
Formal Languages

Matilde Marcolli
CS101: Mathematical and Computational Linguistics

Winter 2015

CS101 Win2015: Linguistics Formal Languages

A very general abstract setting to describe languages (natural or
artificial: human languages, codes, programming languages, . . .)

Alphabet: a (finite) set A; elements are letters or symbols

Words (or strings): Am = set of all sequences a1 . . . am of length m
of letters in A

Empty word: A0 = {ε} (an additional symbol)

A+ = ∪m≥1Am, A? = ∪m≥0Am

concatenation: α = a1 . . . am ∈ Am, β = b1 . . . bk ∈ Ak

αβ = a1 . . . amb1 . . . bk ∈ Am+k

associative (αβ)γ = α(βγ) with εα = αε = α
semigroup A+; monoid A?

Length `(α) = m for α ∈ Am

CS101 Win2015: Linguistics Formal Languages

subword: γ ⊂ α if α = βγδ for some other words β, δ ∈ A?:
prefix β and suffix δ

Language: a subset of A?

Question: how is the subset constructed?

Rewriting system on A: a subset R of A? × A?

(α, β) ∈ R means that for any u, v ∈ A? the word
uαv rewrites to uβv

Notation: write α→R β for (α, β) ∈ R
R-derivation: for u, v ∈ A? write u

•→R v if ∃ sequence
u = u1, . . . , un = v of elements in A? such that ui →R ui+1

CS101 Win2015: Linguistics Formal Languages

Grammar: a quadruple G = (VN ,VT ,P,S)

VN and VT disjoint finite sets: non-terminal and terminal
symbols

S ∈ VN start symbol

P finite rewriting system on VN ∪ VT

P = production rules

Language produced by a grammar G:

LG = {w ∈ V ?
T |S

•→P w}

language with alphabet VT

CS101 Win2015: Linguistics Formal Languages

Context free and context sensitive production rules

• context free: A→ α with A ∈ VN and α ∈ (VN ∪ VT)?

• context sensitive: βAγ → βαγ with A ∈ VN

α, β, γ ∈ (VN ∪ VT)? and α 6= ε

context free is context sensitive with β = γ = ε

“context free” languages: a first attempt (Chomsky, 1956) to
model natural languages; not appropriate, but good for some
programming languages (e.g. Fortran, Algol, HTML)

CS101 Win2015: Linguistics Formal Languages

The Chomsky hierarchy

Types:

Type 0: just a grammar G as defined above (unrestricted
grammars)

Type 1: context-sensitive grammars

Type 2: context-free grammars

Type 3: regular grammars, where all productions A→ aB or
A→ a with A,B ∈ VN and a ∈ VT

(right/left-regular if aB or Ba in r.h.s. of production rules)

Language of type n if produced by a grammar of type n

CS101 Win2015: Linguistics Formal Languages

Examples

• Type 3: G = ({S ,A}, {0, 1},P,S) with productions P given by

S → 0S , S → A, A→ 1A, A→ 1

then LG = {0m1n |m ≥ 0, n ≥ 1}

• Type 2: G = ({S}, {0, 1},P,S) with productions P given by

S → 0S1, S → 01

then LG = {0n1n | n ≥ 1}

CS101 Win2015: Linguistics Formal Languages

• Type 1: G = ({S ,B,C}{a, b, c},P,S) with productions P

S → aSBC , S → aBC , CB → BC ,

aB → ab, bB → bb, bC → bc, cC → cc

the LG = {anbncn | n ≥ 1}

CS101 Win2015: Linguistics Formal Languages

Why is it useful to organize formal languages in this way?

Types and Machine Recognition

Recognized by:

Type 0: Turing machine

Type 1: linear bounded automaton

Type 2: non-deterministic pushdown stack automaton

Type 3: finite state automaton

What are these things?

