages

Other Problem: Clearly there are many more formal languages that
do not correspond to natural (human) languages (even within the
appropriate class that contains natural languages)

Example: Programming Languages: Fortran is context-free; C is
context-sensitite; C++ is Type 0, ...

Examples: Formal Languages constructed from finitely presented
discrete groups

Matilde Marcolli and Doris Tsao Formal Languages

Formal Language of a finitely presented group
• Group G , with presentation G = 〈X |R〉 (finitely presented)

X (finite) set of generators x1, . . . , xN

R (finite) set of relations: r ∈ R words in the generators and
their inverses

• for G = 〈X |R〉 call X̂ = {x , x−1 | x ∈ X} symmetric set of
generators

• Language associated to a finitely presented group G = 〈X |R〉

LG = {w ∈ X̂ ? |w = 1 ∈ G}

set of words in the generators representing trivial element of G

• Question: What kind of formal language is it?

Matilde Marcolli and Doris Tsao Formal Languages

• Algebraic properties of the group G correspond to properties of
the formal language LG :

1 LG is a regular language (Type 3) iff G is finite (Anisimov)

2 LG is context-free (Type 2) iff G has a free subgroup of finite
index (Muller–Schupp)

Example: Take G = SL2(Z), infinite so LG not regular; generators

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
with relations S2 and (ST)3(

1 2
0 1

)
and

(
1 0
2 1

)
generate a free subgroup F2 of index 12 in SL2(Z) (of index 2 in
Γ(2) that has index 6 in SL2(Z)) so LSL2(Z) is context-free

Matilde Marcolli and Doris Tsao Formal Languages

The “Boundaries of Babel” Problem

Given a class of formal languages good enough to contain
natural languages

How to characterize the “region” within this class of formal
languages that is populated by actual human (natural)
languages?

What is the geometry of the space of natural languages inside
the space of formal languages?

• Andrea Moro, The Boundaries of Babel. The Brain and the
Enigma of Impossible Languages, Second Edition, MIT Press, 2015

Want: a characterization and parameterization of the syntax of
human languages

Matilde Marcolli and Doris Tsao Formal Languages

Broad Question: Is it possible to develop something like the
mathematical theory of formal languages for Vision instead of
Language?

• Best attempt so far: Pattern Theory

Ulf Grenander, Elements of Pattern Theory, Johns Hopkins
University Press, 1996

Ulf Grenander, Michael I. Miller, Pattern Theory: From
Representation to Inference, Oxford University Press, 2007

David Mumford, Agnès Desolneux, Pattern Theory: The
Stochastic Analysis of Real-World Signals, CRC Press, 2010.

Matilde Marcolli and Doris Tsao Formal Languages

