Formal Languages

Matilde Marcolli
CS101: Mathematical and Computational Linguistics

Winter 2015

CS101 Win2015: Linguistics Formal Languages

A very general abstract setting to describe languages (natural or
artificial: human languages, codes, programming languages, .. .)

Alphabet: a (finite) set 2; elements are letters or symbols

Words (or strings): 2™ = set of all sequences aj ... an, of length m
of letters in 2

Empty word: A° = {e} (an additional symbol)

AT = Umlel’", A* = Umonl’"

concatenation: o =aj...am € A", B=by...bx € A
af =ai...amby...bg € AMHK
associative (af)y = a(fvy) with ea = ae = «

semigroup A"; monoid A*
Length (o) = m for a € AT

CS101 Win2015: Linguistics Formal Languages

subword: v C « if a = 6 for some other words (3,6 € 2A*:
prefix 8 and suffix §

Language: a subset of 2*
Question: how is the subset constructed?

Rewriting system on 2l: a subset R of 2A* x A*
(o, B) € R means that for any u, v € A* the word
uav rewrites to ufv

Notation: write a —x 3 for (o,) € R
R-derivation: for u, v € A* write u —% v if 3 sequence
u=uy,...,up, =v of elements in A* such that u; -»x uj11

CS101 Win2015: Linguistics Formal Languages

Grammar: a quadruple G = (W, V7, P, S)

@ Vy and V7 disjoint finite sets: non-terminal and terminal
symbols

e S € V) start symbol
@ P finite rewriting system on Vy U V71

P = production rules

Language produced by a grammar G:
[,g:{WE V;—|5L>p W}

language with alphabet VT

CS101 Win2015: Linguistics Formal Languages

Context free and context sensitive production rules
e context free: A — a with A€ Vy and a € (Vy U V7)*

e context sensitive: Ay — Bay with A € Vy
a,f,v€ (VnU V) and a # ¢

context free is context sensitive with 3 =~y =¢

“context free” languages: a first attempt (Chomsky, 1956) to
model natural languages; not appropriate, but good for some
programming languages (e.g. Fortran, Algol, HTML)

CS101 Win2015: Linguistics Formal Languages

The Chomsky hierarchy
Types:

@ Type 0: just a grammar G as defined above (unrestricted
grammars)

o Type 1: context-sensitive grammars

o Type 2: context-free grammars

@ Type 3: regular grammars, where all productions A — aB or
A— awith A, Be Vyand ae Vr

(right/left-regular if aB or Ba in r.h.s. of production rules)

Language of type n if produced by a grammar of type n

CS101 Win2015: Linguistics Formal Languages

Examples

e Type 3: G = ({S,A},{0,1}, P, S) with productions P given by
5§05 S—->A A—-1A A-1

then Lg = {0™1"|m>0,n> 1}
e Type 2: G = ({S},{0,1}, P, S) with productions P given by

S$—051, S—01

then L5 = {0"1" |n > 1}

CS101 Win2015: Linguistics Formal Languages

e Type 1: G = ({S,B, C}{a, b,c}, P,S) with productions P
S —~aSBC, S§—aBC, (B — BC,

aB — ab, bB — bb, bC — bc, cC — cc
the Lg = {a"b"c" |n > 1}

CS101 Win2015: Linguistics Formal Languages

Why is it useful to organize formal languages in this way?
Types and Machine Recognition
Recognized by:

@ Type 0: Turing machine

@ Type 1: linear bounded automaton
@ Type 2: non-deterministic pushdown stack automaton
o Type 3: finite state automaton

What are these things?

CS101 Win2015: Linguistics Formal Languages

Finite state automaton (FSA)

M= (Q,F,2,7,q)
o Q finite set: set of possible states
@ F subset of Q: the final states
o 2 finite set: alphabet
o 7 C Q xAx Q set of transitions
@ go € Q initial state

CS101 Win2015: Linguistics Formal Languages

computation in M: sequence qoai1q132q> . .. anq, where
gi_1ajgieTforl1 <1<n

e label of the computation: a3 ... a,

e successful computation: g, € F

e M accepts a string a1 ... a, if there is a successful computation
in M labeled by a; ... a,

Language recognized by M:

Ly ={w € A* | w accepted by M}

CS101 Win2015: Linguistics Formal Languages

Graphical description of FSA

Transition diagram: oriented finite labelled graph I with vertices
V(') = Q set of states and E(I') = 7, with ey, o an edge from vq
to vy with label a € 2; label vertex go with — and all final states
vertices with +

e computations in M < paths in ' starting at v,

e an oriented labelled finite graph with at most one edge with a
given label between given vertices, and only one vertex labelled —
is the transition diagram of some FDA