CS101 Win2015: Linguistics Formal Languages

Finite state automaton (FSA)

M = (Q,F ,A, τ, q0)

Q finite set: set of possible states

F subset of Q: the final states

A finite set: alphabet

τ ⊂ Q × A× Q set of transitions

q0 ∈ Q initial state

CS101 Win2015: Linguistics Formal Languages

computation in M: sequence q0a1q1a2q2 . . . anqn where
qi−1aiqi ∈ τ for 1 ≤ 1 ≤ n

• label of the computation: a1 . . . an

• successful computation: qn ∈ F

• M accepts a string a1 . . . an if there is a successful computation
in M labeled by a1 . . . an

Language recognized by M:

LM = {w ∈ A? |w accepted by M}

CS101 Win2015: Linguistics Formal Languages

Graphical description of FSA

Transition diagram: oriented finite labelled graph Γ with vertices
V (Γ) = Q set of states and E (Γ) = τ , with eq,a,q′ an edge from vq
to vq′ with label a ∈ A; label vertex q0 with − and all final states
vertices with +

• computations in M ⇔ paths in Γ starting at vq0

• an oriented labelled finite graph with at most one edge with a
given label between given vertices, and only one vertex labelled −
is the transition diagram of some FDA

CS101 Win2015: Linguistics Formal Languages

deterministic FSA

for all q ∈ Q and a ∈ A, there is a unique q′ ∈ Q with (q, a, q′) ∈ τ

⇒ function δ : Q × A→ Q with δ(q, a) = q′, transition function

determines δ : Q × A? → Q by δ(q, ε) = q and
δ(q,wa) = δ(δ(q,w), a) for all w ∈ A? and a ∈ A

if q0a1q1 . . . anqn computation in M then qn = δ(q0, a1 . . . an)

non-deterministic: multivalued transition functions also allowed

CS101 Win2015: Linguistics Formal Languages

Languages recognized by (non-deterministic) FSA are Type 3

• for G = (Vn,VT ,P, S) type 3 grammar construct an FSA

M = (VN ∪ {X},F ,VT , τ, S)

with X a new letter, F = {S ,X} if S →P ε, F = {X} if not;

τ = {(B, a,C) |B →P aC} ∪ {(B, a,X) |B →P a, a 6= ε}

then LG = LM
• if M is a FSA take G = (Q,A,P, q0) with P given by

P = {B → aC | (B, a,C) ∈ τ} ∪ {B → a | (B, a,C) ∈ τ,C ∈ F}

then LM = LG

CS101 Win2015: Linguistics Formal Languages

Non-deterministic pushdown stack automaton

Example: type 2 language would require infinite available number
of states (e.g. to memorize number of 0’s read before the 1’s)

Identify a class of infinite automata, where this kind of memory
storage can be done

pushdown stack: a pile where new data can be stored on top; can
store infinite length, but only last input can be accessed (first in
last out)

CS101 Win2015: Linguistics Formal Languages

pushdown stack automaton (PDA)

M = (Q,F ,A, Γ, τ, q0, z0)

Q finite set of possible states

F subset of Q: the final states

A finite set: alphabet

Γ finite set: stack alphabet

τ ⊂ Q× (A∪{ε})×Γ×Q×Γ? finite subset: set of transitions

q0 ∈ Q initial state

z0 ∈ Γ start symbol

CS101 Win2015: Linguistics Formal Languages

• it is a FSA (Q,F ,A, τ, q0) together with a stack Γ?

• the transitions are determined by the first symbol in the stack,
the current state, and a letter in A ∪ {ε}
• the transition adds a new (finite) sequence of symbols at the
beginning of the stack Γ?

• a configuration of M is an element of Q × A? × Γ?