CS101 Win2015: Linguistics Formal Languages

deterministic FSA
for all g € Q and a € 2, there is a unique ¢’ € Q with (g,a,¢') € T
= function § : Q x A — Q with 6(q,a) = ¢', transition function

determines § : Q x A* — Q by d(qg,¢) = g and
d(q,wa) = §(6(q, w), a) for all w € A* and a € 2

if goa1q1 ... angn computation in M then g, = 6(qo, a1 ... an)

non-deterministic: multivalued transition functions also allowed

CS101 Win2015: Linguistics Formal Languages

Languages recognized by (non-deterministic) FSA are Type 3
o for G = (Vp, V7, P, S) type 3 grammar construct an FSA

M = (VNU{X}N‘:’ VTaTaS)
with X a new letter, F = {S, X} if S —p ¢, F = {X} if not;
T={(B,a,C)|B—paC}U{(B,a,X)|B —pa,a#ce}

then Lg = Ly
e if M is a FSA take G = (Q, %2, P, qo) with P given by

P={B—aC|(B,a,C)er}U{B—al|(B,a,C)er,CeF}

then Ly = Lg

CS101 Win2015: Linguistics Formal Languages

Non-deterministic pushdown stack automaton

Example: type 2 language would require infinite available number
of states (e.g. to memorize number of 0's read before the 1's)

Identify a class of infinite automata, where this kind of memory
storage can be done

pushdown stack: a pile where new data can be stored on top; can
store infinite length, but only last input can be accessed (first in
last out)

CS101 Win2015: Linguistics Formal Languages

pushdown stack automaton (PDA)
M= (Q,F,A,T,7,qo,)
@ Q finite set of possible states
@ F subset of Q: the final states
o 2 finite set: alphabet
I" finite set: stack alphabet
T C QX (AU{e}) xT x Q x * finite subset: set of transitions
go € Q initial state

zg € [start symbol

CS101 Win2015: Linguistics Formal Languages

e itisa FSA (Q, F,2, 7, qo) together with a stack I'*

e the transitions are determined by the first symbol in the stack,
the current state, and a letter in AU {¢}

e the transition adds a new (finite) sequence of symbols at the
beginning of the stack ™

e a configuration of M is an element of @ x 2A* x I'*

e given (q,a,z,¢,a0) e T C Q x (AU {e}) x T x Q@ x I'* the
corresponding transition is from a configuration (g, w, z3) to a
configuration (q’, wa, a3)

e computation in M: a chain of transitions ¢ — ¢’ between
configurations ¢ = ¢y, ..., ¢, = ¢’ where each ¢; — ¢j11 a
transition as above

CS101 Win2015: Linguistics Formal Languages

e computation stops when reach final state or empty stack

e PDA M accepts w € A* by final state if 3y € * and g € F such
that (qo, w, 20) — (g, ¢€,7) is a computation in M

e Language recognized by M by final state

Ly = {w € A* | w accepted by M by final state }

e w € A* accepted by M by empty stack: if (qo, w,z0) — (g, ¢, €)
is a computation on M with g € Q

e Language recognized by M by empty stack

Ny = {w € A* | w accepted by M by empty stack }

CS101 Win2015: Linguistics Formal Languages

deterministic PDA
@ at most one transition (q, a,z,q’, &) € T with given (q, a, z)
source
@ if there is a transition from (g, €, z) then there is no transition
from (g, a,z) with a # €
first condition as before; second condition avoids choice between a

next move that does not read the tape and one that does

Fact: recognition by final state and by empty stack equivalent for
non-deterministic PDA

L=Ly<eL=Nw

not equivalent for deterministic: in deterministic case languages
L = Ny have additional property:
prefix-free: if w € L then no prefix of w is in L

CS101 Win2015: Linguistics Formal Languages

Languages recognized by (non-deterministic) PDA are Type 2

o If £ is context free then £ = AN}, for some PDA M

L = Lg with G = (Vy, V1, P,S) context-free, take

M = ({q},0, Vr, VN, T, q,S) with T given by the (g, a, A, q,) for
productions A — avy in P

then for o € Vj and w € V7T have
SSHpwa & (q,w,5)—wm(g.60a)

if also € € £ add new state g’ and new transition (g, ¢, 5S¢, €),
where S start symbol of a PDA that recognizes £ \ {e}

CS101 Win2015: Linguistics Formal Languages

o if L =Ny for PDA M then £ = Lg with G context-free
for M = (Q, F,2,T,7,qo,2) define G = (Vn, 2, P, S) where

W ={(q,z,p)|q.p€ Q,z€T}U{S}

with production rules P given by
Q S —(q0,20,q) forallge Q

e (q7 z, p) - a(qluyla CI2)(CI27)/27 q3) e (qm7Yma qm+1) with
91 =9, gm+1 = p and (q,3,2,q1,¥1 - .. Ym) transition of M

(q.w,z) =m (p.ee) < (q,2,p) 2pw

CS101 Win2015: Linguistics Formal Languages

Turing machine T=(Q,F,A1,7,q)

Q finite set of possible states

F subset of Q: the final states

2 finite set: alphabet (with a distinguished element B blank
symbol)