• given (q, a, z , q′, α) ∈ τ ⊂ Q × (A ∪ {ε})× Γ× Q × Γ? the
corresponding transition is from a configuration (q,w , zβ) to a
configuration (q′,wa, αβ)

• computation in M: a chain of transitions c → c ′ between
configurations c = c1, . . . , cn = c ′ where each ci → ci+1 a
transition as above

CS101 Win2015: Linguistics Formal Languages

• computation stops when reach final state or empty stack

• PDA M accepts w ∈ A? by final state if ∃γ ∈ Γ? and q ∈ F such
that (q0,w , z0)→ (q, ε, γ) is a computation in M

• Language recognized by M by final state

LM = {w ∈ A? |w accepted by M by final state }

• w ∈ A? accepted by M by empty stack: if (q0,w , z0)→ (q, ε, ε)
is a computation on M with q ∈ Q

• Language recognized by M by empty stack

NM = {w ∈ A? |w accepted by M by empty stack }

CS101 Win2015: Linguistics Formal Languages

deterministic PDA

1 at most one transition (q, a, z , q′, α) ∈ τ with given (q, a, z)
source

2 if there is a transition from (q, ε, z) then there is no transition
from (q, a, z) with a 6= ε

first condition as before; second condition avoids choice between a
next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for
non-deterministic PDA

L = LM ⇔ L = NM′

not equivalent for deterministic: in deterministic case languages
L = NM have additional property:
prefix-free: if w ∈ L then no prefix of w is in L

CS101 Win2015: Linguistics Formal Languages

Languages recognized by (non-deterministic) PDA are Type 2

• If L is context free then L = NM for some PDA M

L = LG with G = (VN ,VT ,P,S) context-free, take
M = ({q}, ∅,VT ,VN , τ, q,S) with τ given by the (q, a,A, q, γ) for
productions A→ aγ in P

then for α ∈ V ?
N and w ∈ V ?

T have

S
•→P wα ⇔ (q,w , S)→M (q, ε, α)

if also ε ∈ L add new state q′ and new transition (q, ε,Sq′, ε),
where S start symbol of a PDA that recognizes Lr {ε}

CS101 Win2015: Linguistics Formal Languages

• if L = NM for PDA M then L = LG with G context-free

for M = (Q,F ,A, Γ, τ, q0, z0) define G = (VN ,A,P,S) where

VN = {(q, z , p) | q, p ∈ Q, z ∈ Γ} ∪ {S}

with production rules P given by

1 S → (q0, z0, q) for all q ∈ Q

2 (q, z , p)→ a(q1, y1, q2)(q2, y2, q3) · · · (qm, ym, qm+1) with
q1 = q, qm+1 = p and (q, a, z , q1, y1 . . . ym) transition of M

(q,w , z)→M (p, ε, ε) ⇔ (q, z , p)
•→P w

CS101 Win2015: Linguistics Formal Languages

Turing machine T = (Q,F ,A, I , τ, q0)

Q finite set of possible states

F subset of Q: the final states

A finite set: alphabet (with a distinguished element B blank
symbol)

I ⊂ Ar {B} input alphabet

τ ⊂ Q × A× Q × A× {L,R} transitions
with {L,R} a 2-element set

q0 ∈ Q initial state

qaq′a′L ∈ τ means T is in state q, reads a on next square in the
tape, changes to state q′, overwrites the square with new letter a′

and moves one square to the left

CS101 Win2015: Linguistics Formal Languages

• tape description for T : triple (a, α, β) with a ∈ A, α : N→ A,
β : N→ A such that α(n) = B and β(n) = B for all but finitely
many n ∈ N (sequences of letters on tape right and left of a)

• configuration of T : (q, a, α, β) with q ∈ Q and (a, α, β) a tape
description

• configuration c ′ from c in a single move if either

c = (q, a, α, β), qaq′a′L ∈ τ and c ′ = (q′, β(0), α′, β′) with
α′(0) = a′ and α′(n) = α(n − 1), and β′(n) = β(n + 1)

c = (q, a, α, β), qaq′a′R ∈ τ and c ′ = (q′, α(0), α′, β′) with
α′(n) = α(n + 1), and β′(0) = a′, β′(n) = β(n − 1)

• computation c → c ′ in T starting at c and ending at c ′: finite
sequence c = c1, . . . , cn = c ′ with ci+1 from ci by a single move

• computation halts if c ′ terminal configuration, c ′ = (q, a, α, β)
with no element in τ starting with qa