I C A~ {B} input alphabet

TCQxAx Q xAx{L,R} transitions
with {L, R} a 2-element set

@ go € Q initial state

gaq’a’L € T means T is in state g, reads a on next square in the
tape, changes to state g/, overwrites the square with new letter &’
and moves one square to the left

CS101 Win2015: Linguistics Formal Languages

e tape description for T: triple (a,c, 8) with a € A, o : N — 2,
B : N — 2 such that a(n) = B and 3(n) = B for all but finitely
many n € N (sequences of letters on tape right and left of a)

e configuration of T: (q,a,a,) with g € Q and (a, a, 3) a tape
description
e configuration ¢’ from c in a single move if either
e c=(q,a,,3), gag’d'L € 7 and ¢’ = (¢, 5(0), &, B') with
a/(0) = & and &/(n) = a(n—1), and '(n) = B(n+1)
e c=(q,a,,0), qag’ad R € 7 and ¢’ = (¢, (0), &/, B’) with
o'(n) =a(n+1), and p'(0) = 2, p'(n) = B(n—1)

e computation ¢ — ¢’ in T starting at ¢ and ending at ¢’: finite
sequence ¢ = ¢, ...,Ccy = ¢’ with ¢;iy1 from ¢; by a single move

e computation halts if ¢’ terminal configuration, ¢’ = (q, a, «, 3)
with no element in 7 starting with ga

CS101 Win2015: Linguistics Formal Languages

e word w = a; - - - ap, € A* accepted by T if for ¢, = (qo, a1+ - an)
there is a computation in T of the form ¢, — ¢’ = (q, a,, B)
with g € F

e Language recognized by T

L1 ={w e A" | wis accepted by T}

e Turing machine T deterministic if for given (g, a) € Q x 2 there
is at most one element of 7 starting with ga

CS101 Win2015: Linguistics Formal Languages

Languages recognized by Turing Machines are Type 0
o if L= L1 take grammar G = (Vy, V1, P,S) with V=1,
Vv =((1U{e}) xA)U QU {S, E1, Ez, E3}
extra letters E1, E», E3 and productions P
S— EE, E —(aaE, acA, E — E
Es — (¢,B)E3, E1 — (¢,B)E1, Ez—¢, Ei— qo
q(a, C) — (a,D)p, with gqCpDR € 7, a € U {¢}
(a,C)g — p(a, D), with qCpDL € 7, a € | U{e}

(a,C)g — qaq, q(a,C) = qaq, q— e

foraclU{e}, CeA, geF.
Then £ = Lg

CS101 Win2015: Linguistics Formal Languages

e converse statement: £ = Lg with G Type 0 = £ = L1 with
T = Turing machine

uses a characterization of Type 0 languages as recursively
enumerable languages: code 2* by natural numbers f : 2* — N
bijection such that (L) is a recursively enumerable set (Godel
numbering)

recursively enumerable set: A in N range A = g(N) of a some
recursive function

enumerable set A in N: both A and N \ A are recursively
enumerable

recursive function: total functions obtained from primitive
recursive (explicit generators and relations) and minimization p

CS101 Win2015: Linguistics Formal Languages

Part 2: Languages recognized by a Turing machine are Type 0
e L = Lg of Type 0 < L recursively enumerable

e [recursively enumerable = recognized by Turing machine
(0) assume A = {2,3,...,r — 1} and Godel numbering
W=xi...xk = (W) =x1+xor 4+ 4 xrk

(1) tape alphabet {0,1,2,...,r — 1}, input / = £, final state
F = (, blank symbol 0

(2) Turing machine that, on tape description x; ... x, halts with
tape description 01* - .- 01*<0

(3) Turing machine that, on tape description 01* - - - 01*0 halts
with tape description 01#(x1--xk)

(4) partial recursive function f with Dom(f) = ¢(L£): Turing
machine that, on input 01% halts iff x € Dom(f) with 01f(*)

(5) Composition of these three Turing machines recognizes £

CS101 Win2015: Linguistics Formal Languages

Linear bounded automaton is a Turing machine
T =(Q,F,2,1,7,q0) where only the part of the tape where the
input word is written can be used

@ input alphabet / has two symbols),(right/left end marks

@ no transitions g(q’al or q)q’aR allowed (cannot move past
end marks)

© only transitions starting with g(or q) are q(¢’(R and q)q’)L
(cannot overwrite (and))

Languages recognized by linear bounded automata are Type 1
context-sensitive languages are recursive

CS101 Win2015: Linguistics Formal Languages

Some references:

@ lan Chiswell, A course in formal languages, automata and
groups, Springer, 2009

@ Gyorgy Révész, Introduction to formal languages,
McGraw-Hill, 1983

© Noam Chomsky, Three models for the description of language,
IRE Transactions on Information Theory, (1956) N.2,
113-124.

@ Noam Chomsky, On certain formal properties of grammars,
Information and Control, Vol.2 (1959) N.2, 137-167

CS101 Win2015: Linguistics Formal Languages