CS101 Win2015: Linguistics Formal Languages

• word w = a1 · · · an ∈ A? accepted by T if for cw = (q0, a1 · · · an)
there is a computation in T of the form cw → c ′ = (q, a, α, β)
with q ∈ F

• Language recognized by T

LT = {w ∈ A? |w is accepted by T}

• Turing machine T deterministic if for given (q, a) ∈ Q × A there
is at most one element of τ starting with qa

CS101 Win2015: Linguistics Formal Languages

Languages recognized by Turing Machines are Type 0

• if L = LT take grammar G = (VN ,VT ,P, S) with VT = I ,

VN = ((I ∪ {ε})× A) ∪ Q ∪ {S ,E1,E2,E3}

extra letters E1,E2,E3 and productions P

S → E1E2, E2 → (a, a)E2, a ∈ A, E2 → E3

E3 → (ε,B)E3, E1 → (ε,B)E1, E3 → ε, E1 → q0

q(a,C)→ (a,D)p, with qCpDR ∈ τ, a ∈ I ∪ {ε}

(a,C)q → p(a,D), with qCpDL ∈ τ, a ∈ I ∪ {ε}

(a,C)q → qaq, q(a,C)→ qaq, q → ε,

for a ∈ I ∪ {ε}, C ∈ A, q ∈ F .
Then L = LG

CS101 Win2015: Linguistics Formal Languages

• converse statement: L = LG with G Type 0 ⇒ L = LT with
T = Turing machine

uses a characterization of Type 0 languages as recursively
enumerable languages: code A? by natural numbers f : A? → N
bijection such that f (L) is a recursively enumerable set (Gödel
numbering)

recursively enumerable set: A in N range A = g(N) of a some
recursive function

enumerable set A in N: both A and Nr A are recursively
enumerable

recursive function: total functions obtained from primitive
recursive (explicit generators and relations) and minimization µ

CS101 Win2015: Linguistics Formal Languages

Part 2: Languages recognized by a Turing machine are Type 0

• L = LG of Type 0 ⇔ L recursively enumerable

• L recursively enumerable ⇒ recognized by Turing machine

(0) assume A = {2, 3, . . . , r − 1} and Gödel numbering
w = x1 . . . xk 7→ φ(w) = x1 + x2r + · · ·+ xk rk

(1) tape alphabet {0, 1, 2, . . . , r − 1}, input I = A, final state
F = ∅, blank symbol 0

(2) Turing machine that, on tape description x1 . . . xk halts with
tape description 01x1 · · · 01xk 0

(3) Turing machine that, on tape description 01x1 · · · 01xk 0 halts
with tape description 01φ(x1...xk)

(4) partial recursive function f with Dom(f) = φ(L): Turing
machine that, on input 01x halts iff x ∈ Dom(f) with 01f (x)

(5) Composition of these three Turing machines recognizes L

CS101 Win2015: Linguistics Formal Languages

Linear bounded automaton is a Turing machine
T = (Q,F ,A, I , τ, q0) where only the part of the tape where the
input word is written can be used

1 input alphabet I has two symbols 〉,〈 right/left end marks

2 no transitions q〈q′aL or q〉q′aR allowed (cannot move past
end marks)

3 only transitions starting with q〈 or q〉 are q〈q′〈R and q〉q′〉L
(cannot overwrite 〈 and 〉)

Languages recognized by linear bounded automata are Type 1
context-sensitive languages are recursive

CS101 Win2015: Linguistics Formal Languages

Some references:

1 Ian Chiswell, A course in formal languages, automata and
groups, Springer, 2009

2 György Révész, Introduction to formal languages,
McGraw-Hill, 1983

3 Noam Chomsky, Three models for the description of language,
IRE Transactions on Information Theory, (1956) N.2,
113–124.

4 Noam Chomsky, On certain formal properties of grammars,
Information and Control, Vol.2 (1959) N.2, 137–167

CS101 Win2015: Linguistics Formal Languages

